Rafaela C. Carmona, Evelyn P. Schevciw, João L. Petrarca de Albuquerque, Edison P. Wendler and Alcindo A. Dos Santos*

Joint use of microwave and glycerol-zinc (II) acetate catalytic system in the synthesis of 2-pyridyl-2-oxazolines¹⁾

Abstract: Glycerol combined with zinc (II) acetate catalyzed the reaction of 2-amino alcohols and 2-cyanopyridines under microwave irradiation, resulting in 2-pyridyl-2-oxazolines. Comparing the conversion to that obtained by conventional heating, a significant decrease in the reaction time was achieved. At the end of the reaction, the product was isolated and the glycerol-zinc (II) acetate catalytic system was recycled four times for the same transformation in reasonable to acceptable yields. The products were obtained in their pure form by simple filtration in a short pad of silica.

Keywords: 2-pyridyl-2-oxazoline; glycerol-zinc (II) acetate catalyst; microwave irradiation.

Rafaela C. Carmona, Evelyn P. Schevciw, João L. Petrarca de Albuquerque and Edison P. Wendler: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cx. P. 26077, CEP 05508–000 São Paulo, Brazil

1 Introduction

The 2-oxazoline unit is present in a variety of biologically active compounds [1] and has received attention because of its applications in organic synthesis as a protecting group [2], a polymerization precursor [3–7] and particularly, as a catalyst for many transformations, including chirality induction/transference [8–13]. 2-Pyridyl-2-oxazolines are interesting ligands for metal complex precursors, which makes them good candidates for metal-catalyzed transformations. A myriad of well-established procedures for the preparation of optically active 2-oxazolines is known, however, many of the procedures are unappealing with regards to energy expenditure and reaction

times [2, 14–21]. In 2009, Kempe and co-workers reported a clean zinc (II) acetate-catalyzed synthesis of 2-oxazolines from nitriles and 2-aminoethanol by conventional heating (130°C), using chlorobenzene as the solvent [22]. Although several nitriles were submitted to a reaction with 2-aminoethanol in the presence of various catalysts, only a few examples resulted in the product of interest. In addition, some cases required long reaction times to achieve the desired product in reasonable yields for preparative purposes. Recently, procedures involving the preparation of 2-oxazolines under microwave irradiation have been reported [23, 24].

Recently, glycerol is being produced in large quantities as a byproduct of the biodiesel industry, and traditional consumption of this commodity is not sufficient to uptake its surplus. Glycerol can be considered a green solvent, being found in many living organisms as triglycerides [25–34]. Because of the above-mentioned reasons, attention has been directed to new applications for glycerol, one of the most promising of which is its use as a green solvent. Considering that the transformation industry is deeply dependent on organic solvents, those based on renewable sources are the most attractive so far.

In this work we present our results concerning the association of glycerol and zinc (II) acetate as a renewable green reaction media for the preparation of 2-oxazolines under microwave irradiation in good yields and with short reaction times.

2 Experimental section

2.1 General information

Microwave reactions were performed with a CEM Discover Synthesis Unit (CEM Corp., Matthews, NC, USA), with a continuous focused microwave power delivery system in a glass vessel (10 ml) sealed with a septum pierced by a needle (for the ammonia realizing), under magnetic stirring.

¹⁾Supplementary material to this article can be found at: http://www.degruyter.com/view/j/gps.

^{*}Corresponding author: Alcindo A. Dos Santos, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cx. P. 26077, CEP 05508–000 São Paulo, Brazil, e-mail: alcindo.tolentino@gmail.com

Nuclear magnetic resonance (NMR) spectra were recorded on a BRUKER AC 200 spectrometer operating at 200 MHz and 50 MHz for ¹H NMR and ¹³C NMR, respectively (Bruker BioSpin GmbH, Rheinstetten, Baden-Württemberg, Germany). CDCl, was used as the solvent and as internal references, tetramethylsilane (TMS) for ¹H NMR and CDCl₃, for 13 C NMR, chemical shifts (δ) are given in parts per million and coupling constants (J) in hertz.

Gas chromatography analyses were performed on Shimadzu GC2014 devices (Shimadzu Corp., Nakagyo-ku, Kyoto, Japan), using a flame ionization detector (FID), N as carrier gas and equipped with a DB-5-HT (5% – phenylmethylpolysiloxane) column with dimensions 30 m×0.32 mm×0.10 μm (Agilent Technologies, Inc., Santa Clara, CA, USA).

High performance liquid chromatography (HPLC) analyses were performed on a Shimadzu LC-30AD device equipped with a UV-Vis SPD-M20A detector, using a Chiralpak AD-H (Chiral Technologies Europe, Illkirch Graffenstaden, Bas Rhin, France) column with dimensions 4.6 mm×250 mm and hexane:isopropanol (9:1) as a mobile phase, with 1.0 ml/min flow.

Optical rotation analyses were performed on a Perkin-Elmer 241 polarimeter (PerkinElmer, Inc., Waltham, MA, USA) with a D ray sodium lamp.

All reagents are commercial grade and were pretreated before use, when needed (All reagents were purchased from Sigma-Aldrich Corporation, St. Louis, MO, USA).

2.2 Microwave-promoted synthesis of 2-pyridyl-2-oxazolines

2.2.1 General procedure

Appropriate amino alcohol (2 mmol), 2-cyanopyridine (1, 0.104 g, 0.096 ml, 1 mmol), zinc acetate dihydrate (0.004 g, 0.02 mmol, 2 mol%) and glycerol (1 ml) were mixed into a glass vessel sealed with a septum pierced by a needle. This reaction vessel was placed into the microwave reactor and heated at 110°C for 17 min under stirring. After cooling to room temperature, the product was extracted from the reaction mixture by washing with ethyl acetate (5×2 ml). The ethyl acetate phases were combined and washed with water (2×5 ml), then dried with Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The crude product was filtered though a plug of silica gel, and the filter cake was washed with ethyl acetate (5×2 ml). After evaporation of the solvent, pure 2-pyridyl-2-oxazolines were obtained.

4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline (3)

CAS 109660-12-0 86% yield.

NMR ¹**H (400 MHz, CDCl₂):** δ 1.42 (s, 6H), 4.21 (s, 2H), 7.39 (ddd J1=7.7 Hz, J2=4.8 Hz, J3=1.2 Hz, 1H), 7.77 (td, J1=7.7 Hz, J2=1.8 Hz, 1H), 8.03 (dt, J1=7.7 Hz, J2=1.1 Hz, 1H), 8.71 (ddd, *J1*=4.8 Hz, *J2*=1.8 Hz, *J3*=1.0 Hz, 1H).

NMR ¹³**C (100 MHz, CDCl,)**: δ 28.3, 67.7, 79.5, 123.7, 125.3, 136.4, 146.9, 149.6, 161.1.

4,4-dimethyl-2-(pyridin-2-ylmethyl)-2-oxazoline (5) CAS 194096-82-7 63% yield.

NMR ¹**H (200 MHz, CDCl.)**: δ 1.30 (s, 6H), 3.82 (s, 2H), 3.95 (s, 2H), 7.19 (dddd, J1=7.7 Hz, J2=4.9 Hz, J3=1.0, J4=0.5 Hz, 1H), 7.29-7.35 (m, 1H), 7.66 (td, J1=7.7 Hz, J2=1.9 Hz, 1H), 8.56 (ddd, J1=4.9 Hz, J2=1.9 Hz, J3=1.0 Hz, 1H).

NMR ¹³**C (50 MHz, CDCl₂):** δ 28.3 (2C), 37.6, 67.1, 79.3, 122.0, 123.0, 136.7, 149.4, 163.3.

(S)-4-isobutyl-2-(pyridin-2-yl)-2-oxazoline (6) CAS 108915-07-7 78% yield.

NMR ¹**H (400 MHz, CDCl₂)**: δ 0.97 (d, J1=6.6 Hz, 3H), 0.99 (d, J1=6.6 Hz, 3H), 1.41(dt, J1=13.4 Hz, J2=7.3 Hz, 1H), 1.76 (dt, J1=13.4 Hz, J2=6.9 Hz, 1H), 1.88 (non, J1=6.7 Hz, 1H), 4.07 (t, J1=8.2 Hz, 1H), 4.35-4.45 (m, 1H), 4.60 (dd, J1=9.5 Hz, J2=8.1 Hz, 1H), 7.38 (ddd, J1=7.6 Hz, J2=4.8 Hz, J3=1.2 Hz, 1H), 7.77 (td, J1=7.8 Hz, J2=1.8 Hz, 1H), 8.04 (dt, J1=7.9 Hz, J1=1.1 Hz, 1H), 8.71 (ddd, J1=4.8 Hz, J2=1.8 Hz, J3=0.9 Hz, 1H).

NMR ¹³C (100 MHz, CDCl₃): δ 22.6 (2C), 25.2, 45.3, 65.2, 73.5, 123.7, 125.2, 136.4, 146.7, 149.5, 162.2.

(S)-4-(2-(methylthio)ethyl)-2-(pyridin-2-yl)-2-oxazoline (7)

CAS 108915-09-9 51% yield.

NMR ¹**H (400 MHz, CDCl₂):** δ 1.83–1.97 (m, 1H), 1.99–2.11 (m, 1H), 2.14 (s, 3H), 2.70 (ddd, J1=15.0 Hz, J2=8.3 Hz, J3=6.6 Hz, 1H), 2.73 (ddd, J1=15.0 Hz, J2=8.5 Hz, J3=6.1 Hz, 1H), 4.14 (t, J1=8.2 Hz, 1H), 4.44-4.55 (m, 1H), 4.63 (dd, J1=9.6 Hz, J2=8.3 Hz, 1H), 7.40 (ddd, J1=7.7 Hz, J2=4.8 Hz, J3=1.2 Hz, 1H), 7.87 (td, J1=7.8 Hz, J2=1.8 Hz, 1H), 8.03 (d, J1=7.8 Hz, 1H), 8.72 (ddd, J1=4.8 Hz, J2=1.7 Hz, J3=0.7 Hz, 1H).

NMR ¹³**C (100 MHz, CDCl₂):** δ 15.5, 30.7, 35.2, 66.0, 72.9, 123.8, 125.5, 136.6, 146.6, 149.7, 162.8.

(S)-4-phenyl-2-(pyridin-2-yl)-2-oxazoline (8)

CAS 153880-57-0

60% yield.

 $[\alpha]^{25}_{p} = -34^{\circ} \text{ (C=2.045; toluene)}$

NMR ¹**H (200 MHz, DMS)**: δ 4.40 (t, J=8.6 Hz, 1H), 4.91 (dd, J1=10.3 Hz, J2=8.6 Hz, 1H), 5.47 (dd, J1=10.3 Hz, J2=8.6 Hz, 1H), 7.55-7.28 (m, 6H), 7.82 (ddd, J1=7.7 Hz, J2=1.8 Hz, J3=0.9 Hz, 1H), 8.18 (dt, J1=7.7 Hz, J2=1.1 Hz, 1H), 8.75 (ddd, J1=4.8 Hz, J2=1.8 Hz, J3=0.9 Hz, 1H).

NMR ¹³**C (50 MHz, DMSO)**: δ 70.3, 75.3, 124.2, 125.8, 126.8 (2C), 127.7, 128.8 (2C), 136.7, 141.8, 149.8.

(S)-4-benzyl-2-(pyridin-2-yl)-2-oxazoline (9)

CAS 108915-08-8

89% yield.

 $[\alpha]^{25}_{p} = -52^{\circ}$ (C=0.538; toluene)

NMR ¹**H (400 MHz, CDCl₂):** δ 2.77 (dd, J1=13.8 Hz, J2=9.0 Hz, 1H), 3.30 (dd, J1=13.8 Hz, J2=5.1 Hz, 1H), 4.23 (dd, J1=8.6 Hz, J2=7.7 Hz, 1H), 4.44 (dd, J1=9.4 Hz, J2=8.6 Hz, 1H), 4.66 (dddd, J1=9.4 Hz, J2=9.0 Hz, J3=7.7 Hz, J4=5.1 Hz, 1H), 7.20-7.33 (m, 5H), 7.39 (ddd, J1=7.6 Hz, J2=4.8 Hz, J3=1.2 Hz, 1H), 7.77 (ddd, J1=7.8 Hz, J2=7.7 Hz, J3=1.7 Hz, 1H), 8.06 (ddd, J1=7.8 Hz, J2=1.2 Hz, J3=0.9 Hz, 1H), 8.70 (ddd, J1=4.7 Hz, J2=1.7 Hz, J3=0.9 Hz, 1H).

NMR ¹³**C (100 MHz, CDCl₂):** δ 41.5, 68.0, 72.3, 123.8, 125.4, 126.4, 128.4 (2C), 129.1 (2C), 136.5, 137.6, 146.6, 149.6, 163.0.

(R)-4-methyl-2-(pyridin-2-yl)-2-oxazoline (10)

CAS 242482-41-3

77% vield.

NMR ¹**H (200 MHz, CDCl₂)**: δ 1.40 (d, J1=6.5 Hz, 3H), 4.05 (t, J1=7.77 Hz, 1H), 4.28-4.77 (m, 2H), 7.39 (ddd, J1=7.6 Hz, J2=4.8 Hz, J3=1.3 Hz, 1H), 7.78 (td, J1=7.8 Hz, J2=1.8 Hz, 1H), 7.96 (m, 1H), 8.71 (ddd, J1=4.9 Hz, J2=1.8 Hz, J3=1.0 Hz 1H).

NMR ¹³**C (50 MHz, CDCl₂):** δ 21.1, 62.0, 74.4, 123.6, 125.3, 136.4, 146.5, 149.5, 162.4.

(S)-4-isopropyl-2-(pyridin-2-yl)-2-oxazoline (11)

CAS 108915-04-4

88% yield.

 $[\alpha]^{25}_{n} = -98^{\circ} \text{ (C=0.506; toluene)}$

NMR ¹**H (400 MHz, CDCl,)**: δ 0.95 (d, J1=6.8 Hz, 3H), 1.06 (d, J1=6.8 Hz, 3H), 1.90 (oct, J1=6.8 Hz, 1H), 4.18 (dd, J1=16.0 Hz, J2=8.3 Hz, J3=6.3 Hz, 1H), 4.21 (dd, J1=16.0 Hz, J2=8.3 Hz, 1H), 4.51 (dd, J1=9.0 Hz, J2=7.6 Hz, 1H), 7.38 (ddd, J1=7.6 Hz, J2=4.8 Hz, J3=1.2 Hz, 1H), 7.77 (ddd, J1=7.8 Hz, J2=7.7 Hz, J3=1.7 Hz, 1H), 8.05 (ddd, J1=7.8, J2=1.2 Hz, J1=0.9 Hz, 1H), 8.71 (ddd, J1=4.8 Hz, J2=1.7 Hz, J3=0.9 Hz, 1H).

NMR ¹³**C (100 MHz, CDCl₃)**: δ 18.0, 18.9, 32.6, 70.6, 72.8, 123.7, 125.2, 136.4, 146.8, 149.5, 162.4.

(S)-4-((R)-sec-butyl)-2-(pyridin-2-yl)-2-oxazoline (12) CAS 108915-03-3

92% vield.

 $[\alpha]^{25}$ = -75° (C=2.011; toluene)

NMR ¹**H (400 MHz, CDCl,)**: δ 0.89 (d, J1=6.7 Hz, 3H), 0.96 (t, J1=7.4 Hz, 3H), 1.12-1.37 (m, 1H), 1.57-1.88 (m, 2H), 4.22 (dd, J1=8.4 Hz, J2=7.7 Hz, 1H), 4,30 (ddd, J1=9,3 Hz, J2=8,4 Hz, J3=5,7 Hz, 1H), 4.50 (dd, J1=9.3 Hz, J2=7.8 Hz, 1H), 7.39 (ddd, J1=7.6 Hz, J2=4.8 Hz, J3=1.2 Hz, 1H), 7.77 (ddd, J1=9.6 Hz, J1=7.8 Hz, J2=1.8 Hz, 1H), 8.06 (dt, J1=7.9 Hz, J2=1.0 Hz, 1H), 8.71 (ddd, J1=4.8 Hz, J2=1.8 Hz, J3=1.0 Hz, 1H).

NMR ¹³C (100 MHz, CDCl₂): δ 11.4, 14.3, 26.1, 39.0, 70.2, 71.4, 123.8, 125.3, 136.5, 146.8, 149.6, 162.4.

2-(5-bromopyridin-2-yl)-4,4-dimethyl-2-oxazoline (13) 51% yield.

NMR ¹**H (200 MHz, CDCl₂)**: δ 1.41 (s, 6H), 4.21 (s, 2H), 7.91 (d, J1=1.5 Hz, 2H), 8.76 (t, J1=1.5 Hz, 1H).

NMR ¹³**C (50 MHz, CDCl₂):** δ 28.3, 68.2, 79.8, 123.1, 124.9, 139.3, 145.3, 150.9.

IR (KBr): v 3431, 3034, 2957, 2417, 2366, 2341, 1760, 1699, 1648, 1561, 1388, 1088, 991, 909, 879, 838, 680, 629.

MS (IES⁺): calc for $C_{10}H_{11}BrN_{2}O$ [M+H] 255.0133, found 255.0130.

MP (°C): 96.5-98.9.

(S)-2-(5-ethynylpyridin-2-yl)-4-phenyl-2-oxazoline (14)

61% yield.

 $[\alpha]^{25}$ = -38° (C=1.125; chloroform)

NMR ¹**H (200 MHz, CDCl₂):** δ 3.36 (s, 1H), 4.40 (t, J1=8.6 Hz, 1H), 4.91(dd, J1=10.3 Hz, J2=8.6 Hz, 1H), 5.48 (dd, J1=10.3 Hz, J2=8.6 Hz, 1H), 7.29-7.41 (m, 5H), 7.88 (dd,

J1=8.2 Hz, J2=2.0 Hz, 1H), 8.14 (dd, J1=8.2 Hz, J2=0.8 Hz, 1H), 8.82 (dd, /1=2.0 Hz, /2=0.8 Hz, 1H).

NMR ¹³C (50 MHz, CDCl₂): δ 70.4, 75.4, 79.9, 82.9, 121.4, 123.5, 126.7 (2C), 127.8, 128.8 (2C), 139.7, 141.5, 145.6, 152.6, 163.2.

IR (KBr): v 3391, 2924, 2855, 2367, 2333, 1652, 1514, 1384, 1068, 1026, 827, 751, 696.

MS (IES⁺): calc for $C_{16}H_{12}N_2O[M^{+H}]$ 249.1028, found 249.1026. **MP (°C)**: 136.6-139.1.

2-((1H-indol-3-yl)methyl)-4-(pyridin-2-yl)-2-oxazoline

61% yield.

 $[\alpha]^{25}_{p} = +9^{\circ} (C=0.320; chloroform)$

NMR ¹**H (200 MHz, CDCl₂):** δ 2.92 (dd, J1=14.5 Hz, J2=9.1 Hz, 1H), 3.44 (ddd, J1=14.5 Hz, J2=4.7 Hz, J3=1.0 Hz 1H), 4.27 (dd, J1=8.6 Hz, J2=7.7 Hz, 1H), 4.45 (t, J1=9.1 Hz, 1H), 4.80 (tdd, J1=9.2 Hz, J2=7.6 Hz, J3=4.7 Hz 1H), 7.01-7.25 (m, 3H), 7.30–7.56 (m, 2H), 7.60–7.73 (m, 1H), 7.79 (td, J1=7.7 Hz, J2=1.8 Hz, 1H), 8.01-8.14 (m, 1H), 8.72 (ddd, J1=4.7 Hz, J2=1.8 Hz, J3=1.0 Hz 1H).

NMR ¹³C (50 MHz, CDCl₂): δ 31.3, 67.2, 72.9, 111.2, 111.6, 118.7, 119.3, 122.0, 122.4, 123.9, 125.5, 127.5, 136.2, 146.7, 149.6, 163.0.

IR (KBr): v 3201, 3184, 3105, 3043, 2983, 2900, 2883, 1647, 1384, 1361, 1323, 1274, 1249, 1101, 1085, 1037, 966, 744, 725.

MS (IES⁺): calc for $C_{16}H_{12}N_2O[M^{+H}]$ 278.1293, found 278.1293.

MP (°C): 170.1–171.6.

4,4-dimethyl-2-phenyl-2-oxazoline (16)

CAS 19312-06-2 30% yield.

NMR ¹**H (200 MHz, CDCl₂):** δ 1.38 (s, 6H), 4.11 (s, 2H), 7.35– 7.51 (m, 3H), 7.91-7.98 (m, 2H).

NMR ¹³**C (50 MHz, CDCl₂):** δ 28.4 (2C), 67.5, 79.1, 128.0, 128.1 (2C), 128.2 (2C), 131.1, 162.0.

3 Results and discussion

In the course of exploring some enantioselective transformations based on chiral metal complexes, appealing and

Figure 1 Oxazoline synthesis using glycerol as solvent.

more environmentally friendly preparation procedures of 2-pyridyl-2-oxazolines were of interest in our research group. Herein, we report the associative utilization of glycerol and zinc (II) acetate as a catalyst system for the preparation of 2-pyridyl-2-oxazolines from 2-cyanopyridines and amino alcohols, under microwave irradiation. Glycerol was chosen as a solvent, because of its green aspects and also based on the premise that the product could be extracted from the reaction medium by washing with a glycerol-immiscible organic solvent. To test the feasibility of our proposition, 2-cyanopyridine (1) and 2-amino-2-methylpropanol (2, 2 eq) were subjected to a reaction in the presence of zinc (II) acetate (2 mol%) in glycerol, under conventional heating (Figure 1). Initial studies focused on the optimal temperature needed for maximum conversion into the corresponding 2-oxazoline (Table 1).

Even after prolonged reaction times at 70°C or 90°C, low conversions were observed. On the other hand, at 110°C, the desired oxazoline was obtained in 88% yield within 2 h. On searching for a more efficient process and tapping into the microwave irradiation absorption properties of glycerol [35], we focused our attention in the application of this energy source.

A reaction time screening for the total conversion of 2-cyanopyridine (1) into the corresponding oxazoline, was carried out at 110°C and it was observed that within 17 min, total consumption of the starting material was achieved, leading to the oxazoline (3) in 86% isolated yield, as shown in Table 2.

Table 1 2-Pyridyl-2-oxazoline synthesis under conventional heating.

T (°C)	t (h)	Yield (%) ^{1,2}
70	20³	lc ⁴
90	5 ³	lc ⁴
110	2	88
	70 90	70 20 ³ 90 5 ³

Reactions were conducted using 1 mmol of the 2-cyanopyridine, 2 mmol of amino alcohol and 2 mol% of Zn(AcO), in 1 ml of glycerol.

¹Analyzed by GC.

²Isolated yield.

³Starting material was not totally consumed.

⁴Low conversions were observed.

Table 2 Microwave screening for the oxazoline synthesis.

Entry	t (min)	SM:P1	Yield (%) ²
1	2	73:27	nd
2	5	36:64	nd
3	10	19:81	nd
4	12	2:98	nd
5	15	1:99	nd
6	17	0:100	86
7	20	Byproducts ³	nd

Reactions were conducted using 1 mmol of the 2-cyanopyridine, 2 mmol of amino alcohol and 2 mol% of Zn(AcO), in 1 ml of glycerol at 110°C.

nd, not determined; P, product (3, 2-oxazoline); SM, starting material (1, 2-cyanopyridine).

As can be observed, a progressively higher conversion was achieved as a function of time. Reaction times longer than 17 min resulted in the formation of unidentified byproducts (entry 7).

It is worth mentioning that the reaction was accompanied by color changes, resulting in a deep greenish-blue solution after 17 min of microwave irradiation (Figure 2). We have no explanation for this color change, since

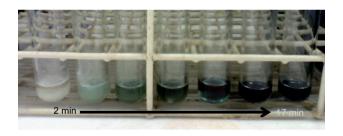


Figure 2 Color changes of the reaction media through time under microwave irradiation.

zinc glycerolate, which can be generated in situ, as well as ammonium acetate (another possible byproduct), are both white solids and their solutions are colorless [36].

As was initially hypothesized, after completion of the reaction, removal of the product from the reaction media can be easily accomplished by extraction with ethyl acetate (immiscible in glycerol), leading to the nearly pure product after solvent evaporation. Following this procedure, a purification consisting of a simple filtration through a short pad of silica was necessary for preparative purposes. According to this result, we proposed that the glycerol-zinc (II) acetate catalytic system could be recycled for new reactions. Thus, after extraction of oxazoline (3) produced in the first cycle, stoichiometric amounts of (1) and (2) were added to the reaction media and submitted to another cycle of reaction in both conditions of conventional heating and microwave irradiation. The results are shown in the bar graphic in Figure 3.

Five cycles were conducted by sequential reaction/extraction procedures and a decrease in yield was observed for the two new cycles, with virtually the same results for conventional heating and microwave irradiation. Interestingly, under microwave irradiation, product (3) was isolated in almost the same yield from reactions of the 4th as well as the 5th cycles. By contrast, by conventional heating, the product yield was substantially diminished in the 4th cycle, and in the 5th cycle, no product was isolated under the same reaction conditions. Despite appreciable yield reduction after the 3rd cycle, it was demonstrated that the reaction media could be reused.

Figure 4 Oxazoline synthesis with 2-pyridylacetonitrile.

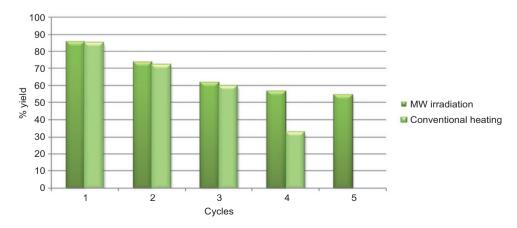


Figure 3 Recycling of the reaction media for new reactions.

¹Analyzed by GC.

²Isolated yield.

³Unidentified byproducts.

Table 3 Microwave screening for the reaction of 2-pyridylacetonitrile (4) with amino alcohol (2).

Entry	T (°C)	t (min)	SM:P1	Yield (%)
1	110	17	72:28	nd
2	110	34	51:49	nd
3	110	51	49:51	nd
4	140	30	26:74	nd
5	150	40	1:99	63 ²

Reactions were conducted using 1 mmol of the 2-pyridylacetonitrile, 2 mmol of amino alcohol and 2 mol% of Zn(AcO), in 1 ml of glycerol. nd, not determined; P, product (5, 2-oxazoline); SM, starting material (4, 2-pyridylacetonitrile).

2-Pyridylacetonitrile (4) was also submitted to reaction with amino alcohol (2) under several reaction conditions. No reaction was observed following the conditions reported by Kempe et al. [22], using chlorobenzene and zinc (II) acetate, or when testing different solvent-catalyst systems. However, using our reaction conditions,

Table 4 2-Pyridyl-2-oxazolines synthesized under microwave irradiation.

Entry	2-Oxazoline	Yield (%)¹
1		78
2		51
3	N O Ph	60
4	9 N Ph	89
5	N 10 N	77
6	N O II	88

(Table 4 Continued)

Entry	2-Oxazoline	Yield (%)¹
7	12 N	92
8	Br O O 13 N	51
9	N TO N THE Ph	61
11	15 N N	61
12	0 16 N	30 ²

Reactions were conducted using 1 mmol of the 2-cyanopyridine, 2 mmol of amino alcohol and 2 mol% of Zn(AcO), in 1 ml of glycerol at 110°C.

²Non-optimized conditions. It was not possible to obtain this oxazoline using the procedure reported in reference 22.

the expected oxazoline (5) was produced in 63% isolated yield after 40 min irradiation at 150°C (Figure 4). As presented in Table 3, progressively higher conversions were observed through time (GC analysis), but only at a higher temperature (150°C) was a nearly quantitative conversion achieved (entry 5), leading to the corresponding 2-oxazoline in 63% isolated yield.

In order to verify the scope and limitations of the protocol, other amino alcohols were submitted to a reaction with 2-cyanopyridine (1) under microwave irradiation.

In Table 4, the structure and isolated yields of the reaction of 2-cyanopyridine or benzonitrile and other amino alcohols are presented.

With the exception of 2-oxazoline (16) (entry 12), all other products were obtained in good to excellent yields, which suggests that benzonitrile is less reactive than the other nitriles used.

As enantiopure amino alcohols were used, the optical purity of the corresponding oxazolines was determined by chiral liquid chromatography. An artificially

¹Analyzed by GC.

²Isolated yield.

¹Isolated yield.

enantioenriched mixture of (R)- and (S)-2-oxazoline (8)was prepared by mixing enantiopure (R)- and (S)-phenylglycinol and reacting this mixture with the corresponding nitrile. This oxazoline was chosen because the stereogenic center is a benzylic carbon, thus if some epimerization could occur during the synthesis, an enantiomeric mixture of oxazoline (8) would be produced. The artificial enantiomeric mixture and the enantiopure oxazolines were analyzed by chiral HPLC, confirming that no epimerization occurred during the reaction. The optical rotation of other oxazolines was measured and the results are in agreement with literature reported values [37].

In conclusion, we have developed a fast and green reaction procedure to prepare 2-pyridyl-2-oxazolines under microwave irradiation. Use of the glycerol-zinc (II) acetate system has proven to be very practical, considering that at the end of the reaction, the desired product can be easily extracted from the reaction media by washing with ethyl acetate, allowing reuse of the reaction media. Modest to good yields were achieved by recycling the solvent-catalyst system. As a rule, product purification required solely filtration in a short silica pad-column. No exogenous byproducts were observed under the optimal reaction conditions.

Acknowledgments: The authors thank **FAPESP** (2005/59572-7, 2008/55401-1, 2010/17228-6, 2011/03244-2, 2011/11613-8 and 2012/17093-9), CNPg and CAPES for financial support and scholarships. The authors are also grateful for the financial and structural support offered by University of São Paulo through the NAP-CatSinQ (Research Core in Catalysis and Chemical Synthesis).

Received November 15, 2012; accepted December 20, 2012

References

- [1] Mohammadpoor-Baltork I, Khosropour AR, Hojati SF. Synlett 2005, 2747-2750.
- [2] Vorbruggen H, Krolikiewicz K. Tetrahedron 1993, 49, 9353-9372.
- [3] Tomalia DA, Sheetz DP. J. Polym. Sci. Part A 1966, 4, 2253-2265.
- [4] Seeliger W, Aufderhaar E, Diepers W, Feinauer R, Nehring R, Thier W, Hellmann H. Angew. Chem. 1966, 20, 913-927.
- [5] Kagiva T, Narisawa S, Maeda T, Fukui K. Polym. Lett. 1966, 4, 441-507.
- [6] Takahashi R, Sato T, Terao K, Qiu X-P, Winnik FM. Macromol. 2012, 45, 6111-6119.
- [7] Hoogenboom R, Schubert. U. S. Green Chem. 2006, 8, 895-899.
- [8] Nishiyama H, Sakaguchi H, Nakamura T, Horihata M, Kondo M, Itoh K. Organomet. 1989, 8, 846-848.
- [9] Nishiyama H, Park SB, Itoh K. Tet. Asymm. 1992, 3, 1029-1034.
- [10] Gissibl A, Finn MG, Reiser O. Org. Lett. 2005, 7, 2325-2328.
- [11] Xu W, Kong A, Lu X. J. Org. Chem. 2006, 71, 3854-3858.
- [12] Ghosh AK, Mathivanan P, Cappiello J. Tet. Asymm. 1998, 9, 1-45.
- [13] Wei C, Li C-J. J. Am. Chem. Soc. 2002, 124, 5638-5639.
- [14] Witte H, Seeliger W. Liebigs Ann. Chem. 1974, 996–1009.
- [15] Whelligan DK, Bolm C. J. Org. Chem. 2006, 71, 4609-4618.
- [16] Kangani CO, Kelley DE, Day BW. Tet. Lett. 2006, 47, 6497-6499.
- [17] Hughey JL, Knapp S, Schugar H. Synthesis 1980, 489-490.
- [18] Aidouni A, Demonceau A, Delaude L. Synlett 2006, 493-495.
- [19] Katritzky AR, Cai CM, Suzuki K, Singh SK. J. Org. Chem. 2004, 69, 811-814.
- [20] Sayama S. Synlett 2006, 1479-1484.
- [21] Ishihara M, Togo H. Tetrahedron 2007, 63, 1474–1480.

- [22] Kempe K, Lobert M, Hoogenboom R, Schubert US. J. Comb. Chem. 2009, 11, 274-280.
- [23] Sharma RS, Vadivel SK, Duclos RI Jr., Makriyannis A. Tet. Lett. 2009, 50, 5780-5782.
- [24] Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Kargar H. J. Iranian Chem. Soc. 2009, 2, 251-258.
- [25] Zhang X-Z, Zhou WJ, Yang M, Wang JX, Bai LJ. Chem. Res. 2012, 8, 489-491.
- [26] Saked KU, Mekheimer RA, Hameed AMA, Elnahas F, Elnagdi MH. Molecules 2012, 17, 6011-6019.
- [27] Ochoa-Gomez JR, Gomez-Jimenez-Aberasturi O, Ramiresz-Lopez C, Belsue M. Org. Proc. Res. Dev. 2012, 16, 389-399.
- [28] Yadav GD, Chandan PA, Gopalaswami N. Clean Tech. Env. Pol. 2012, 14, 85-95.
- [29] Cabrera DML, Libero FM, Alves D, Perin G, Lenardão E, Jacob RG. Green Chem. Lett. Rev. 2012, 3, 329-336.
- [30] Ricordi VG, Freitas CS, Perin G, Lenardão E, Jacob RG, Savegnago L, Alves D. Green Chem. 2012, 14, 1030-1034.
- Halimehjani AZ, Gholami H, Saidi MR. Green Chem. Lett. Rev. 2012. 5. 1-5.
- [32] Wolfson A, Snezhko A, Meyouhas T, Tavor D. Green Chem. Lett. Rev. 2012, 5, 7-12.
- [33] Bachhav HM, Bhagat SB, Telvekar VN. Tet. Lett. 2011, 52, 5697-5701.
- [34] Diaz-alvarez AE, Crochet P, Cadierno V. Cat. Comm. 2011, 13, 91-96.
- [35] Salmoria GV, Dall'Oglio EL, Zucco C. Synth. Comm. 1997, 27, 4335-4340.
- [36] Taylor RM, Brock AJ. US Patent Number 4,544,761, 1985.
- [37] Brunner H, Obermann U. Chem. Ber. 1989, 122, 499-507.

Rafaela C. Carmona was born in 1988 in Buritama, Brazil. She graduated from the Federal University of São Carlos (UFSCar) with a bachelor degree in chemistry in 2010. From 2008 to 2010, she worked at Department of Chemistry of UFSCar as undergraduate researcher under the supervision of Professor Dr. Arlene A. Correa, on organic synthesis of bioactive alkaloids and natural products. In 2011, she joined the group of Professor Alcindo A. Dos Santos, at the University of São Paulo, as a MSc and her project is directed to asymmetric strategies on A3 multicomponent reactions.

Evelyn Pucci Schevciw was born in 1985 in São Paulo, Brazil. She graduated from the University of São Paulo with a bachelor's degree in chemistry in 2007. She worked in an industry for a few years before returning to the same university, where she is currently working under the supervision of Professor Dr. Alcindo A. Dos Santos as a MSc. Her main research interest is focused on A³ multicomponent reactions and their applications in the synthesis of bioactive alkaloids.

João L. Petrarca de Albuquerque was born in 1993 (São Paulo, Brazil). He started his undergraduate studies in 2010 in the Department of Chemistry of University of São Paulo and since August 2012, he has been working under the supervision of Professor Dr. Alcindo A. Dos Santos on the synthesis of natural bioactive alkaloids.

Edison P. Wendler was born in 1980 (Curitiba, Brazil). From 1999 to 2004, he studied Chemistry at Federal University of Paraná (UFPR) where he obtained his BSc degree (2004) and MSc degree (2006). In 2010, he received his PhD in Organic Chemistry at Federal University of São Carlos (UFSCar), under the supervision of Professor Alcindo A. Dos Santos. From 2010 to 2012, he carried out postdoctoral studies, as a FAPESP Post-Doctoral Fellow, in the University of São Paulo (USP) under the guidance of Professor Dr. João V. Comasseto and at University of Santiago de Compostela (USC/ Spain) under the supervision of Professor Dr. Ricardo Riguera Vega.

Alcindo A. Dos Santos was born in 1971 in Sigueira Campos, Brazil. From 1993 to 1998, he studied chemistry at the Federal University of Paraná. In 1998, he started his master thesis, working under the supervision of Professor Dr. Alfredo R. M. de Oliveira, moving directly on to his PhD thesis in 2000. He spent about a year and a half working on insect pheromone synthesis under the supervision of Professor Wittko Francke at Hamburg University, Germany. After he obtained his PhD in 2003, he worked under the guidance of Professor João V. Comasseto at the University of São Paulo, Brazil, as a FAPESP postdoctoral fellow (2003-2006). Professor Dr. Dos Santos was appointed Adjunct Professor of Chemistry at the Federal University of São Carlos in 2006. In 2009, he accepted a position as Professor at the University of São Paulo. His research interest is focused on the synthesis of natural bioactive compounds based on multicomponent strategies, organocatalysis and supramolecular chemistry.