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Abstract: Let A be the affine group and let ®;, ®; be Young functions. We study the Orlicz amalgam spaces
W(L®1(A), L®2(A)) defined on A, where the local and global component spaces are the Orlicz spaces L21(A)
and L?2(A), respectively. In this paper, we obtain norm estimates of the dilation operator on the amalgam space
W(L®1(A), L®2(A)) using constructions related to the affine group A.
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1 Introduction

An amalgam space consists of functions whose norm distinguishes between local and global properties. The
first appearance of amalgam spaces was due to Wiener in his studies of generalized harmonic analysis [23-25].
Amalgam spaces of Lebesgue spaces were investigated by many authors [4, 5, 7, 19]. The most general definition
of Wiener amalgam spaces was introduced by Feichtinger in 1980s [10-14].

Amalgam spaces have proven to be very fruitful within pure and applied mathematics, for example, in
sampling theory [16] and in time-frequency analysis [15]. It turned out that continuity properties of certain
operators can be conveniently described in the context of Wiener amalgam spaces [8, 9] and are mostly con-
sidered for the Lebesgue spaces on the real line. On the other hand, for 1 < p < oo, Heil and Kutyniok studied
amalgam spaces W(L*°(A), L?(A)) on the affine group A [17, 18], which is not abelian unlike the real line. They
proved a useful convolution relation for the amalgam space W(L*(A), L1(A)).

It is well known that the affine group plays a prominent role in harmonic analysis, especially in wavelet
theory. Itis not an IN group, i.e., a locally compact group with a compact and invariant neighborhood of identity,
and it includes all abelian groups as well as some non-abelian groups such as the reduced Heisenberg group
which is important for time-frequency analysis. A key feature of the affine group is that the left Haar measure
and the right Haar measure are not equal.

An Orlicz space is a type of function space which significantly generalizes the Lebesgue spaces L?. Besides
the LP spaces, a variety of function spaces naturally arise in analysis such as L log* L, which is a Banach space
related to Hardy-Littlewood maximal functions. Orlicz spaces contain certain Sobolev spaces as subspaces.

In [2], Aris and Oztop considered Wiener amalgam spaces with respect to Orlicz spaces W(L2(A), L1(A))
and W(L*®(A), L®(A)) on the affine group A. They obtained some properties of Wiener amalgam spaces of
Orlicz type and proved convolution relations for W(L®(A), L'(A)) and W(L*®(A), L®(A)). In [1], the results
of [2] were extended to the more general Orlicz amalgam space W(L®'(A), L?2(A)) by using the equivalent
discrete norm. Meanwhile, in [3], the amalgam spaces W(L®! (RY), L®2(R%)) were considered and dilation esti-
mates were studied for these spaces.

The aim of this paper is to give dilation properties of the Orlicz amalgam spaces W(L®1(A), L®2(A)) on the
affine group A. In order to do this, we are motivated to study the equivalent discrete norm on W(L®1 (A),L®2(A))
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by using a specific partition of unity of the affine group. We also improve the estimates of dilation operator
by using interpolation arguments of Orlicz spaces. To the best of our knowledge, dilation properties of Orlicz
amalgam spaces on the affine group have not been studied before.

The paper is organized as follows. In Section 2, we review the necessary definitions and some basic results
of the Orlicz spaces L?(A) on the affine group. In Section 3, we present the basic structure of Orlicz amalgam
spaces on the affine group A which we denote by W(L®1(A), L®2(A)). Finally, in Section 4, we study the dilation
properties of Orlicz amalgam spaces (Theorem 4.2 and Theorem 4.5). These results are also new for the Lebesgue
spaces and the standard Orlicz spaces.

2 Preliminaries

Throughout the paper, we consider the affine group A = R* x R with the multiplication

(a,b)(x,y) = (ax, g +y>,

where R* denotes the multiplicative group of positive real numbers. The identity element and inverses in A
are given by

e=(1,0), (a,b) "= (% -ab)

for (a, b) € A, respectively. It is easy to see that A is a non-abelian group under its multiplication.

One can see that the left Haar measure on A is du = %dy. The affine group A is not unimodular.

We consider Orlicz spaces on the affine group A. An Orlicz space is determined by a Young function. A func-
tion @ : [0, co) — [0, o] is called a Young function if @ is convex, ®(0) = 0, and limy_,,, ®(x) = co. For a Young
function ®, ! is defined by

@ l(y)=inf{x>0:d(x) >y}, y=0,

where inf @ = oo, and we have
DD () < x <D (D(x), x>0. (VX))

For a Young function @, the complementary function ¥ of @ is given by
Y(y) =sup{xy - ®(x): x>0}, y=0,
and V¥ is also a Young function. So (®, ¥) is called a complementary Young pair. We have the Young inequality
xy<odx)+¥(y), x,y=0,

for complementary functions ® and ¥.

By our definition, a Young function can take the value oo at a certain point, and hence be discontinuous
at such a point. However, we always consider the pair of complementary Young functions (®, ¥) with @ being
real-valued and continuous on [0, co) and increasing on (0, co). Note that even though @ is continuous, it may
happen that ¥ is not continuous.

Let (&1, ¥1) and (1, ¥,) be complementary Young pairs. If @1 (x) < ®,(x) for all x > x( > 0, then we have
Wy(y) < Wi(y) forally > yg = ®1(xp) > 0.

Let @1, @, be two Young functions. If there exist ¢ > 0 and x¢ > 0 (depending on ¢) such that @ (x) < ®,(cx)
for all x > xo, then we say that @, is stronger than @4 and denote this by @; < ®,.If, in addition, ¢ = 1and x¢ = 0,
we say that @, is strictly stronger than ®1. If &1 < @, and &, < @4, then we write @1 < @,. Also, @1 < ®, ifand
only if @, (y) < c®;'(y) forally > yo = ®1(xo).

A Young function @ satisfies the A, condition if there exist a constant K > 0 and an Xy > 0 such that
®(2x) < K®(x) for all x > xo. In this case, we write ® € A,.

Let A be equipped with the left Haar measure du = %dy. Given a Young function &, the Orlicz space on A
is defined by

L®A) = {f: A — C measurable : Jd)(alf(x,y)l)%dy < oo for some a > O}.
A
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Then the Orlicz space is a Banach space under the Orlicz norm | - [|z»4) defined for f € L®(A) by
dx dx
ee o) = Sup“ e g0 Xy [ gy Ty < 1},
A A

where W is the complementary Young function of ®.
One can also define the Luxemburg norm || - ||]‘iq,( 4) 0N L®(A) by

, d
WAz (s = mf{k >0: jq>(|f(xky”)7xdy < 1}.
A

It is known that these norms are equivalent, that is,

Moy < 1Moy < 201170
L%(4) L(4)

and
IIﬂlgq,(A) <1 ifand only if J¢>([f(x,y)|)%dy <1
A

If (@, ¥) is a complementary Young pair and ® € A,, then the dual space L®(A)* is LY (A). If, in addition,
W e Ay, then the Orlicz space L?(A) is a reflexive Banach space [21].

We denote the norm equivalence of Banach spaces (X, | -|lx) and (Y,|-lly) by [-llx = lly or X =Y.
Although the same notation is used for the equivalence of Young functions, the meaning will be clear from
the context.

We also have Holder’s inequality, which states that if f ¢ L®(A) and g € L¥(A), then fg € L'(A) and

I8l ca) < 21500 18150 a -

A normed space (Y, || - ||y) consisting of measurable of complex-valued functions on a measurable space X
is called solid if for each measurable function f: X — C satisfying |f] < |g| almost everywhere for some g € Y,
wehave f € Yand ||fly < [Iglly. Since the Young function @ is increasing, the Orlicz space L®(A)is a solid space
(see [22]).

For 1 < p < oo and the Young function ®(x) = x?, the space L®(A) is the classical Lebesgue space LP(A),
and the norm || - [|z#(4) is equivalent to the norm of the usual Lebesgue spaces | - [|z»(a).

If p = 1, then we obtain the space L(A). In this case, the complementary Young function of ®(x) = x is

0, 0O0<x<1,
P(x) = (2.2)
00, Xx>1,

and |Ifllzea) = Iflzia) forall f € L'(A). For the Young function ¥ given in (2.2), the space L¥ (A ) coincides with
the space L*°(A), and we have |[fl.¥a) = Iflizeo(a) for all f € L2(A).
In addition, for the Young function

X, 0<x<1,
Ds(x) = (2.3)
oo, x>1,

the space L% (A) becomes L1(A) N L°(A) with the norm

1flLes 4y = max{lIflizica), Ifleoa)}

for all f € L®(A). Then we have

1 X, 0<x<1,
@007 =
1, x>1.
For the Young function

0, 0<x<1,
@p(x) =
x-1, x>1,
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we obtain the space L'(A) + L°(A) with the norm
= inf + ©(4))-
IAlzes (a) f:f1+fz("f1 Iz1ca) + If2llLeo(a))

We have @,(x)! = x + 1, x > 0. In addition, ®; and @, are complementary Young functions [20, p.52] which
satisfy the A, condition.

Since

LY A)NL®(A) c L2(A) c LY(A) + L®(A)
for any Young function ®, we may consider L'(A) n L®°(A) as the smallest Orlicz space, and L1(A) + L®(A)
as the largest one [20, p. 100]. We denote the spaces L'(A) N L>°(A) and L(A) + L®(A) by L®(A) and L® (A),
respectively. Also, we have L® (K) = L°°(K) for any compact subset K c A.

We denote the translation operator by L 4,5 (X, y) = f((a, b (x, y)) and the dilation operator by D, f(x, y) =
f(Ax,Ay) for (x,y), (a, b) € A and A > 0.Both operators are well-defined, linear and bounded operators on Orlicz
spaces [22].

Properties of the dilation operator D; when acting on Orlicz spaces were recently studied by Blasco and
Osancliol in [6]. Let us modify their results for our aim.

Given A > 0, another norm on the Orlicz space L?(A) is defined by

gt = inf{k >0 jcp('f(XT’y)')%dy < /1]».
A

When A = 1, we obtain ||ﬂ|2’41,(A) = |[}‘]|2¢(A), and for A > 0 we have
1Dl 0cq, = Iflya,, forallf e L2(A). 2.4

By convexity, it can be easily seen that

o, . o,
A”ﬂlLCD(A) < ".ﬂILQ)(A) < ”ﬂ'Lq’(A)’ 0 < A < 1:

and
0,4 o 0,4
"ﬂ|Ld’(A) < ”ﬂlLtD(A) < Allﬂ'Lq’(A)’ A > 1

3 Orliczamalgam spaces on the affine group

Let A be the affine group and let @1, @, be Young functions. In this section, we give the definition and basic
properties of the Orlicz amalgam spaces W(L®1(A), L®2(A)) consisting of functions that are locally in L?1(A)
and globally in L®2(A). In our theorems, the translation invariance and solidity of the Orlicz spaces L®'(A) and
L®2(A) play important roles.

Next, we summarize some technical results from [1] that will be used in the next section.

Definition 3.1. Let Q be a fixed compact subset of A with nonempty interior and let (x, y)Q be the set Q left
translated by (x,y) € A. The Orlicz amalgam space W(L®'(A), L?2(A)) consists of all measurable functions
f: A — Csuchthat fyy) € L®1(A) for each (x, y) € A, and the control function

Fr(6,Y) = F{ (63) = ftcepolion a)

belongs to L®2(A). The Orlicz amalgam norm on W(L®'(A), L?2(A)) is defined by

IAlwwor ay,Lozay = IEflLozay = [ ooyole sl ge: (A"

Like in Orlicz spaces, we define the Luxemburg norm | - | ,on W(L®(A), L®2(A)) by

o
W(L®1(A),L%2 (A)

o
"ﬂ|?/v(L¢1 (A),LP2(A)) — X cemolfe: (A)"L”‘)Z(A)'
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By the equivalence of the Orlicz norm and the Luxemburg norm in Orlicz spaces [22], we have

"ﬂ'?,v(LCDl (A),LP2(A)) < "ﬂ' W(L®1(A),L%2(A)) < 4|I.ﬂ|(];v(L¢1 (A),L®2(A))"

Throughout the paper, we consider the Luxemburg norm on W(L%1(A), L®2(A)).

Note that the Orlicz amalgam space W(L®1(A), L®2(A)) is a Banach space and its definition is independent
of the choice of the compact subset Q c A, in the sense that different compact subsets yield equivalent Orlicz
amalgam space norms. Moreover, since the Orlicz spaces L?1 (A ) and L®2(A) are solid spaces, W(L®1(A), L?2(A)
is also a solid space.

Let us now recall Holder’s inequality for Orlicz amalgam spaces. If we have f € W(L®1(A), L®2(A)) and
g e W(LY(A), L¥>(A)), then fg € L' (A) and

Ifglzray < Iflwzer a),coz(ay) ||4£,.T||‘I),V(Lqu1 (A).L2(A))"

Wiener amalgam spaces can be considered as spaces with a discrete norm. In fact, the norm which is given
in Definition 3.1 and discrete norms are equivalent (see [1]).

Let {Qn}n>0 denote a fixed family of increasing, exhaustive neighborhoods of identity in A. In particular,
we take Qp = [e" el) x [~h, h). The Haar measure of the translated set (X, y)Qn is

eh

(X, y)Qn) = u(Qp) = 7"@ - an?,

—_——
)

=

e—h

Given h > 0, for k,j € Z, we define particular translates of Q; and Q2 as
Bji = (€¥", 2khe™)Qp,
Bjy = (€¥", 2khe ™) Qqp.

Note that Bj < Bj.
To obtain an equivalent discrete norm on these spaces, the following lemma is a key observation.

Lemma 3.2 ([17]). Ifh > 0, then:

@ Ujkez Bjk = A,

(b) given m,n € Z, the box B;,m can intersect at most N = 5(2e3" + 1) boxes B;kforj, k € Z.
Hence the set X = {(e%", 2khe™") : j, k € Z} for h > 0 becomes a well-spread family [13, 14].

By Urysohn’s lemma, there exist continuous functions ¢j : A — Rsuch that 0 < @jx(x,y) < 1, supp(¢jx) €
B]’.k and @jx(x, y) = 1for (x,y) € Bji. Define

P
Zm,nEZ ¢mn

Thus {)jx}; kez is a bounded uniform partition of unity (BUPU). Then, by [11, Theorem 2], we have the following
equivalence in W(L%1(A), L®2(A)):

Uik

Il wzer a).002a)) = " Z Ifjicllzen a)Xs,
i kez Sz (a)

To illustrate the usefulness of the discrete norm, we present a duality theorem and some inclusion relations
for W(L®'(A), L?2(A)) given in [1].

Proposition 3.3. Let (91, ¥1), (93, ¥y) be complementary Young pairs with @1, ®; € Ay. Then the dual space
W(LP(A), L®2(A))* is W(L¥1(A), L¥2(A)).

Proposition 3.4. Let ®, ®1, ®; be Young functions. If ®; < ®,, then W(L®2(A), L®(A)) ¢ W(L®1(A), L?(A)).

Proposition 3.5. Let ®, &1, ® be Young functions. If 1 < ®,, then W(L®(A), L®1(A)) ¢ W(L®(A), L?2(A)).
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4 Dilation properties

In this section, we study dilation properties of Wiener amalgams of the Orlicz spaces W(L®'(A), L®2(A)). By
using the constructions related to the affine group, we obtain norm estimates of the dilation operator on the
Orlicz amalgam space W(L®1(A), L®2(A)), differently from those in [3]. In particular, using the dilation proper-
ties of Orlicz spaces given in [6] and the interpolation of Orlicz spaces in [20], we improve the norm estimates.

Let fa(x,y) = flAx, Ay), A > 0, (x,y) € A. The following lemma provides an estimate for the norm of the
dilation operator D; in the Orlicz space L®(A). It will be used when proving subsequent theorems related to
dilation properties of the Orlicz amalgam spaces W(L®1(A), L®2(A)).

Note that the following result for L®(R) is given by [6, Proposition 2.2]. If we adapt it to the space L®(A),
we obtain the following lemma.

Lemma 4.1. Let ® be a Young function, and define Co(A) := |D;llL#(a)—r2a)- Then we have the following:
(D) Co(d) 2 sup,g 5 L ;‘3)
(i) Ifd(st) < D(s)P(t) foralls,t >0, then Co(A) < 3 1(A)

Furthermore, Co(A) is non-increasing, submultiplicative and Co(1) = 1.

Proof. () LetA = [e™" el] x [-h, h], h > 0be a subset of A. Since 0 < U(A) < oo, we can take the function f = y4
asin [6, Lemma 2.1]. Then we have

D)L(X[e*",e"]x[—h,h]) = X[#)%]X[*Th)%]‘

Now, we calculate the norms || X et gk ) [I5 Lo(A and IXte-,erix(-nnill7 o (A) By the definition of the Luxemburg
norm, we obtain o

] Xt iz 1)\ d
et ot poqe lioge = nf{ K> 0 Jcp( = )—dy < 1}
- A
dx
Hay<1
)

=inf-k>0:¢(l)si]»=;.
k -

==

=inf{k>0: I <I><

In a similar way, we have

IX1en et 1x (-] ||°L¢(A) = m

Therefore, we obtain

"X[e h A ]><[

n

o (u)
Co(A) > su =su .
o =500 Ter b O 1(A)

(i) For s > 0 and t = |D;f(x, y)|, by changmg the varlables in the integral and using the Luxemburg norm,
we obtain

[oSIDAbe gy _ [ g SO0 dx
. A

k k
oG
< Alq)( )CD< ) dy
_D(s) [f0x )1 dx
=72 J q’( K >7dy
Let us choose s = ®1(2). Since ®(s) < A by inequality (2.1), we have

iq)( 1(A)|11)<Afxy)|>dxdy<£ <V(X];y)l)d7)(dY-
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By the definition of the Luxemburg norm, for k = |[ﬂ|2q,( 4y We obtain

Az a)
”D/\ﬂlLQ(A) < @T(A)’
which implies that Co(A) = |DallLoa)—roa) < @jw. O]
Note that, by (2.4) and Lemma 4.1, we have
M7y = Willzewn) < iy ( WMoy £ €L, 4> 0. @)

The first estimates for dilations on Orlicz amalgam spaces W(L®1(A), L®2(A)) are given in the following
theorem.

Theorem 4.2. Let @41, ®, be two Young functions. Then

. 1
I£2l W(L®1(A),L%2(A)) < W”ﬂl (L®1(A),L%2(A))’ 0<A<l, 4.2)

and
1

||fA” W(L?1(A),L2(A)) < AW"]";V(L%(A),LQZ(A))’ Azl

Proof. To compute the amalgam norm, we choose the compact subset Q = [e™!, e] x [-1, 1] ¢ A. Then we have

”f/l"(;/V(L‘Dl(A),Lq)Z(A)) || ||L®Z(A ””f/lX(X,y)Q”ZdH(A)HZ‘DZ(A)
We first estimate the norm of the local component | - ||°Lq,,1 4)" We have
. . If(As, At)xo((x,y)71(s, )]
”fAX(X’y)Q"L“’l(A)zlnf1k>0:j <f XQ - y ) dt <
A
s) t X; -1 i) L
k s A
A

-1
=mf{k> 0 Jq)l(If(s, t)XQ((A);{J)’) (s, t))l)%dtg}
A

o,A
= “fX(Ax,/ly)Q ”Lq’l (A)
Let 0 < A < 1. By (4.1), we obtain

Q o O,A
Ffﬂ (Xxy) = |lfAX(x,y)Q||L¢1 (A) = "fX(Ax,Ay)Q"chl (A)

1
_1(/,{) "fX()LX Ay Q"thl (A)

0 1 0
— F (A ’Ay) = _—DAF (X;)’),
(I) 1(/1) f @11(/1) f

that is,
s —D F X 4.3
( X,y) < - (/1) WFr (X, ). 4.3)

By the solidity of L®2(A) and (4.1), we have

1

i
”DA f”Lq’Z(A S — I(A)(I) 1()0" f"Ld)Z(A)’

1E2I; :
P
L%2(a) S q)l 0
which gives
. 1 .
WAl o 200 () < W”ﬁwml (A),L%(4))

forO0<A<1.
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Let A > 1. We proceed by estimating the global component. By (4.1), (4.3) and the solidity of L®2(A), we have
1

o) @, 1<A)
Now, we need to calculate the norm ||f(L(AX nXao)ll; 1o1(A) for A > 1. To this end, we use the discrete norm

on W(L®1(A), L?2(A)). Since the sets Bj is partition of A we can take XBj instead of k. Then we have
u({(, k) €e Zx Z.: Bjr n AQ # 9}) < oo. Using [1, Proposition 3.2], we obtain

IER 054, < = )IIDA e yery L) Y 44

Wromelionge = | 3 fsoona],
J.kezZ

= " Z TXB;i 0

() €ZXZNAQ L™1(A)

< Z "fXBjk "2@1 aB

(j,K)€ZXZNAQ

LP1(A)

S Z ”fXB]k "2':1)1 (A)XB]’k’

(j,k)ezZxz
which implies
FFooy) < Y sl /
fiy? - Bjk LQl(A)XBjk.
(.k)ezxz
By the solidity of L®2(A) and (4.4), we have
1
Ifall; < ——— Il
f W(L*1(A),L%2(A)) —1(/1) ®- 1(/1) ﬂ W(L®1(A),L?2(A))

A

quijﬁw WL (4),L% (A))" =

The estimates given in Theorem 4.2 can be improved by using interpolation arguments in a manner similar
to [8]. However, instead of the classical interpolation between Lebesgue type spaces, we must combine the
interpolation of Orlicz spaces with the properties of Wiener amalgam spaces.

To achieve this, we first recall the interpolation result for Orlicz spaces which is given in [20, Lemma 14.2].
Let [X, Y], denote the interpolation between certain Orlicz spaces X and Y.

Lemma 4.3. Let @y, ®; be any Young functions. Then the function ® defined by
@7 (u)
wﬂm=®4mm(1 ) (4.5)
0 ®;" (u)
is a Young function and L*(A) = [L**(A)), L*1(A)],, where p : [0, co) — [0, co) is concave, continuous, positive
on (0, co), and such that

p(s) < max{%, 1}p(t), s, t>0.

In particular, when p(t) = t%,0 < 0 < 1, we have ®~! = (&;")1-0(@;1)’.
The interpolation argument for Wiener amalgam spaces is given in [10]. Here we focus on the interpolation
result for Orlicz amalgam spaces. Then we have the following result.

Lemma 4.4. Let By, By be local components of Orlicz amalgam spaces and let @, @y, &, be Young functions sat-
isfying the A, condition, along with (4.5). Then we have

[W(Bo, L®), W(B1, L®")], = W([Bo, B1lp, [L®, L*'],) = W([Bo, B1lp, L*)

Note that the Orlicz space L®(A) has an absolutely continuous norm for any Young function ® which satisfies
the A, condition. Hence Lemma 4.4 is a special case of [10, Theorem 2.2].
Let O be the set of Young functions such that the following conditions hold:
(i) We have &g, dj € O.
(i) If @1, Dy € O, then either @ is strictly stronger than @,, or @, is strictly stronger than ®;. In other words,
either ®1(x) < ®,(x), x = 0, or Py(x) < P1(x), x = 0.
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Now, we are ready to prove the main result of the paper. By using the techniques similar to those in [3], we
obtain the following theorem.

Theorem 4.5. Let @4, @, € O satisfy the A, condition. Then we have

1

“fﬂ ” W(Ld)l (A),L®2(A)) S max{q)Il(A)’ q)gl(,l)} "ﬂl Ld’l (A L‘I’Z(A))’ O < A S 1, (46)

and

. 1
"fﬁ "W(Ld)T (A),Lq’Z(A)) < mln{q)Il(A)’ cpgl(,l)} ”ﬂ' L‘I’l (A), LGZ(A)) A > 1 (47)

Here, || - |lx < |l - lly means that there exists a constant ¢ > 0 such that | - |lx < c|| - ||ly.

Proof. Let @1, @, satisfy the assumptions of Proposition 4.5. We note that ®; and @, give rise to intermediate
spaces between the spaces generated by @ and @y, so the Young functions ®; and @ play an essential role in
the proof.

First, assume that ®; < ®. By inequalities (2.2) and (2.3), we have L'(A) n L®°(A) = L*(A) for the local
component. Therefore, we take the Young function ®; = ®,, which implies that ®; < @ in (2.2). Since (I);l A) =
for all A > 0, by (4.2) we obtain

. 1 .
”fA "W(Lq’s (A),Lq’l (A)) S @;1(A)®51(A) ||ﬂ|W(L¢s (A),LQZ (A))

1
= — Iy Lo
©,1(1) WA @L(4)

. I
I(A) iy 1(/1)} W(L®s (A),L%2(A))’

max{CD

which is (4.6).

Now, we prove (4.6) for ®; # @. In this case, we have ®; < &; < O with &, < & < ®,. By Proposition 3.4
and Proposition 3.5, we obtain

W(LP(A), L®(A)) € W(L®1(A), L®(A)) ¢ W(L® (A), L*(A)).
Hence the amalgam space W(L®1(A), L®2(A)) is the intermediate space, that is,
[W(L(A), L*(A)), WL (A), L*(A)]p = WL, L]y, [L®, LP],)
= WL (A), L®(A)).

This, together with ®;" < @, for @, < @1, gives

1
l(A) d- 1(/1)} "ﬂlW(LcIjl (A),L®2(A))"

WAl e ay.Loeay < max{®;

Hence, we obtain (4.6) for the case ®; # ®s.
Next, suppose that ®; < ®,. Then, by [22, Theorem 2.2.2], we have ¥, < Wy, so that W;! < ¥, for the
complementary Young functions. To prove (4.7), we apply relation (4.6) to the pair (¥4, ¥). Since % < 1,wehave

1

181/l v g L2ay < max(¥1(1), w;(1)) I8N wn oy, L2 a)) (4.8)
On the other hand, using (4.8), we obtain
(f2 &)1 = 27 I(F, g1
<4 A wzer ca,zoe can 1812w a) 0% a))
<2 — 1(1) iy s o Wl s amcnn
Taking supremum over ||g||‘;/V(Lu,1 ALV (A)) = 1, we get
Vilyor o2y < A-lﬁ(%)uﬂnm 25 @9)
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By the concavity of ‘PZ , we have <y 1()() for A > 1. From (4.9), we obtain

||f)k|| o pogy S AT oy o0
W(L®1,L%2) W(L®1,L*%2)

By [22, Proposition 2.1.1], it follows that u < @~ (u)®~!(u) < 2u for any u > 0 and any complementary Young

pair (®, ¥). Hence we have

1
”fA "W(qul (A), L(Dz (A)) < ZA A _1(A) ”ﬂl Ld’l(A LQZ(A))
1
— I
113;1(/1) W(L®1(A),L72(A))
1

= IA;
min{@;* (), 2,1 (1)} Mivassayimaay

which is (4.7).

The other cases can be handled in a similar way (see [3]). O
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