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Abstract: Let C[0, T] denote the space of real-valued continuous functions on [0, 7] and let

T T
Z3.00(X) = <x(0), j eq(t) dx(t), J ey(t) dx(t),... ) for x € C[0, T],
0 0

where {¢; ;?jl is a sequence of appropriate functions on [0, T]. In this paper, we derive a simple evaluation for-
mula for calculating Radon-Nikodym derivatives similar to the conditional Wiener integrals of functions on
C[0, T] given Zz o, which has an initial weight and a kind of drift. As applications of the formula, we evaluate
the derivatives of various functions containing the time integral which is of interest in quantum mechanics,
especially in Feynman integration theory.
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conditional Wiener integral, time integral

MSC 2020: Primary 28C20; secondary 60G05, 60G15

1 Introduction

Let Cy[0, T] denote the Wiener space, the space of continuous real-valued functions x on [0, T] with x(0) = 0.
A time integral is simply the Riemann integral of a function of the continuous random variable X(x, t) = x(¢)
with respect to the parameter ¢ for x € Cy[0, T]. The Feynman—Kac functional on the Wiener space Cy[0, T] is
given by exp{- fOT V(t, X(x, t)) dt} including the time integral, where V is a complex-valued potential. Calcula-
tions involving the conditional Wiener integrals of the Feynman-Kac functional are important in the study of
the Feynman integral [9], and it can provide a solution of the integrals equation which is formally equivalent
to the Schrédinger equation [6]. In particular, when 0 =t < t; <ty <---<Tand € Rforj=0,1,2,..., the
conditional Wiener integrals of functions involving the time integral, in which the paths pass through ¢; at each
time ¢;, are very useful in describing the Brownian motion. As for one of simple formulas used to calculate
the conditional Wiener integrals stated above, Park and Skoug [10] derived a simple formula for conditional
Wiener integrals containing the time integral with the conditioning function (IOT eq(t) dx(t), IOT ey (t) dx(t),...)
for x € Co[0, T], where the e; are in L%[0, T]. In their simple formula, they expressed the conditional Wiener inte-
grals directly in terms of ordinary Wiener integrals, which generalizes the evaluations of conditional Wiener
integrals with a finite dimensional conditioning function. We note that the Wiener measure used in [10] has no
drifts with the variance function (t) = t for t € [0, T].

On the other hand, let C[0, T] denote the space of continuous real-valued functions on [0, T]. Ryu [12, 13]
introduced a finite positive measure we,g;y on C[0, T], where a, 8 : [0, T] — R are appropriate functions and ¢
is a finite positive measure on the Borel class B(RR) of R. We note that wg g is equivalent to the Wiener measure
on Co[0, T]if a(t) = 0, B(¢t) = tand ¢ = &y, which is the Dirac measure concentrated at 0. When ey, .. ., e, are of

bounded variations on [0, T] and Z; ,(x) = (x(to), jOT e1(t) dx(¢), . .., IOT en(t) dx(t)) for x e C[0, T), the author
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of [4] derived a simple evaluation formula for generalized conditional Wiener integrals of functions on C[0, T]
with the conditioning function Zz ,,. As applications of the formula, he calculated the conditional Wiener inte-
grals of the time integral, the cylinder functions and the functions in a Banach algebra which generalizes the
Cameron-Storvick’s one [1]. We note that the value space of Z; , is finite dimensional.

Let Z3 oo (X) = (x(0), IoT eq(t) dx(t), IOT e (t) dx(t), . ..) for x € C[0, T], where the e; are orthonormal in the
space of functions that are square integrable with respect to . In this paper, we derive a simple evaluation
formula for calculating Radon-Nikodym derivatives similar to the conditional Wiener integrals of functions on
C[0, T] with the conditioning function Zz .,. Regarding the applications of the formula, we evaluate the deriva-
tives of various functions involving the time integral, such as cylinder-type functions and especially the function
exp{jOT x(t) dB(t)} on C[0, T], which is a specific type of the Feynman—Kac functional and plays a significant role
in Feynman integration theory. We note that the value space of Z3 , is infinite dimensional and Z; , has a kind
of drift with the more generalized variance function . Furthermore, while every path in Cy[0, T] starts at the
origin, the paths in our underlying space C[0, T] may not. Our measure in this paper may not be a probability
measure, so that the results of this work generalize those of [4, 10].

To summarize, with the conditioning function Z3 o, on C[0, T], this paper extends the simple evaluation
formula in [4] stated above. Using the extended formula, we will evaluate the Radon-Nikodym derivatives of
various functions involving time integrals, particularly focusing on a specific type of Feynman-Kac functional

exp{ [} x(t) dB(1)}.

2 A generalized analogue of Wiener space

Let C[0, T] denote the space of continuous real-valued functions on the interval [0, T]. Let a be absolutely con-
tinuous on [0, T] and let B be continuous, strictly increasing on [0, T]. For Te=(to, t1,..., ) with0 =ty < t1 <
o<ty <T1letfy 1 C[0,T] — R¥*1 he the function given by [z, (x) = (x(to), x(t1), . . ., X(tx)). For any Borel set
Bi(j=0,1,...,k) in B(R), the subset]{kl(ﬂjlfzo Bj) of C[0, T] is called an interval I and let J be the set of all such
intervals I. Define a premeasure mg,g;, on J by

ma,p;¢(1)=j j Wik, T, to) dm(itx) do(uo),

Bo H}(ﬂ B;
where my, denotes the Lebesgue measure on B(R), and for ug € R, tx = (uy, ..., Ux) € RK,
B} 1 : 18 [y - a(ty) - ujog + a(tj-)]?
W(tk, ik, Uo) = [ T ] exp{——z s : }
[T5, 270B(t) - B(tj-1)] 25 () - B(tj-1)

The Borel g-algebra B(C[0, T]) of C[0, T] with the supremum norm coincides with the smallest o-algebra gener-
ated by J, and there exists a unique positive finite measure wg, g,y on B(C[0, T]) with wg g;o(I) = Mg, ;e (1) for all
I € J. This measure wq g, is called a generalized analogue of Wiener measure on (C[0, T], B(C[0, T])) according
to ¢ (see [12, 13]).

Let v, g denote the Lebesgue-Stieltjes measure defined by v g(E) = fE d(la| +B)(t) for each Lebesgue mea-
surable subset E of [0, T], where |a| denotes the total variation of a. Define Li’ 8 [0, T] to be the space of functions
on [0, T] that are square-integrable with respect to v, g (see [11]); that is,

T
o avagco < oo}.

0

L% 4[0,T] = {f: [0,T] - R

The space Li’ 8 [0, T] is a (real) Hilbert space and has the inner product

T
.8 ap = jf(t)g(t) dva(0).
0
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We note that L(ZL 510, T] Lﬁ’ 510, T], where Lg’ 510, T] denotes the space L(ZI’ 510, T] with @ = 0. Throughout the
remainder of this paper, we give additional conditions for a and B. Assume that 8’ > 0 and 'g—',’ is bounded. In
this case, Ltzz) 8 [0,T] = L%, ﬁ[O, T], and the equality means that they are equal as vector spaces and the two norms
on them are equivalent so that they have the same topology, but that they need not be equal isometrically.

Let S[0, T] be the collection of step functions on [0, T] and let IoT o(t) dx(t) denote the Riemann-Stieltjes
integral. For f € Liyﬁ [0, TT,1et {¢} be a sequence of step functions in S[0, T] withlim, ., |¢n — fllq,s = 0. Define
Io.p(f) by the L2(C[0, T1)-limit

Iop(N0) = Hm | ¢n(t) dx(t)

O e

for all x € C[0, T] for which this limit exists or Io g(f)(X) = lim,_,c, IoT on(t) dx(t) pointwisely if exists. We note
thatfor f € Li’ﬁ [0, T1, I, p(f)(x) exists for wq g, a.e. x € C[0, T]. Moreover, we have the following theorems [2].

Theorem 2.1. Iff is of bounded variation on [0, T], then I, g(f)(x) = J'on(t) dx(t) for we g, a.e. x € C[0, T1.
Throughout this paper, for x € C[0, T], we redefine Io g(f)(x) = IoT f(t) dx(t) if jOT f(t) dx(t) exists.
Theorem 2.2. Letf, g € Lfl, /5’[0’ T]. Then we have the following:

W [ Lap(N00) dWa g (x) = P(R)a p(f)(a),

@ 0.1 Tas N0 5(&)00] dWe 0 () = PRI, 80,8 + e s(N(@)] L p(&)()]],
() Iqp(f) is Gaussian with the mean I, g(f)(a) and the variance || ﬂlg) 8 if o(R) = 1. In this case, the covariance of

I p(f) and I, p(g) is given by (f, £)o p.

Theorem 2.3. Let {f1, ..., fa} be a set of functions in Li’ ﬁ.[O, T], which are nonzero and orthogonal in L(Z)’ B[O, T].
Then, for a Borel measurable function f: R" — C,

j Flap(F)O, - s Lap(F)(00) dwe oo (X)

C[0,T]
1
. nooq LA 1 & [ - Iap(f)(@)]? .
= go(lR)[H —2] Jf(u) exp{—E > % dmj(w),
j=1 27lfilo g 1 j=1 15,5
wherett = (uy, ..., uy), and 2 means that if either side exists, then both sides exist and they are equal. Moreover,

if (R) =1, then I g(f1), . .., I g(fn) are independent.

Let W be an R™-valued Borel measurable function defined for Wq,p;p a.e. on C[0, T], and let F: C[0,T] — C
be integrable. Let my be the image measure on the Borel class B(R™) of R¥ induced by W. By the Radon—
Nikodym theorem, there exists an my-integrable function ¥ defined on R*® which is unique up to my a.e. such
that for every B € B(R™),

| P dwago00 = [ 9 dmud.
Ww-1(B) B
Define the function ¥ as a generalized conditional Wiener integral of F for a given W and denote it by GE[F|W].

We note that GE[F|W] is a Radon-Nikodym derivative rather than a conditional expectation (or a conditional
Wiener integral) since my need not be a probability measure.

3 Asimple formula for the generalized conditional Wiener integrals

In this section, we derive a simple evaluation formula for the generalized conditional Wiener integral as defined
in the previous section.

Let{e;:j =1,2,...}beanorthonormal (preferably not complete) subset of L(Z)’ 8 [0, T] such thatitis orthogo-
nalin Lfl’ ﬁ,[O, T]. Such a set always exists for the following reason.
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Example 3.1. Let {ty};2, be a strictly increasing sequence in the interval [0, T] with ¢y = 0 and limy o ty = T.
Forj=1,2,...1let
1
8j(8) = ———X11;.,,t;,(s) forse(0,T]. 31

\B() - B(tj-1)

It is clear that the set {g1, g3, ...} is an orthonormal subset of Lg’ﬁ[o, T] such that it is orthogonal in Li’ﬁ[o, 7).
We also note that each g;j is of bounded variation on [0, T].

Let V be the closure of the subspace of Lﬁ) 8 [0, T] generated by {ey, e, ...} and let V* be the orthogonal comple-
ment of V. Let Pg o p : Lﬁ’ ﬁ[O, T] — V and ngoo 5 : Lﬁ’ ﬁ[O, T] — V* be the orthogonal projections. By [7, Prob-
lem 8, p. 167], P oo, B and iPéloo P exist, and they can be expressed by

o0
P co,pV = Z(v, ejYope, Py gV =V - Papy forve Lﬁ’ﬁ[o, T1.

€,00,
j=1

Since || - lo,g and || - [l¢,p are equivalent, V is also closed under the norm || - ||4,p. Moreover, we have the following
lemma.

Lemma3.2. Forv € Lﬁ,ﬁ[o, T, we have

o

T,p(Pe00,6V)(@) = Y (v, €0 pIa,p(e)) () (3.2)

j=1

and there exists M > 0 such that
ap(Ps.copV)@F* < MY (v, /) 5 < MIVIG 5.
j=1

Proof. For any positive integer n, by the Holder’s inequality, we have

2 2

n
P2,00,8V = Z(V, €j)0,5€j
=1

T p(Pe.00,6V)(@) = Y (v, )0,p1ap(e))(@)
j=1

< Va,p([0, T])

ap

Letting n — oo, we have (3.2) since || - o, and || - [l¢, are equivalent. Take My > 0 with |Ifll¢,p < M1[fllo,s for all
fe Lé’ B[O’ T]. By (3.2), from the orthogonality of the e; with respect to vq,g we have

Ia,ﬁ(Zw, ej)O,B‘-’j)(a)

j=1

2

Ia,8(Ps,00pV)(@I = r}LII;O

n
< va,p([0, TT) Hm (v, ep)5 sllejlz 5
j=1

(o)
< M3vap([0, T) Y (v, €))2 5.
j=1

Let M = M% Va,p([0, T]). Then the second inequality of this lemma follows from the Bessel inequality. O

For convenience, let ¢¢ =
sequel.

ﬁ(p throughout this paper. We now provide the theorem which is needed in the

Theorem 3.3. Letv ¢ L(Z)’ﬁ [0, T]. Then the series Z]‘-fl(v, ej)o,51a,5(€j)(X) converges for wq g,y a.e. x € C[0, T] and
o0
I p(Pe.c0,pV)(X) = Y (V, €)0,p1a,p(e)) (X).
j=1

Proof. Since ¢ is a probability measure, so is wq g,y . For each positive integer j, let X;(x) = (v, €j)o,1a,p(€j)(X)
for wqp,e a.e. x € C[0, T]. By Theorems 2.1, 2.2 and 2.3, X; is Gaussian with the mean (v, ;)0 glqp(ej)(a)
and the variance (v, ej)ﬁ’ﬂ, and {X; ]‘?:1 is a sequence of independent random variables. Furthermore, we
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have Zj‘fl Var[X;] < co by Lemma 3.2. By [8, Proposition 2.3.3], Z]‘?fl [Xj(x) - E[X;]] converges pointwisely for
Wq,p;0, a.€. X € C[0, T1. Since Z}‘fl E[X;] converges by Lemma 3.2, it follows that Z}‘»fl Xj(x) exists for wq g,g, a.e.
x € C[0, T]. Since the null sets with respect to wq g, are equivalent to the null sets with respect to wg, g, , it fol-
lows that Z]‘-fl X;j(x) exists for wg g, a.e. x € C[0, T]. Because Z}'zl(v, ej)o,p€j converges to Pz o, gV in L(Zw[O, T],
we have I (P 00,8V)(X) = Z;?jl Xj(x) in L%(CJ0, T]). We conclude that Ta,p(P3,00,8V)(X) = Z]‘-fl X;(x) for we gy
a.e. x € C[0, T] by [2, Corollary 3.11]. O

Let zo(x) = x(0) for x € C[0, T]. Forj = 1,2, ..., define z; and Zz o, by zj(x) = I, g(e;)(x) and
Z3,00(X) = (20(X), 21(X), Z2(X), . ...)
for wq g,y a.e. x € C[0, T]. For s € [0, T], wg g, a.e. x € C[0, T] and E=(&,8,&,...) e RN Jet

Cj(s) = (€, X10,5100,8>  Xz,00,8(8) = Zo(X) + I, 3(Pg,00,8X10,51) (X)

and
Ze,00(5) = S0+ ). §6j().
j=1
We have
(o)
Xz,00,6(5) = 20(X) + )" ¢j(8)Zj(X)
j=1
by Theorem 3.3. Moreover, since Eg,ooyﬁ(s) is the evaluation of x3 o, g(s) for zj(x) = §;(j = 0,1,...), Eg,w’ﬁ(s) exists
for my,  a.e. & € R,
For the continuities of Xz o, g and &z g, assume that B' isbounded on a subinterval (a, b) of [0, T] through-
out the remainder of this work.

Theorem 3.4. For wq g, a.e. x € C[0, T] and mz, , a.e. 2 € R™, poth Xz,00,8 ANA Eg,m’,; belong to C[0, T].

Proof. Let s = Iq,p(Pz 00,pX1s,0)(@) aNd Os ¢ = [Pz 00,8X[s,01l0,5 for a < s < t < b. Then according to Theorem 2.3
we have

I= j L (P 00,1050 0) — Lo p(Po0 pX10,0) 01 AWer g ()
[0, ]

- j (P00 pX15,) 0] AWy g0 ()
10,7]

(s st esp] - L
) nJ; { 20

B (Znoit 2
= 305, + 65 05 ¢ + s -

By Lemma 3.2 and the mean value theorem, we get
I<(3+6M+M?*)[B(t) - B(s)]* < M2(3 + 6M + M?)(t - 5)°,

where for some M; > 0, |8’'| < M; on (a, b). By [14, Theorem 6.3], we conclude that Ia,5(Pz,00,8X10,-1)(X) is con-
tinuous for we g, a.e. x € C[0, T], and so is Xz,00,- Since the null sets with respect to wq g, are equivalent to
the null sets with respect to wq g, it follows that Xz «, g is continuous for wq,g,, a.e. x € C[0, T]. Since Eé,oo’ﬁ
is the evaluation of xz o, g for z;(x) = §;(j = 0,1, ...), it follows that Eé,oo,ﬁ is continuous for mz,  a.e. Z‘ € RN,
completing the proof. O

We note that for we g a.e. x € C[0, T]andj = 1,2,.. .,

T
zj(x) = Je]-(u) dx(u)
0
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and

T

Xeeo p(5) = X(O) + Y 1(6) [ ¢(a0) dx(w)
j=1 0

by Theorems 2.1 and 3.3 if each e; is of bounded variation on [0, T]. Moreover, we have the following properties:

(P1) For wqpp a.e. x € C[0, T] and s € [0, T], by Theorem 2.2, we have

X(8) = Xz,00,8(8) = X(8) = X(0) = I, 5(Pz,00,8X10,51)(X) = Ia,5(X[0,51 = Pz,00,6X10,51)(X) = Ia,ﬁ(ﬂ)é‘:m,ﬁX[O,s])(X)-
(P2) ForO0<s;<s;<T,

[oe]
(P4 g0 X 10511 P50 pX10,521)0,8 = B(S1) = BO) = ). ¢(51)Cj(S2)-
j=1
Theorem 3.5. If p(R) = 1, then {Ia,ﬁ(ng ﬁv) velL? B[O T1} and z; are independent for j = 0,1,2, ... . In par-
ticular, {Ia,ﬁ(Tgoo BX[O’S]) . s € [0, T]} and z; are stochastically independent.

Proof. Since ?g’m’ﬁv € V* and ¢j € V, we have (P; V> €)o,p = 0, s0 that the independence of Iaﬁ(iPeooBv)
and z; for j=1,2, ..., follows from Theorem 2.2. To complete the proof, it suffices to prove that zy and
I, ,g(? v) are 1ndependent Since I, ﬁ(ﬂ”l v) is defined via L2(C[0, T])-limit, we can take a sequence
{Onlnoq of step functions in S[0, T] with 11mn_>00 fo On(t) dx(t) =14 ,g;(iPeo0 ﬁv)(x) pointwise for weg,, a.e.
X € C[0, T].Foreach n € N, let ¢,(¢t) = Z 1 dn,])(l,.,](t) fort € [0, T], where dpj € Rand the intervals In; < [0, T]
with endpoints t,;-1 and ¢y ; are mutually disjoint. Let F denote the Fourier transform. Then, for 3, &, € R, by
Theorem 2.2, [5, Lemma 3] and the dominated convergence theorem, we get

T(20, Lo p(Ph oo g1, 82 = | EXBULEX0) 4 Eolup(P o g0) (O]} W0 (x)
C[0,T]

T
- exp{i[glx(o>+gzn1ggo j¢n(t>dx(t>]}dwa,ﬁ;¢<x)

€10,1] 0
mp

= nll)ngo J EXp{i[f1X(O) +& z dn,j[x(tn,j) - X(tn,j—l)] :H’ dWa,ﬁ;(p(X)
10,7 Jj=1

T
- 5@ | exp{ifz Iim [ 6o dx(t)} dWapp(1)
0

C[0,T]

= @) [ expliEala s g9)00) da g0
C[0,T]

= ?(Zo)(f1)?(?eooﬁv)(fz),
which completes the proof. O

By Theorem 3.5, we have the following corollary.

Corollary 3.6. The stochastic processes {Ia,,g(f]’goo ﬁX[O,s]) 10 <s < T} and {Xgop(S) : 0 < s < T} are stochasti-
cally independent if p(R) = 1.

Using the same process used in the proof of [10, Theorem 2] and [5, Theorem 4] with aid of (P1), Theorem 3.5 and
Corollary 3.6, we obtain the following theorem.

Theorem 3.7. IfF : C[0, T] — Cis integrable, then for mz,  a.e. & € R™ we have

GE[F|Z¢.0](§) = j F(Iap(P300 pX10, D00 + E2.00,8) AWar i, ().
C[0,T]

Remark 3.8. We note that if V = Lﬁ B[O T], that is, {e1, e2,...} s completely orthonormal in L2 ﬁ[O T], then
Ig,,,g(ﬂ> 3.00,pX10,- .1(x) = 0o that for Z3 o, a.e. E € R, GE[F|Zs, 00](E) F(Ee oo0,) Dy Theorem 3.7.
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Let {tp}n2, be a strlctly increasing sequence in [0, T] with tp = 0 and lim,_,, t;, = T. Let A7 be the set of all
convergent sequences E (&0, &1, &, ...) € R¥ with limpe & = &7. For s, t € [tj_1, 8], let y;(t) = %
and ®;(s, t) = [B(t;) - B(s)lyj(t). For s € [0, T] and & = (£, &1, &, ...) € R™, let

B(s) - Bltj-1) E,]
VB — Bt

+Xm(3)Zfz B(t) — B(ti-1)  (f exists).
=1

- LS} ]_
swxmw=&+zmmmwﬁz& B(t) - B(tia) +
j=1 1=1

For x € C[0, T], define the polygonal function P, g(x) of x by

Poo,p()(8) = 10} ($)X(t0) + x(m (S)X(T) + ) X(ty.1,1(8)[X(tj-1) + Vi ($)[X(8) = x(tj-1)]] 33)
j=1

for s € [0, T]. Similarly, for Ef = (&, &1, &2, ...) € Ar, the polygonal function Poo,ﬂ(Z‘) ofzt on [0, T] is defined by
(3.3) with replacing x(to), x(t;) and x(T) by &, &; and &7, respectively. Throughout this paper, we will use the
notation g in place of € when e; is replaced by g; which is given by (3.1). We note that Z(co, %), Poo,p(x) and
Poo,,g(f) belong to C[0, T] if they exist.

Theorem 3.9. Let F : C[0, T] — C be integrable. Define X, : C[0, T] — R™ by X, (x) = (x(to), x(t1), x(t2), . ..).
Then:

(1) Formg,_ ae. & € R, we have

GE[F|Zz0,)(9) = j F(X = Poo p(X) + E(00, &) AW ., (X), (3.4)
C[0,T]

where mgz,  is the measure on B(RN0) induced by Z3 0o
(2) Formy, ae e RS,

GE[F|Xo)(3) = j F(X = Poo,g(X) + Poo p(8) dWq, gy, (X). (3.5)
C[0,T]

Proof. For s € [0, T), we have X3,00,8(8) = Poo,p(X)(8) and Z‘gmyﬁ(s) = Z(oo, E')(s) for we,p;p a.e. x € C[0, T] by
[4, Corollary 3.5]. If s = T, then

Xg.00,8(T) = 2o(X) + Y 1(T)Ia,p(g1)(X)
=1
T

T
I 1
=x(0)+ nhlgo; (ONCR) ojx[m,m(m dp(w) Jx[m,mw) dx(w)

n

= x(0) + lim " [x(ty) = X(t1-1)]
=1
= lim x(tn) = X(T) = Poo, p(X)(T)

and for mz,  a.e. &= (&, &,...) € R, we obtain

& 0p(D) = &0+ Y &ci(T)
=1

T
00

+Z Vﬁ(tl)—ﬁ(tl 1) J

=&+Zanm—ﬁaH)=am£xn
=1

$0 that Xz oo, g = Peo,p(X) and Efg,oo,ﬁ = E(0o, &). By (P1) and Theorem 3.7, we get (3.4).

Xiter,tn (W) dB(u)
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To prove (3.5), define ¢ : RY — RN by

o) = (Eo, 3.6)

&1 - & &H-& >
VB(&) - Bto) VB(&) - Bltr)
for 3 = (&, Elj &,...) € ]RNE , which is a bijective, bicontinuous function. By [4, Corollary 3.6], it suffices to prove
that Z(co, ¢(&))(T) = Peo,p(¢)(T). Indeed, we have

E(oo, ¢(@))(T) = & + lim Z B(t) - B(ti1) p(t) Ellg(lt
- B(ti1)

= im & = ¢r = Poop()(D),
as desired. O

Remark 3.10. Since Zf'gooﬁ(T) is the evaluation of xz o, g(T) for zj(x) =&, j=0,1,2,..., it follows that the
series Zz 1 &17/B(t1) — B(ti-1) in the proof of Theorem 3.9 converges for mz,  a.e. fe IRNU Similarly, because
Z(co, ¢)(E))(T) is the evaluation of x3 , (T) for x(t;) = E], j=0,1,2,..., the sequence E in (3.6) converges for
my_ a.e. E € R™_ Hence, such a Efor which GE[FlXOO](E) exists, belongs to Ar.

4 Applications to the cylinder-type functions

In this section, we apply the simple formulas given in the previous section to obtain the Radon-Nikodym deriva-
tives of various functions, in particular, special types of the Feynman—Kac functional.

Since Pz g is an orthogonal projection, it is self-adjoint, that is, fPé’OO, p = FPecop and 77 g = Pecop WE
have the following lemma.

Lemma4.1. Forv e L(z],ﬁ[O, T, we have

o0

¥, P2 c0pV)0,6 = 1Ps,00,pVIG 5 = _Zl<v, e

]:

and
174 oo gVI2 5 = 1V = Paco VI3 g = IVIZ 5 = 1Pe00 VIR 5.
Lemma4.2. Forv ¢ Lfl’ﬁ[o, T], we have
o p(v)(Ia,p(P5 0,pX10,:1)(X)) = Iaﬁ(ﬂ’eooﬁV)(X)
= Iop(P5 ﬁV)(Ia,ﬁ(fPé:OO)ﬁX[O,-])(X))

for we g ae x € C[O, T).

Proof. Using a similar process as in the proof of [4, Lemma 5.1], we can prove the first equality. Since P5 5 isan
orthogonal projection, we have (ﬂ’goo B)2 = ?gm s Now, replacing v by Tgoo gV in the first equality, we obtain
the second equality, which completes the proof. O

Theorem 4.3. Forv € Li,ﬁ[o, T], we have
Ta p(V)Ua,(Pz,00,6X10,-1)(X)) = Iq,8(P5,00,8V)(X)
= Ia,8(P2,00,8V) e, 5(P2,00,8X10,-1) (X))
for we g, ae. x € C[0, T).
Proof. By Theorem 2.1 and the first equality of Lemma 4.2,
Ia,p(V)Ua,p(P2,00,6X10,- D)) = Ia, sV U p(X10,-1 = P o pX10,-1)00))
= I p(V)(x = x(0)) - Iaﬁ(V)(ﬂ’mﬁx[o X))
=Igp(V)(X) - Iq p(TPe 00,00 = Ta,p(Pe,00,4V) (X),
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which proves the first equality of the theorem. Since T% cof = Pz,00,8, the second equality immediately follows
from the first equality of the theorem, completing the proof. O

Remark 4.4. Replacing P> Snp by Pz oo, p in the proof of [4, Lemma 5.1], with aid of Lemma 4.1, we can also prove
the first equality of Theorem 4.3.

Example 4.5. Letv € L2 ﬁ[O T].If v ¢ V+, then by Theorems 2.2, 2.3 and 4.3, we have

exp{la,p(V)(Ta,p(Pe,00,6X10,-1) (X))} dWa ;0 (X)
C[0,T]

2 3 U - I 5(Ps oo gV)(@)]?
=[ o(R) : ]z Jexp{u_[ a,B( e,oo,,B2 )a)] }dmL(u)
211 P2,00,8VIl5 211P2,00,8V1l5

R
1
= R exp | 172 00V s + L p(PeopV) (@]
Note that the result holds for v € V+.

Example 4.6. Let v € L? ﬁ[O T], let f: R — C be Borel measurable and let F(x) = f(Iap(V)(X)) for wq gy ae.
X € C[0, T]. Suppose that f is m;-integrable. By Theorem 3.7 and Lemma 4.2, for mz, _ a.e. & ¢ R™, we have

GE[F|Z3,00)(8) = J f(la,B(V)(Ia,B(fpgl,oo,ﬁX[O,~])(X))+Ia,B(V)(Eé,oo,B))dWa,ﬁ;(oo(X)
c1o,7)

= [ AP 900 + g0 E ) AW 0.
10,7}

If v ¢ V, then, by Theorems 2.2 and 2.3,

GE[F|Z3,00)(§) =

1 ] [t = I (P o0 gV(@) = L s (V) (E.00,p)1?
] [wen]-
2701P5 o IIOﬁ 2175
Example 4.7. Let {v4,..., v} be a subset of Li’ﬁ [0, T]. Let f: R" — C be Borel measurable and let
F(X) = flla,p(v1)(X), ..., Iap(vr)(X))

for wq g,y a.e. x € C[0, T]. Suppose that f is m] -integrable. Then for mz,  a.e. ¢ ¢ R™, we have

} dmL(u).

2
&,00 ano,ﬁ

GE[F|Z3,05)(8) = j flap(Pi0 49100 + IasV1)Eo008)s - - - Ta (P00 gV 00 + Ta (V1) (E2,00,)) AWar 95 (X)
C[0,T]

by Theorem 3.7 and Lemma 4.2. If v; e Vfor [ =1,...,r, then
GE[F|Z3,00)(8) = flap(v1) Ezc0,8)s - - -+ I (V) (&s,00,8))

:f(Zm, €08 -+ +» ) (Vr, ej)o,ﬁfj)
j=1 j=1

for Z‘ = (&, &1,...) € R, In particular, if v; = ejforl=1,...,r then
GE[F|Zs,00)() = fi&),, ..., §).
Ifvi e Vtforl=1,...,rand they are orthonormal in Lg)ﬁ[o, T], then for it = (uy, ..., u;) we have

GE[F|Zs00)(8) = j flagv1)(X) + I, p(v1) 00,6 - - TapVr)(X) + Ia p(vr) (Ee.00,8)) AWa gy (X)
.7

1 % N 1 r )
- [_] Jﬂ“)e"p —5 D[ = Tap (@)t dmj (@)
27T 2 £
R" j=1
byTheoremsZZ 2.3 and Lemma 4.2, since (v;, ej)op=0forl=1,...,r,j=1,2,.... Note that since Z;?jl(v, e)0 &

(velL? ﬁ[O T]) is the evaluation of Z} 1(V, €j)0,pzj(x) for z}(x) §(j=1,2,...), the series ijl(v, ej)o,¢j con-
verges for mz,  a.e. e R™ by Theorem 3.3.
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Example 4.8. Letv ¢ wa [0, T],1let f: R — C be Borel measurable and let

F(x) = fla,p(v)Tap(P5 o, pX10.-1(X)))

for wq,p;p a.e. x € C[0, T]. Suppose that f is m-integrable. Then for mz,  a.e. e R, by Theorem 3.7 and
Lemma 4.2, we have

ELF|Zz,00)(8) = GE[flla p(P3 o, 4V)(-)IZ2,00)(D)

= | Map@h o ) Tap@ g 10,000 + 1Py g Eoo) D,
C[0,T]

= [ AUap®s 000 AW (0,
10,7}

since I, ﬁ(?e - ﬁv)(fg,m,ﬁ) Z] 1(1Pe oY’ ej)o,p¢j = 0, where E’- = (&9, &1, ...). If v ¢ V, then, by Theorem 2.3,

B, 1 } (U = I p(P5 o gVI(@]?
GEIF\Zs00)(8) = ] [f(u)exp{ :

[— dmy (u).
27P; o, sV 211, }

2,00 /3""0,5
Moreover, if v € V, then GE[FlZg,)OO](E) = f(0) for mz, , a.e. E € R,

Remark 4.9. Replacing e; and _égyoo)lg by g;j and E(oo, £), respectively, in Examples 4.6, 4.7 and 4.8, we can
obtain GE[F |Z§,Oo](3) from each expression of GE[F |Z@,m](§) by Theorem 3.9. In particular, GE[F |Xm](§) can
be obtained from the expression of GE[FlZg,OO](¢(E)), where ¢ is given by (3.6). In this case, E’aoo,ﬁ is replaced
bY Poos(E).

Theorem 4.10. Letv € L(ZI’B [0, T] and let F(x) = exp{{v, X)o g} for x € C[0, T]. Suppose that

T
J exp{u J v(s) dﬁ(s)} do(u) < oo.
R 0
Then F is wq p;p-integrable and for mz, _ a.e. Zf = (&, &, ...) € R™, we have
E[F|Z3 00 (8) = exp{ [uh 13,5 Z<v 3 ﬁ] Y (v, o1& - 2i(@)] + Io plhu)(@) + fohv(o)},
j=1

where hy, (1) = v, X{u,11)0,8 for u € [0, T).

Proof. For wq g, a.e. x € C[0, T], by the integration by parts formula, we get

(v, X)0,8 = hy(0)X(0) + I¢,p(hy)(X).

Since
T

Tap(h)(0 = [ By dx(w)
0
by Theorem 2.1, we can show that zo and I g(h,) are independent with respect to wq g;q,, using the same process
as in the proof of Theorem 3.5. From this fact we get

j P(x)dwa,ﬁ;¢(x)=¢(m)[ j exp{hv(O)x(O)}dwa,ﬁ;%(x)][ j exp{Ta,p(hy) ()} AW gy (X)

10,7} 10,7] C10,7]
1 -1 h 2
= [—1 - ]2 J exp{hv(O)uo by e WOF ;)(a)] }dmL(u) do(uo)
27|l hy g 2[hylly
,,B R2 :ﬁ

1
- exp{ Il + () (@)} [ expiu@)uo) dp(uo) < oo
R
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if |hyllo,g # 0. If |hyllo,g = 0, then [hylle,p = 0 so that F is wg g;p-integrable. By Theorem 3.7, Lemma 4.2 and
Example 4.6, for mz,  a.e. & = (§,¢1,...) € RN, we have

GE[F|Zs00)(8) = j F(Ia (P50 410, D00 + E,00,8) Wa i, (0
C[o,1]

- [ expluOap @, 1000 + Eoco O]

.1 >
+ Ia, g ()T p(P5 o pX10,- D)) + Ta,p (1) (E2,00,8)} AWa, B0 (X)

1 S
= exp{ 174 gholl g + Tap (P g gh)(@ + E0hu(0) + Tap(h)Gao )|

,00,B

By the integration by parts formula,

T
(hy, €)o,p = ciWhyWIE + I cj(wv(u) dB(u) = {cj, v)op-
0
Therefore, by (3.2) and Lemma 4.1, we obtain

175 0 gTlG 5 = W5 g = YV, 638 5 Tap () Eac0.p) = Y (V, €0
j= 1

and

I (P oo sh)(@) = T p(hy)(@) — Y (0, ¢j)o pzj(a).
j=1

Consequently, we have
o 1 o0 o0
GEI[F|Z3,00)(§) = exp{z [uhvug,ﬁ =YW g g |+ YAV sl - 2i(@] + Lo p(hu)(@) + thv(O)},
j=1 j=1
completing the proof. O

Corollary 4.11. Under the assumptions as in Theorem 4.10, for m Z.00 O-€. 3 e R™ GE[F|Z ,00) (E) can be expressed
by the right-hand side of the equality in Theorem 4.10 with

a(ty) — a(tj-1)

\B(t) - B(tj-1)

zj(a) =

and
15}

1

VBE) = Btj-1) tl

In particular, for my_, a.e. Z‘ = (&, &1,...) € RN, GE[F|Xoo] (E) is given by the expression of GE[F|Z ] (E) replac-

. &=
n by —= 2= |
g4y \B(t)-B(tj-1)

Proof. 1t is not difficult to show that for u € [0, T],
B(w) - B(tj-1)

VB(&) - B(tj-1)

zj(a) =

(v, ¢jlog =

V(S)[B(s) — B(tj—1)] dB(s) + hy () B(tj) — B(tj-1).

cj(u) = Xitj,t) (W + X1, 1 (W) B(E)) — B(Lj-1).

Since
a(ty) — a(tj-1)

\B(t)) —ﬁ(tj—l)’

the first result immediately follows from Theorem 4.10. The second result follows from the fact that
GE[FIXo0)(§) = GEIFIZ3 o 1($(D)),

where ¢ is given by (3.6). O
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Letting v = 1 in Theorem 4.10, we have the following corollary which is one of our main results.

Corollary 4.12. Suppose that f]R exp{ul[B(T) — B(0)]} dp(u) < co. For & € R, let

K(éo) = EXP{%[/?(T? - BOI + B(DIa(T) - a(0)] - Inp(B)(@) + ol B(T) - ﬁ(O)]}-

Then, for mz,  a.e. &= (&, &,...) € RN, we have

T
GE[exp{J x(u) dﬁ(u)}

0 J=1%%
Proof. Letv =1in Theorem 4.10. Since h,(u) = fuT 1dB(u) = B(T) — f(u), we have

T

Il = [ (BT - B dBw) = 516D - BOF

0

ooy b 2 o T
Za,oo](Z‘) = K(%o) eXp{—% Z“ ¢j(u) dﬁ(u)] + Y [§ - zj(@)] J ¢j(w) dﬁ(u)}-
0

Jj=1

and
T

I p(hy)(a) = J[ﬁ(ﬂ Bw)]da(u) = B(D)[a(T) - a(0)] - Iop(B)(a).
0
Moreover, we have h,(0) = B(T) - f(0) and (v, ¢j)op = jOT cj(u) dB(u). Now, the corollary follows from Theo-
rem 4.10. OJ

Corollary 4.13. Under the assumptions as in Corollary 4.12, for mgz, ., a.e. Zf = (&, &1,...) € R®, we have

T
- 1

GE[EXPU x(u) dﬁ(u)} Zg,oo](f) = K(%o) exp{—g Y 1B(t) - Bt-D1[2B(T) - B(ty) - B(tj-1)T?
0 J=1

1 o0
+5 Z[fj - zj(@)]/ B(t)) — B(ti—)[2B(T) - B(t)) - ﬁ(tj—l)]}-
=

In particular, GE[F|X o] (;") is given by the right-hand side of the above equality replacing &; by \/%
)=P (1

Proof. By Corollary 4.11,

[B(4) - B(tj-1))?

j w dpw - LOPGI ooy g B - i)
Z\Iﬁ(t]) - B(tj-1)
=3 \/ﬁ(tj) = B(tj-1)[2B(T) - B(¢;) - B(tj-1)].

Now, the validity of the corollary follows from Theorem 3.9, Corollaries 4.11 and 4.12. O

Remark 4.14. For the conditioning Z; o, the Radon-Nikodym derivatives of the general type of cylinder
functions and the functions in a Banach algebra given in [4] can be expressed by similar forms in [4] with
(e1,€,...,ep) replaced by (eq, ez, ...).

5 Applications to the time integrals

In this section, we apply the simple formulas given in Section 3 to various functions containing the time integral.

Example 5.1. For m € Nand t € [0, T], let F;(x) = [x(t)]™ for x € C[0, T], and suppose thatj [ul™do(u) < co.
By Theorems 2.1, 2.2, 3.7 and [5, Theorem 7], for mz, _ a.e. E € R®, we have

[7]

GE[FilZsoo)(B) = ) o —

k=0

-2k 2k
Zkk'( 2k)| feooﬁ(t)+1aﬁ(3’eooﬁ)([o D@1 NP5, pri0.a1llg s G.D
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where [ -] denotes the greatest integer function. In addition, by (P1), (P2) and Theorem 3.9,

[7]

GEIFlZ30)() = ).

k=0

zkk,( Zk)l[(oo,f)(ma(t) Poop@@1" (6, 01F = G1(£,9)  (52)

for t € [tj_1, t;) and for mgz, , a.e. E € R™_ Furthermore, if t = T, then ||CP§00,3X[0,H||(2);; =0sincel=yxpmneV
which is generated by the g;. Consequently, we have

GEF1Z3.00)®) = [0+ Y. €\t Bt )]
=1

for mgz, ., a.e. E = (&, &1, ...) € R™, In particular, by Theorem 3.9, we have
GE[Fr|Xo)(®) = &

for my_ a.e. & e R™, where lim, o, &, = &

Now, we can obtain the following example by Example 5.1.

Example 5.2. For m € N, let F(x) = fo [x()]™dA(t) for x € C[0, T], where A is a finite complex measure on the
Borel class of [0, T], and suppose thatf [u|™de(u) < co. Then for mz,  a.e. E € R, GE[F|Z3,00] (E) is given by

T
E[F1Zs,00](3) = jGE[mz@,m](E) da(),
0

where GE[FAZ@)OO](E) is expressed by (5.1). In addition, for mz,  a.e. Zf = (&, &, ...) € R®, we have
GEIFIZ3,00)(8) = EFAUTY) + Y [E(c0, E)(tDI™A{ti}) + Y. j Ga(t, &) dA(v), (5.3)

J=0 ]=1(tj—1;tj)

where G1(t, Z‘) is given by the right-hand side of (5.2). We note that GE[FIXOO](E) can be obtained from (5.3) by
Theorem 3.9 replacing Z(co, Z‘)(tj) by &;. In particular, if a(t) = Peo,p(@)(t) and dA(t) = df(¢) for t € [0, T], then,
by Theorem 3.9 and [3, Corollary 3.9], we have

oo L& mazk mi(1 + k)AL - Bltj-1)] 1 [E(00, E) (1)1 H1E]

GEIFIZ1(8) = ]zlkzo IZO 2K11(m — 2k — DI(1 + 2k + 1)!

Under the conditions stated above, GE[F|Xoo] (Z‘) is given by the above equality replacing % +k+1,E(c0, E)(tj,l),
&by k+1, &1 and & — &j_q, respectively.

Example 5.3. Let s1, sz € [0, T] and let G(sy, $2, X) = x(s1)x(S2) for x € C[0, T]. Then G(s1, $2, -) iS Wq g;p-inte-

grable by [5, Theorem 5] so that for mz,  a.e. 3 € R, we have

GE[G(s1, 52, )| Ze,00(8) = j e 5(P3 00 pX105:1) 00 + 2,00, 85D (P50 pX10,5:1) (X) +E.00,5(52)] AWar i (X)
C[0,T]
= (P50 pX 10511 P30 pX 10521008 + [ (& .00,5(51)
+ 1o p(P; o, pX10,511)(@)] [&5.00,5(52) + I B(P5 00 pX10.521)(@)]
by Theorems 2.2 and 3.7.
Lemma 5.4. Let s1, Sy € [0, T]. Then we have the following:
(D Ifsy e [tj1, ;] U{T}, sp € [ty-1, te] U{T} for 1 < j < k, then
(P4 copX10511> P oo pX10.521)0,8 = 0.

@) Ifs1, 82 € [tj1, tj], then
(Tg,oo’ﬁ)([o,sl], ?gfmyﬁ)([o,sz])o,ﬁ = (s, 81).
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Proof. If sy € [tj_1, tj] and s3 € [tx_1, tx] U {T}, the proof of (1) is similar to the proof of [4, (1) in Lemma 4.6] with
aid of (P2). Since y[o,7] € V, which is induced by the gj, we have ngfOO ﬁX[O,T] =0 so we have

(P o, pX10.11 P50 pX10.10.8 = 1P o sX10.1G 5 = O
if 51 = s = T, completing the proof of (1). The proof of (2) is similar to the proof of [4, (2) in Lemma 4.6]. O

Example 5.5. Let sy, s; € [0, T] and let G(s1, S2, X) = x(s1)x(s2) for x € C[0, T]. Then, by Theorem 3.9, Example 5.3
and Lemma 5.4, we have the following:
(D) Ifsy € [t-1, G1UA{TY 82 € [tk-1, tl] U{T} for 1 < j < k, then, for mz,  a.e. E € R0,

GE[G(51, 52, )1 Zg,00)(€) = [E(c0, E)(51) + A(51) — Poop(@)(s1)][E(00, E)(S2) + A(S2) ~ Poo p(@)(52)].

In particular, GE[G(S1, S2, )| Xoo] (Zf) is given by the above equality replacing Z(co, Z‘) by POO,B(E).
) Ifsy, sy € [tjig, 4], then for mz, _ ace. & e RN,

GE[G(s1, S2,- )IZg,oo](E) = [E(00, &)(51) +a(51) = Poo,p(@)(51)][E(00, E)($2) + €(S2) — Poo, (@)(52)] + @} (52, 51).
In particular, GE[G(S1, S2, )| Xoo] (E) is given by the above equality replacing Z(co, Z‘) by POO,B(E).
We now have the following theorem from [3, Theorem 3.3], based on Theorem 3.7 and Example 5.3.

Theorem 5.6. For x € C[0, T}, let

T 2
G3(x) = [ jx(t) dA(t)] ,
0

where A is a finite complex measure on the Borel class of [0, T]. Suppose that

T
J[a(t)]z d|A|(t) <o and J u? do(u) < co.
0 R

Then, for mz,  a.e. & € RN, we have

T 2

T
GEGs1Zso0)(®) = | [(Ph o pti0si: P g0 4035152 + [j[;"@,oo,ﬁ<s) +Tap(Ph o pXi0s)(@] dAG) |
0 0

© e

Using the same method as in the proof of [3, Theorem 3.3] with aid of Lemma 5.4, Example 5.5 and Theorem 5.6,
we can prove the following corollary.

Corollary 5.7. Let the assumptions be as in Theorem 5.6. Then, for mz,  a.e. & € R™, we have

TT T 9
GEIGs1Zgo)®) = | [ A5t v s2us1 n52) dh*(s1, 50 + “[E(oo, B)(5) + (s)  Poo p(a)(s)] dA(S) | ,
00 0

where -
AGS, 1) = ) Xit12(S, DD (S, 1)
j=1
for (s, t) € [0, T1%, 51V S = max{si, Sz} and s1 A Sz = min{sy, S2}. In particular, GE[GngOO](Z‘) is given by the
above equality replacing E(co, 3) by Poo,ﬁ(g).

Remark 5.8. We note that the range of the conditioning function Zz ., in this paper is infinite dimensional
while the conditioning function Zz , in [4] is vector-valued but its range is finite dimensional. Although the
expressions of the formulas in Theorem 3.7 and in other results are similar to those in [4], their proofs in this
paper are different from the proofs in [4]. We also note that the topology on R™ is the product topology, so that
the Borel g-algebra B(IR™0) is induced by this topology.
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