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Abstract: Let C[0, T] denote the space of real-valued continuous functions on [0, T] and let

Z ⃗e,∞(x) = (x(0),
T

∫
0

e1(t) dx(t),
T

∫
0

e2(t) dx(t), . . .) for x ∈ C[0, T],

where {ej}∞j=1 is a sequence of appropriate functions on [0, T]. In this paper, we derive a simple evaluation for-
mula for calculating Radon–Nikodym derivatives similar to the conditional Wiener integrals of functions on
C[0, T] given Z ⃗e,∞ which has an initial weight and a kind of drift. As applications of the formula, we evaluate
the derivatives of various functions containing the time integral which is of interest in quantum mechanics,
especially in Feynman integration theory.

Keywords: Analogue of Wiener measure, cylinder function, conditional Wiener integral, simple formula for
conditional Wiener integral, time integral
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1 Introduction

Let C0[0, T] denote the Wiener space, the space of continuous real-valued functions x on [0, T] with x(0) = 0.
A time integral is simply the Riemann integral of a function of the continuous random variable X(x, t) = x(t)
with respect to the parameter t for x ∈ C0[0, T]. The Feynman–Kac functional on the Wiener space C0[0, T] is
given by exp{− ∫T0 V(t, X(x, t)) dt} including the time integral, where V is a complex-valued potential. Calcula-
tions involving the conditional Wiener integrals of the Feynman–Kac functional are important in the study of
the Feynman integral [9], and it can provide a solution of the integrals equation which is formally equivalent
to the Schrödinger equation [6]. In particular, when 0 = t0 < t1 < t2 < ⋅ ⋅ ⋅ < T and ξj ∈ ℝ for j = 0, 1, 2, . . . , the
conditional Wiener integrals of functions involving the time integral, in which the paths pass through ξj at each
time tj , are very useful in describing the Brownian motion. As for one of simple formulas used to calculate
the conditional Wiener integrals stated above, Park and Skoug [10] derived a simple formula for conditional
Wiener integrals containing the time integral with the conditioning function (∫T0 e1(t) dx(t), ∫

T
0 e2(t) dx(t), . . . )

for x ∈ C0[0, T], where the ej are in L2[0, T]. In their simple formula, they expressed the conditionalWiener inte-
grals directly in terms of ordinary Wiener integrals, which generalizes the evaluations of conditional Wiener
integrals with a finite dimensional conditioning function. We note that the Wiener measure used in [10] has no
drifts with the variance function β(t) = t for t ∈ [0, T].

On the other hand, let C[0, T] denote the space of continuous real-valued functions on [0, T]. Ryu [12, 13]
introduced a finite positive measure wα,β;φ on C[0, T], where α, β : [0, T] → ℝ are appropriate functions and φ
is a finite positivemeasure on the Borel classB(ℝ) ofℝ. We note thatwα,β;φ is equivalent to theWienermeasure
on C0[0, T] if α(t) = 0, β(t) = t and φ = δ0, which is the Dirac measure concentrated at 0. When e1 , . . . , en are of
bounded variations on [0, T] and Z ⃗e,n(x) = (x(t0), ∫

T
0 e1(t) dx(t), . . . , ∫

T
0 en(t) dx(t)) for x ∈ C[0, T], the author

*Corresponding author: Dong Hyun Cho, Department of Mathematics, Kyonggi University, Suwon 16227, Republic of Korea,
e-mail: j94385@kyonggi.ac.kr. https://orcid.org/0000-0001-8989-6648

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Inter-
national License.



2  D.H. Cho, A generalized conditional Wiener integral and applications

of [4] derived a simple evaluation formula for generalized conditional Wiener integrals of functions on C[0, T]
with the conditioning function Z ⃗e,n . As applications of the formula, he calculated the conditional Wiener inte-
grals of the time integral, the cylinder functions and the functions in a Banach algebra which generalizes the
Cameron–Storvick’s one [1]. We note that the value space of Z ⃗e,n is finite dimensional.

Let Z ⃗e,∞(x) = (x(0), ∫
T
0 e1(t) dx(t), ∫

T
0 e2(t) dx(t), . . . ) for x ∈ C[0, T], where the ej are orthonormal in the

space of functions that are square integrable with respect to β. In this paper, we derive a simple evaluation
formula for calculating Radon–Nikodym derivatives similar to the conditional Wiener integrals of functions on
C[0, T]with the conditioning function Z ⃗e,∞. Regarding the applications of the formula, we evaluate the deriva-
tives of various functions involving the time integral, such as cylinder-type functions and especially the function
exp{∫T0 x(t) dβ(t)} on C[0, T], which is a specific type of the Feynman–Kac functional and plays a significant role
in Feynman integration theory. We note that the value space of Z ⃗e,∞ is infinite dimensional and Z ⃗e,∞ has a kind
of drift with the more generalized variance function β. Furthermore, while every path in C0[0, T] starts at the
origin, the paths in our underlying space C[0, T] may not. Our measure in this paper may not be a probability
measure, so that the results of this work generalize those of [4, 10].

To summarize, with the conditioning function Z ⃗e,∞ on C[0, T], this paper extends the simple evaluation
formula in [4] stated above. Using the extended formula, we will evaluate the Radon–Nikodym derivatives of
various functions involving time integrals, particularly focusing on a specific type of Feynman–Kac functional
exp{∫T0 x(t) dβ(t)}.

2 A generalized analogue of Wiener space

Let C[0, T] denote the space of continuous real-valued functions on the interval [0, T]. Let α be absolutely con-
tinuous on [0, T] and let β be continuous, strictly increasing on [0, T]. For ⃗tk = (t0 , t1 , . . . , tk) with 0 = t0 < t1 <
⋅ ⋅ ⋅ < tk ≤ T , let J ⃗tk : C[0, T] → ℝ

k+1 be the function given by J ⃗tk (x) = (x(t0), x(t1), . . . , x(tk)). For any Borel set
Bj(j = 0, 1, . . . , k) inB(ℝ), the subset J−1⃗tk (∏

k
j=0 Bj) of C[0, T] is called an interval I and let I be the set of all such

intervals I. Define a premeasure mα,β;φ on I by

mα,β;φ(I) = ∫
B0

∫

∏kj=1 Bj

W( ⃗tk , u⃗k , u0) dmk
L(u⃗k) dφ(u0),

where mL denotes the Lebesgue measure onB(ℝ), and for u0 ∈ ℝ, u⃗k = (u1 , . . . , uk) ∈ ℝk ,

W( ⃗tk , u⃗k , u0) = [
1

∏kj=1 2π[β(tj) − β(tj−1)]
]

1
2

exp{−12

k
∑
j=1

[uj − α(tj) − uj−1 + α(tj−1)]2

β(tj) − β(tj−1)
}.

The Borel σ-algebraB(C[0, T]) of C[0, T]with the supremum norm coincides with the smallest σ-algebra gener-
ated by I, and there exists a unique positive finite measure wα,β;φ onB(C[0, T])with wα,β;φ(I) = mα,β;φ(I) for all
I ∈ I. This measurewα,β;φ is called a generalized analogue ofWienermeasure on (C[0, T],B(C[0, T])) according
to φ (see [12, 13]).

Let να,β denote the Lebesgue–Stieltjes measure defined by να,β(E) = ∫E d(|α| +β)(t) for each Lebesgue mea-
surable subset E of [0, T], where |α| denotes the total variation of α. Define L2α,β[0, T] to be the space of functions
on [0, T] that are square-integrable with respect to να,β (see [11]); that is,

L2α,β[0, T] = {f : [0, T] → ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

T

∫
0

[f(t)]2 dνα,β(t) < ∞}.

The space L2α,β[0, T] is a (real) Hilbert space and has the inner product

⟨f, g⟩α,β =
T

∫
0

f(t)g(t) dνα,β(t).
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We note that L2α,β[0, T] ⊆ L
2
0,β[0, T], where L

2
0,β[0, T] denotes the space L

2
α,β[0, T] with α ≡ 0. Throughout the

remainder of this paper, we give additional conditions for α and β. Assume that β󸀠 > 0 and |α|
󸀠

β󸀠 is bounded. In
this case, L2α,β[0, T] = L

2
0,β[0, T], and the equality means that they are equal as vector spaces and the two norms

on them are equivalent so that they have the same topology, but that they need not be equal isometrically.
Let S[0, T] be the collection of step functions on [0, T] and let ∫T0 ϕ(t) dx(t) denote the Riemann–Stieltjes

integral. For f ∈ L2α,β[0, T], let {ϕn} be a sequence of step functions in S[0, T]with limn→∞ ‖ϕn − f‖α,β = 0. Define
Iα,β(f) by the L2(C[0, T])-limit

Iα,β(f)(x) = lim
n→∞

T

∫
0

ϕn(t) dx(t)

for all x ∈ C[0, T] for which this limit exists or Iα,β(f)(x) = limn→∞ ∫
T
0 ϕn(t) dx(t) pointwisely if exists. We note

that for f ∈ L2α,β[0, T], Iα,β(f)(x) exists for wα,β;φ a.e. x ∈ C[0, T]. Moreover, we have the following theorems [2].

Theorem 2.1. If f is of bounded variation on [0, T], then Iα,β(f)(x) = ∫
T
0 f(t) dx(t) for wα,β;φ a.e. x ∈ C[0, T].

Throughout this paper, for x ∈ C[0, T], we redefine Iα,β(f)(x) = ∫
T
0 f(t) dx(t) if ∫T0 f(t) dx(t) exists.

Theorem 2.2. Let f, g ∈ L2α,β[0, T]. Then we have the following:
(1) ∫C0,T] Iα,β(f)(x) dwα,β;φ(x) = φ(ℝ)Iα,β(f)(α),
(2) ∫C[0,T][Iα,β(f)(x)][Iα,β(g)(x)] dwα,β;φ(x) = φ(ℝ)[⟨f, g⟩0,β + [Iα,β(f)(α)][Iα,β(g)(α)]],
(3) Iα,β(f) is Gaussian with the mean Iα,β(f)(α) and the variance ‖f‖20,β if φ(ℝ) = 1. In this case, the covariance of

Iα,β(f) and Iα,β(g) is given by ⟨f, g⟩0,β .

Theorem 2.3. Let {f1 , . . . , fn} be a set of functions in L2α,β[0, T], which are nonzero and orthogonal in L
2
0,β[0, T].

Then, for a Borel measurable function f : ℝn → ℂ,

∫
C[0,T]

f(Iα,β(f1)(x), . . . , Iα,β(fn)(x)) dwα,β;φ(x)

∗= φ(ℝ)[
n
∏
j=1

1
2π‖fj‖20,β

]
1
2

∫
ℝn

f(u⃗) exp{−12

n
∑
j=1

[uj − Iα,β(fj)(α)]2

‖fj‖20,β
} dmn

L(u⃗),

where u⃗ = (u1 , . . . , un), and
∗= means that if either side exists, then both sides exist and they are equal. Moreover,

if φ(ℝ) = 1, then Iα,β(f1), . . . , Iα,β(fn) are independent.

Let W be an ℝℵ0 -valued Borel measurable function defined for wα,β;φ a.e. on C[0, T], and let F : C[0, T] → ℂ
be integrable. Let mW be the image measure on the Borel class B(ℝℵ0 ) of ℝℵ0 induced by W . By the Radon–
Nikodym theorem, there exists anmW -integrable function ψ defined onℝℵ0 which is unique up tomW a.e. such
that for every B ∈ B(ℝℵ0 ),

∫
W−1(B)

F(x) dwα,β;φ(x) = ∫
B

ψ( ⃗ξ) dmW ( ⃗ξ).

Define the function ψ as a generalized conditionalWiener integral of F for a givenW and denote it by GE[F|W].
We note that GE[F|W] is a Radon–Nikodym derivative rather than a conditional expectation (or a conditional
Wiener integral) since mW need not be a probability measure.

3 A simple formula for the generalized conditional Wiener integrals

In this section, we derive a simple evaluation formula for the generalized conditionalWiener integral as defined
in the previous section.

Let {ej : j = 1, 2, . . . } be an orthonormal (preferably not complete) subset of L20,β[0, T] such that it is orthogo-
nal in L2α,β[0, T]. Such a set always exists for the following reason.
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Example 3.1. Let {tn}∞n=0 be a strictly increasing sequence in the interval [0, T] with t0 = 0 and limn→∞ tn = T .
For j = 1, 2, . . ., let

gj(s) =
1

√β(tj) − β(tj−1)
χ[tj−1 ,tj](s) for s ∈ [0, T]. (3.1)

It is clear that the set {g1 , g2 , . . . } is an orthonormal subset of L20,β[0, T] such that it is orthogonal in L
2
α,β[0, T].

We also note that each gj is of bounded variation on [0, T].

Let V be the closure of the subspace of L20,β[0, T] generated by {e1 , e2 , . . . } and let V
⊥ be the orthogonal comple-

ment of V . Let P ⃗e,∞,β : L20,β[0, T] → V and P⊥⃗e,∞,β : L
2
0,β[0, T] → V⊥ be the orthogonal projections. By [7, Prob-

lem 8, p. 167], P ⃗e,∞,β and P⊥⃗e,∞,β exist, and they can be expressed by

P ⃗e,∞,βv =
∞
∑
j=1
⟨v, ej⟩0,βej , P⊥⃗e,∞,βv = v − P ⃗e,∞,βv for v ∈ L20,β[0, T].

Since ‖ ⋅ ‖0,β and ‖ ⋅ ‖α,β are equivalent, V is also closed under the norm ‖ ⋅ ‖α,β . Moreover, we have the following
lemma.

Lemma 3.2. For v ∈ L20,β[0, T], we have

Iα,β(P ⃗e,∞,βv)(α) =
∞
∑
j=1
⟨v, ej⟩0,β Iα,β(ej)(α) (3.2)

and there exists M > 0 such that

|Iα,β(P ⃗e,∞,βv)(α)|2 ≤ M
∞
∑
j=1
⟨v, ej⟩20,β ≤ M‖v‖

2
0,β .

Proof. For any positive integer n, by the Hölder’s inequality, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Iα,β(P ⃗e,∞,βv)(α) −

n
∑
j=1
⟨v, ej⟩0,β Iα,β(ej)(α)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ να,β([0, T])
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
P ⃗e,∞,βv −

n
∑
j=1
⟨v, ej⟩0,βej

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

α,β
.

Letting n →∞, we have (3.2) since ‖ ⋅ ‖0,β and ‖ ⋅ ‖α,β are equivalent. Take M1 > 0 with ‖f‖α,β ≤ M1‖f‖0,β for all
f ∈ L20,β[0, T]. By (3.2), from the orthogonality of the ej with respect to να,β we have

|Iα,β(P ⃗e,∞,βv)(α)|2 = lim
n→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Iα,β(

n
∑
j=1
⟨v, ej⟩0,βej)(α)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ να,β([0, T]) limn→∞

n
∑
j=1
⟨v, ej⟩20,β‖ej‖

2
α,β

≤ M2
1να,β([0, T])

∞
∑
j=1
⟨v, ej⟩20,β .

Let M = M2
1να,β([0, T]). Then the second inequality of this lemma follows from the Bessel inequality.

For convenience, let φ0 = 1
φ(ℝ)φ throughout this paper. We now provide the theorem which is needed in the

sequel.

Theorem 3.3. Let v ∈ L20,β[0, T]. Then the series∑
∞
j=1⟨v, ej⟩0,β Iα,β(ej)(x) converges for wα,β;φ a.e. x ∈ C[0, T] and

Iα,β(P ⃗e,∞,βv)(x) =
∞
∑
j=1
⟨v, ej⟩0,β Iα,β(ej)(x).

Proof. Since φ0 is a probability measure, so is wα,β;φ0 . For each positive integer j, let Xj(x) = ⟨v, ej⟩0,β Iα,β(ej)(x)
for wα,β;φ a.e. x ∈ C[0, T]. By Theorems 2.1, 2.2 and 2.3, Xj is Gaussian with the mean ⟨v, ej⟩0,β Iα,β(ej)(α)
and the variance ⟨v, ej⟩20,β , and {Xj}

∞
j=1 is a sequence of independent random variables. Furthermore, we
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have ∑∞j=1 Var[Xj] < ∞ by Lemma 3.2. By [8, Proposition 2.3.3], ∑∞j=1[Xj(x) − E[Xj]] converges pointwisely for
wα,β;φ0 a.e. x ∈ C[0, T]. Since∑

∞
j=1 E[Xj] converges by Lemma 3.2, it follows that∑

∞
j=1 Xj(x) exists for wα,β;φ0 a.e.

x ∈ C[0, T]. Since the null sets with respect to wα,β;φ are equivalent to the null sets with respect to wα,β;φ0 , it fol-
lows that ∑∞j=1 Xj(x) exists for wα,β;φ a.e. x ∈ C[0, T]. Because ∑nj=1⟨v, ej⟩0,βej converges to P ⃗e,∞,βv in L

2
α,β[0, T],

we have Iα,β(P ⃗e,∞,βv)(x) = ∑∞j=1 Xj(x) in L2(C[0, T]). We conclude that Iα,β(P ⃗e,∞,βv)(x) = ∑∞j=1 Xj(x) for wα,β;φ
a.e. x ∈ C[0, T] by [2, Corollary 3.11].

Let z0(x) = x(0) for x ∈ C[0, T]. For j = 1, 2, . . . , define zj and Z ⃗e,∞ by zj(x) = Iα,β(ej)(x) and

Z ⃗e,∞(x) = (z0(x), z1(x), z2(x), . . . )

for wα,β;φ a.e. x ∈ C[0, T]. For s ∈ [0, T], wα,β;φ a.e. x ∈ C[0, T] and ⃗ξ = (ξ0 , ξ1 , ξ2 , . . . ) ∈ ℝℵ0 , let

cj(s) = ⟨ej , χ[0,s]⟩0,β , x ⃗e,∞,β(s) = z0(x) + Iα,β(P ⃗e,∞,βχ[0,s])(x)

and
⃗ξ ⃗e,∞,β(s) = ξ0 +

∞
∑
j=1
ξjcj(s).

We have
x ⃗e,∞,β(s) = z0(x) +

∞
∑
j=1
cj(s)zj(x)

by Theorem3.3.Moreover, since ⃗ξ ⃗e,∞,β(s) is the evaluation of x ⃗e,∞,β(s) for zj(x) = ξj(j = 0, 1, . . . ), ⃗ξ ⃗e,∞,β(s) exists
for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 .

For the continuities of x ⃗e,∞,β and ⃗ξ ⃗e,∞,β , assume that β󸀠 is bounded on a subinterval (a, b) of [0, T] through-
out the remainder of this work.

Theorem 3.4. For wα,β;φ a.e. x ∈ C[0, T] and mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , both x ⃗e,∞,β and ⃗ξ ⃗e,∞,β belong to C[0, T].

Proof. Let μs,t = Iα,β(P ⃗e,∞,βχ[s,t])(α) and σs,t = ‖P ⃗e,∞,βχ[s,t]‖0,β for a < s ≤ t < b. Then according to Theorem2.3
we have

I ≡ ∫
C[0,T]

[Iα,β(P ⃗e,∞,βχ[0,s])(x) − Iα,β(P ⃗e,∞,βχ[0,t])(x)]4 dwα,β;φ0 (x)

= ∫
C[0,T]

[Iα,β(P ⃗e,∞,βχ[s,t])(x)]4 dwα,β;φ0 (x)

= (
1

2πσ2s,t
)

1
2
∫
ℝ

(u + μs,t)4 exp{−
u2

2σ2s,t
} dmL(u)

= 3σ4s,t + 6μ2s,tσ2s,t + μ4s,t .

By Lemma 3.2 and the mean value theorem, we get

I ≤ (3 + 6M + M2)[β(t) − β(s)]2 ≤ M2
1(3 + 6M + M

2)(t − s)2 ,

where for some M1 ≥ 0, |β󸀠| ≤ M1 on (a, b). By [14, Theorem 6.3], we conclude that Iα,β(P ⃗e,∞,βχ[0, ⋅ ])(x) is con-
tinuous for wα,β;φ0 a.e. x ∈ C[0, T], and so is x ⃗e,∞,β . Since the null sets with respect to wα,β;φ are equivalent to
the null sets with respect to wα,β;φ0 , it follows that x ⃗e,∞,β is continuous for wα,β,φ a.e. x ∈ C[0, T]. Since ⃗ξ ⃗e,∞,β
is the evaluation of x ⃗e,∞,β for zj(x) = ξj(j = 0, 1, . . . ), it follows that ⃗ξ ⃗e,∞,β is continuous for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 ,
completing the proof.

We note that for wα,β;φ a.e. x ∈ C[0, T] and j = 1, 2, . . . ,

zj(x) =
T

∫
0

ej(u) dx(u)
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and

x ⃗e,∞,β(s) = x(0) +
∞
∑
j=1
cj(s)

T

∫
0

ej(u) dx(u)

by Theorems 2.1 and 3.3 if each ej is of bounded variation on [0, T]. Moreover, we have the following properties:
(P1) For wα,β;φ a.e. x ∈ C[0, T] and s ∈ [0, T], by Theorem 2.2, we have

x(s) − x ⃗e,∞,β(s) = x(s) − x(0) − Iα,β(P ⃗e,∞,βχ[0,s])(x) = Iα,β(χ[0,s] − P ⃗e,∞,βχ[0,s])(x) = Iα,β(P⊥⃗e,∞,βχ[0,s])(x).

(P2) For 0 ≤ s1 ≤ s2 ≤ T ,

⟨P⊥⃗e,∞,βχ[0,s1] ,P
⊥
⃗e,∞,βχ[0,s2]⟩0,β = β(s1) − β(0) −

∞
∑
j=1
cj(s1)cj(s2).

Theorem 3.5. If φ(ℝ) = 1, then {Iα,β(P⊥⃗e,∞,βv) : v ∈ L
2
0,β[0, T]} and zj are independent for j = 0, 1, 2, . . . . In par-

ticular, {Iα,β(P⊥⃗e,∞,βχ[0,s]) : s ∈ [0, T]} and zj are stochastically independent.

Proof. Since P⊥⃗e,∞,βv ∈ V
⊥ and ej ∈ V , we have ⟨P⊥⃗e,∞,βv, ej⟩0,β = 0, so that the independence of Iα,β(P

⊥
⃗e,∞,βv)

and zj for j = 1, 2, . . . , follows from Theorem 2.2. To complete the proof, it suffices to prove that z0 and
Iα,β(P⊥⃗e,∞,βv) are independent. Since Iα,β(P⊥⃗e,∞,βv) is defined via L2(C[0, T])-limit, we can take a sequence
{ϕn}∞n=1 of step functions in S[0, T] with limn→∞ ∫

T
0 ϕn(t) dx(t) = Iα,β(P⊥⃗e,∞,βv)(x) pointwise for wα,β;φ a.e.

x ∈ C[0, T]. For each n ∈ ℕ, let ϕn(t) = ∑mn
j=1 dn,jχIn,j (t) for t ∈ [0, T], where dn,j ∈ ℝ and the intervals In,j ⊆ [0, T]

with endpoints tn,j−1 and tn,j are mutually disjoint. Let F denote the Fourier transform. Then, for ξ1 , ξ2 ∈ ℝ, by
Theorem 2.2, [5, Lemma 3] and the dominated convergence theorem, we get

F(z0 , Iα,β(P⊥⃗e,∞,βv))(ξ1 , ξ2) = ∫
C[0,T]

exp{i[ξ1x(0) + ξ2Iα,β(P⊥⃗e,∞,βv)(x)]} dwα,β;φ(x)

= ∫
C[0,T]

exp{i[ξ1x(0) + ξ2 lim
n→∞

T

∫
0

ϕn(t) dx(t)]} dwα,β;φ(x)

= lim
n→∞
∫

C[0,T]

exp{i[ξ1x(0) + ξ2
mn

∑
j=1
dn,j[x(tn,j) − x(tn,j−1)]]} dwα,β;φ(x)

= F(z0)(ξ1) ∫
C[0,T]

exp{iξ2 lim
n→∞

T

∫
0

ϕn(t) dx(t)} dwα,β;φ(x)

= F(z0)(ξ1) ∫
C[0,T]

exp{iξ2Iα,β(P⊥⃗e,∞,βv)(x)} dwα,β;φ(x)

= F(z0)(ξ1)F(P⊥⃗e,∞,βv)(ξ2),

which completes the proof.

By Theorem 3.5, we have the following corollary.

Corollary 3.6. The stochastic processes {Iα,β(P⊥⃗e,∞,βχ[0,s]) : 0 ≤ s ≤ T} and {x ⃗e,∞,β(s) : 0 ≤ s ≤ T} are stochasti-
cally independent if φ(ℝ) = 1.

Using the same process used in the proof of [10, Theorem 2] and [5, Theorem 4] with aid of (P1), Theorem 3.5 and
Corollary 3.6, we obtain the following theorem.

Theorem 3.7. If F : C[0, T] → ℂ is integrable, then for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 we have

GE[F|Z ⃗e,∞]( ⃗ξ) = ∫
C[0,T]

F(Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x) + ⃗ξ ⃗e,∞,β) dwα,β;φ0 (x).

Remark 3.8. We note that if V = L20,β[0, T], that is, {e1 , e2 , . . . } is completely orthonormal in L20,β[0, T], then
Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x) = 0 so that for Z ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , GE[F|Z ⃗e,∞]( ⃗ξ) = F( ⃗ξ ⃗e,∞,β) by Theorem 3.7.
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Let {tn}∞n=0 be a strictly increasing sequence in [0, T] with t0 = 0 and limn→∞ tn = T . Let AT be the set of all
convergent sequences ⃗ξ = (ξ0 , ξ1 , ξ2 , . . .) ∈ ℝℵ0 with limn→∞ ξn ≡ ξT . For s, t ∈ [tj−1 , tj], let γj(t) =

β(t)−β(tj−1)
β(tj)−β(tj−1)

and Φj(s, t) = [β(tj) − β(s)]γj(t). For s ∈ [0, T] and ⃗ξ = (ξ0 , ξ1 , ξ2 , . . . ) ∈ ℝℵ0 , let

Ξ(∞, ⃗ξ)(s) = ξ0 +
∞
∑
j=1
χ(tj−1 ,tj](s)[

j−1
∑
l=1
ξl√β(tl) − β(tl−1) +

β(s) − β(tj−1)

√β(tj) − β(tj−1)
ξj]

+ χ{T}(s)
∞
∑
l=1
ξl√β(tl) − β(tl−1) (if exists).

For x ∈ C[0, T], define the polygonal function P∞,β(x) of x by

P∞,β(x)(s) = χ{0}(s)x(t0) + χ{T}(s)x(T) +
∞
∑
j=1
χ(tj−1 ,tj](s)[x(tj−1) + γj(s)[x(tj) − x(tj−1)]] (3.3)

for s ∈ [0, T]. Similarly, for ⃗ξ = (ξ0 , ξ1 , ξ2 , . . . ) ∈ AT , the polygonal function P∞,β( ⃗ξ) of ⃗ξ on [0, T] is defined by
(3.3) with replacing x(t0), x(tj) and x(T) by ξ0, ξj and ξT , respectively. Throughout this paper, we will use the
notation g⃗ in place of e⃗ when ej is replaced by gj which is given by (3.1). We note that Ξ(∞, ⃗ξ), P∞,β(x) and
P∞,β( ⃗ξ) belong to C[0, T] if they exist.

Theorem 3.9. Let F : C[0, T] → ℂ be integrable. Define X∞ : C[0, T] → ℝℵ0 by X∞(x) = (x(t0), x(t1), x(t2), . . . ).
Then:
(1) For mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[F|Zg⃗ ,∞]( ⃗ξ) = ∫
C[0,T]

F(x − P∞,β(x) + Ξ(∞, ⃗ξ)) dwα,β;φ0 (x), (3.4)

where mZg⃗ ,∞ is the measure onB(ℝℵ0 ) induced by Zg⃗ ,∞.
(2) For mX∞ a.e. ⃗ξ ∈ ℝℵ0 ,

GE[F|X∞]( ⃗ξ) = ∫
C[0,T]

F(x − P∞,β(x) + P∞,β( ⃗ξ)) dwα,β;φ0 (x). (3.5)

Proof. For s ∈ [0, T), we have xg⃗ ,∞,β(s) = P∞,β(x)(s) and ⃗ξg⃗ ,∞,β(s) = Ξ(∞, ⃗ξ)(s) for wα,β;φ a.e. x ∈ C[0, T] by
[4, Corollary 3.5]. If s = T , then

xg⃗ ,∞,β(T) = z0(x) +
∞
∑
l=1
cl(T)Iα,β(gl)(x)

= x(0) + lim
n→∞

n
∑
l=1

1
β(tl) − β(tl−1)

T

∫
0

χ[tl−1 ,tl](u) dβ(u)
T

∫
0

χ[tl−1 ,tl](u) dx(u)

= x(0) + lim
n→∞

n
∑
l=1
[x(tl) − x(tl−1)]

= lim
n→∞

x(tn) = x(T) = P∞,β(x)(T)

and for mZg⃗ ,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , we obtain

⃗ξg⃗ ,∞,β(T) = ξ0 +
∞
∑
l=1
ξlcj(T)

= ξ0 +
∞
∑
l=1

ξl
√β(tl) − β(tl−1)

T

∫
0

χ[tl−1 ,tl](u) dβ(u)

= ξ0 +
∞
∑
l=1
ξl√β(tl) − β(tl−1) = Ξ(∞, ⃗ξ)(T)

so that xg⃗ ,∞,β = P∞,β(x) and ⃗ξg⃗ ,∞,β = Ξ(∞, ⃗ξ). By (P1) and Theorem 3.7, we get (3.4).
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To prove (3.5), define ϕ : ℝℵ0 → ℝℵ0 by

ϕ( ⃗ξ) = (ξ0 ,
ξ1 − ξ0
√β(t1) − β(t0)

, ξ2 − ξ1
√β(t2) − β(t1)

, . . . ) (3.6)

for ⃗ξ = (ξ0 , ξ1 , ξ2 , . . . ) ∈ ℝℵ0 , which is a bijective, bicontinuous function. By [4, Corollary 3.6], it suffices to prove
that Ξ(∞, ϕ( ⃗ξ))(T) = P∞,β( ⃗ξ)(T). Indeed, we have

Ξ(∞, ϕ( ⃗ξ))(T) = ξ0 + limn→∞

n
∑
l=1
√β(tl) − β(tl−1)

ξl − ξl−1
√β(tl) − β(tl−1)

= lim
n→∞

ξn = ξT = P∞,β( ⃗ξ)(T),

as desired.

Remark 3.10. Since ⃗ξg⃗ ,∞,β(T) is the evaluation of xg⃗ ,∞,β(T) for zj(x) = ξj , j = 0, 1, 2, . . . , it follows that the
series ∑∞l=1 ξl√β(tl) − β(tl−1) in the proof of Theorem 3.9 converges for mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 . Similarly, because
Ξ(∞, ϕ( ⃗ξ))(T) is the evaluation of xg⃗ ,∞,β(T) for x(tj) = ξj , j = 0, 1, 2, . . . , the sequence ⃗ξ in (3.6) converges for
mX∞ a.e. ⃗ξ ∈ ℝℵ0 . Hence, such a ⃗ξ for which GE[F|X∞]( ⃗ξ) exists, belongs toAT .

4 Applications to the cylinder-type functions

In this section, we apply the simple formulas given in the previous section to obtain the Radon–Nikodymderiva-
tives of various functions, in particular, special types of the Feynman–Kac functional.

Since P ⃗e,∞,β is an orthogonal projection, it is self-adjoint, that is, P2
⃗e,∞,β = P ⃗e,∞,β and P∗⃗e,∞,β = P ⃗e,∞,β , we

have the following lemma.

Lemma 4.1. For v ∈ L20,β[0, T], we have

⟨v,P ⃗e,∞,βv⟩0,β = ‖P ⃗e,∞,βv‖20,β =
∞
∑
j=1
⟨v, ej⟩20,β

and
‖P⊥⃗e,∞,βv‖

2
0,β = ‖v − P ⃗e,∞,βv‖

2
0,β = ‖v‖

2
0,β − ‖P ⃗e,∞,βv‖

2
0,β .

Lemma 4.2. For v ∈ L2α,β[0, T], we have

Iα,β(v)(Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x)) = Iα,β(P
⊥
⃗e,∞,βv)(x)

= Iα,β(P⊥⃗e,∞,βv)(Iα,β(P
⊥
⃗e,∞,βχ[0, ⋅ ])(x))

for wα,β;φ a.e. x ∈ C[0, T].

Proof. Using a similar process as in the proof of [4, Lemma 5.1], we can prove the first equality. SinceP⊥⃗e,∞,β is an
orthogonal projection, we have (P⊥⃗e,∞,β)

2 = P⊥⃗e,∞,β . Now, replacing v by P
⊥
⃗e,∞,βv in the first equality, we obtain

the second equality, which completes the proof.

Theorem 4.3. For v ∈ L2α,β[0, T], we have

Iα,β(v)(Iα,β(P ⃗e,∞,βχ[0, ⋅ ])(x)) = Iα,β(P ⃗e,∞,βv)(x)
= Iα,β(P ⃗e,∞,βv)(Iα,β(P ⃗e,∞,βχ[0, ⋅ ])(x))

for wα,β;φ a.e. x ∈ C[0, T].

Proof. By Theorem 2.1 and the first equality of Lemma 4.2,

Iα,β(v)(Iα,β(P ⃗e,∞,βχ[0, ⋅ ])(x)) = Iα,β(v)(Iα,β(χ[0, ⋅ ] − P⊥⃗e,∞,βχ[0, ⋅ ])(x))

= Iα,β(v)(x − x(0)) − Iα,β(v)(P⊥⃗e,∞,βχ[0, ⋅ ])(x))

= Iα,β(v)(x) − Iα,β(P⊥⃗e,∞,βv)(x) = Iα,β(P ⃗e,∞,βv)(x),
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which proves the first equality of the theorem. Since P2
⃗e,∞,β = P ⃗e,∞,β , the second equality immediately follows

from the first equality of the theorem, completing the proof.

Remark 4.4. Replacing P⊥⃗e,n,β by P ⃗e,∞,β in the proof of [4, Lemma 5.1], with aid of Lemma 4.1, we can also prove
the first equality of Theorem 4.3.

Example 4.5. Let v ∈ L2α,β[0, T]. If v ̸∈ V
⊥, then by Theorems 2.2, 2.3 and 4.3, we have

∫
C[0,T]

exp{Iα,β(v)(Iα,β(P ⃗e,∞,βχ[0, ⋅ ])(x))} dwα,β;φ(x)

= [
φ(ℝ)2

2π‖P ⃗e,∞,βv‖20,β
]

1
2
∫
ℝ

exp{u −
[u − Iα,β(P ⃗e,∞,βv)(α)]2

2‖P ⃗e,∞,βv‖20,β
} dmL(u)

= φ(ℝ) exp{12 ‖P ⃗e,∞,βv‖
2
0,β + Iα,β(P ⃗e,∞,βv)(α)}.

Note that the result holds for v ∈ V⊥.

Example 4.6. Let v ∈ L2α,β[0, T], let f : ℝ → ℂ be Borel measurable and let F(x) = f(Iα,β(v)(x)) for wα,β;φ a.e.
x ∈ C[0, T]. Suppose that f is mL-integrable. By Theorem 3.7 and Lemma 4.2, for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[F|Z ⃗e,∞]( ⃗ξ) = ∫
C[0,T]

f(Iα,β(v)(Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x)) + Iα,β(v)( ⃗ξ ⃗e,∞,β)) dwα,β;φ0 (x)

= ∫
C[0,T]

f(Iα,β(P⊥⃗e,∞,βv)(x) + Iα,β(v)( ⃗ξ ⃗e,∞,β)) dwα,β;φ0 (x).

If v ̸∈ V , then, by Theorems 2.2 and 2.3,

GE[F|Z ⃗e,∞]( ⃗ξ) = [
1

2π‖P⊥⃗e,∞,βv‖
2
0,β
]

1
2
∫
ℝ

f(u) exp{−
[u − Iα,β(P⊥⃗e,∞,βv)(α) − Iα,β(v)( ⃗ξ ⃗e,∞,β)]

2

2‖P⊥⃗e,∞,βv‖
2
0,β

} dmL(u).

Example 4.7. Let {v1 , . . . , vr} be a subset of L2α,β[0, T]. Let f : ℝ
r → ℂ be Borel measurable and let

F(x) = f(Iα,β(v1)(x), . . . , Iα,β(vr)(x))

for wα,β;φ a.e. x ∈ C[0, T]. Suppose that f is mr
L-integrable. Then for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[F|Z ⃗e,∞]( ⃗ξ) = ∫
C[0,T]

f(Iα,β(P⊥⃗e,∞,βv1)(x) + Iα,β(v1)( ⃗ξ ⃗e,∞,β), . . . , Iα,β(P
⊥
⃗e,∞,βvr)(x) + Iα,β(vr)( ⃗ξ ⃗e,∞,β)) dwα,β;φ0 (x)

by Theorem 3.7 and Lemma 4.2. If vl ∈ V for l = 1, . . . , r, then

GE[F|Z ⃗e,∞]( ⃗ξ) = f(Iα,β(v1)( ⃗ξ ⃗e,∞,β), . . . , Iα,β(vr)( ⃗ξ ⃗e,∞,β))

= f(
∞
∑
j=1
⟨v1 , ej⟩0,βξj , . . . ,

∞
∑
j=1
⟨vr , ej⟩0,βξj)

for ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 . In particular, if vl = ejl for l = 1, . . . , r, then

GE[F|Z ⃗e,∞]( ⃗ξ) = f(ξj1 , . . . , ξjr ).

If vl ∈ V⊥ for l = 1, . . . , r and they are orthonormal in L20,β[0, T], then for u⃗ = (u1 , . . . , ur) we have

GE[F|Z ⃗e,∞]( ⃗ξ) = ∫
C[0,T]

f(Iα,β(v1)(x) + Iα,β(v1)( ⃗ξ ⃗e,∞,β), . . . , Iα,β(vr)(x) + Iα,β(vr)( ⃗ξ ⃗e,∞,β)) dwα,β;φ0 (x)

= [
1
2π ]

r
2
∫
ℝr

f(u⃗) exp{−12

r
∑
j=1
[uj − Iα,β(vj)(α)]2} dmr

L(u⃗)

by Theorems 2.2, 2.3 and Lemma 4.2, since ⟨vl , ej⟩0,β = 0 for l = 1, . . . , r, j = 1, 2, . . . . Note that since∑∞j=1⟨v, ej⟩0,βξj
(v ∈ L20,β[0, T]) is the evaluation of ∑

∞
j=1⟨v, ej⟩0,βzj(x) for zj(x) = ξj(j = 1, 2, . . . ), the series ∑

∞
j=1⟨v, ej⟩0,βξj con-

verges for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 by Theorem 3.3.
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Example 4.8. Let v ∈ L2α,β[0, T], let f : ℝ → ℂ be Borel measurable and let

F(x) = f(Iα,β(v)(Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x)))

for wα,β;φ a.e. x ∈ C[0, T]. Suppose that f is mL-integrable. Then for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , by Theorem 3.7 and
Lemma 4.2, we have

GE[F|Z ⃗e,∞]( ⃗ξ) = GE[f(Iα,β(P⊥⃗e,∞,βv)( ⋅ ))|Z ⃗e,∞]( ⃗ξ)

= ∫
C[0,T]

f(Iα,β(P⊥⃗e,∞,βv)(Iα,β(P
⊥
⃗e,∞,βχ[0, ⋅ ])(x)) + Iα,β(P

⊥
⃗e,∞,βv)( ⃗ξ ⃗e,∞,β)) dwα,β;φ0 (x)

= ∫
C[0,T]

f(Iα,β(P⊥⃗e,∞,βv)(x)) dwα,β;φ0 (x),

since Iα,β(P⊥⃗e,∞,βv)( ⃗ξ ⃗e,∞,β) = ∑
∞
j=1⟨P
⊥
⃗e,∞,βv, ej⟩0,βξj = 0, where ⃗ξ = (ξ0 , ξ1 , . . .). If v ̸∈ V , then, by Theorem 2.3,

GE[F|Z ⃗e,∞]( ⃗ξ) = [
1

2π‖P⊥⃗e,∞,βv‖
2
0,β
]

1
2
∫
ℝ

f(u) exp{−
[u − Iα,β(P⊥⃗e,∞,βv)(α)]

2

2‖P⊥⃗e,∞,βv‖
2
0,β
} dmL(u).

Moreover, if v ∈ V , then GE[F|Z ⃗e,∞]( ⃗ξ) = f(0) for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 .

Remark 4.9. Replacing ej and ⃗ξ ⃗e,∞,β by gj and Ξ(∞, ξ), respectively, in Examples 4.6, 4.7 and 4.8, we can
obtain GE[F|Zg⃗ ,∞]( ⃗ξ) from each expression of GE[F|Z ⃗e,∞]( ⃗ξ) by Theorem 3.9. In particular, GE[F|X∞]( ⃗ξ) can
be obtained from the expression of GE[F|Zg⃗ ,∞](ϕ( ⃗ξ)), where ϕ is given by (3.6). In this case, ⃗ξ ⃗e,∞,β is replaced
by P∞,β( ⃗ξ).

Theorem 4.10. Let v ∈ L2α,β[0, T] and let F(x) = exp{⟨v, x⟩0,β} for x ∈ C[0, T]. Suppose that

∫
ℝ

exp{u
T

∫
0

v(s) dβ(s)} dφ(u) < ∞.

Then F is wα,β;φ-integrable and for mZ ⃗e,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , we have

GE[F|Z ⃗e,∞]( ⃗ξ) = exp{
1
2[‖hv‖

2
0,β −
∞
∑
j=1
⟨v, cj⟩20,β] +

∞
∑
j=1
⟨v, cj⟩0,β[ξj − zj(α)] + Iα,β(hv)(α) + ξ0hv(0)},

where hv(u) = ⟨v, χ[u,T]⟩0,β for u ∈ [0, T].

Proof. For wα,β;φ a.e. x ∈ C[0, T], by the integration by parts formula, we get

⟨v, x⟩0,β = hv(0)x(0) + Iα,β(hv)(x).

Since

Iα,β(hv)(x) =
T

∫
0

hv(u) dx(u)

by Theorem 2.1, we can show that z0 and Iα,β(hv) are independentwith respect towα,β;φ0 , using the same process
as in the proof of Theorem 3.5. From this fact we get

∫
C[0,T]

F(x) dwα,β;φ(x) = φ(ℝ)[ ∫
C[0,T]

exp{hv(0)x(0)} dwα,β;φ0 (x)][ ∫
C[0,T]

exp{Iα,β(hv)(x)} dwα,β;φ0 (x)]

= [
1

2π‖hv‖20,β
]

1
2
∫
ℝ2

exp{hv(0)u0 + u −
[u − Iα,β(hv)(α)]2

2‖hv‖20,β
} dmL(u) dφ(u0)

= exp{12 ‖hv‖
2
0,β + Iα,β(hv)(α)}∫

ℝ

exp{hv(0)u0} dφ(u0) < ∞
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if ‖hv‖0,β ̸= 0. If ‖hv‖0,β = 0, then ‖hv‖α,β = 0 so that F is wα,β;φ-integrable. By Theorem 3.7, Lemma 4.2 and
Example 4.6, for mZ ⃗e,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , we have

GE[F|Z ⃗e,∞]( ⃗ξ) = ∫
C[0,T]

F(Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x) + ⃗ξ ⃗e,∞,β) dwα,β;φ0 (x)

= ∫
C[0,T]

exp{hv(0)[Iα,β(P⊥⃗e,∞,βχ[0,0])(x) + ⃗ξ ⃗e,∞,β(0)]

+ Iα,β(hv)(Iα,β(P⊥⃗e,∞,βχ[0, ⋅ ])(x)) + Iα,β(hv)( ⃗ξ ⃗e,∞,β)} dwα,β;φ0 (x)

= exp{12 ‖P
⊥
⃗e,∞,βhv‖

2
0,β + Iα,β(P

⊥
⃗e,∞,βhv)(α) + ξ0hv(0) + Iα,β(hv)( ⃗ξ ⃗e,∞,β)}.

By the integration by parts formula,

⟨hv , ej⟩0,β = cj(u)hv(u)|T0 +
T

∫
0

cj(u)v(u) dβ(u) = ⟨cj , v⟩0,β .

Therefore, by (3.2) and Lemma 4.1, we obtain

‖P⊥⃗e,∞,βhv‖
2
0,β = ‖hv‖

2
0,β −
∞
∑
j=1
⟨v, cj⟩20,β , Iα,β(hv)( ⃗ξ ⃗e,∞,β) =

∞
∑
j=1
⟨v, cj⟩0,βξj

and
Iα,β(P⊥⃗e,∞,βhv)(α) = Iα,β(hv)(α) −

∞
∑
j=1
⟨v, cj⟩0,βzj(α).

Consequently, we have

GE[F|Z ⃗e,∞]( ⃗ξ) = exp{
1
2[‖hv‖

2
0,β −
∞
∑
j=1
⟨v, cj⟩20,β] +

∞
∑
j=1
⟨v, cj⟩0,β[ξj − zj(α)] + Iα,β(hv)(α) + ξ0hv(0)},

completing the proof.

Corollary 4.11. Under the assumptions as in Theorem4.10, for mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 , GE[F|Zg⃗ ,∞]( ⃗ξ) can be expressed
by the right-hand side of the equality in Theorem 4.10 with

zj(α) =
α(tj) − α(tj−1)

√β(tj) − β(tj−1)

and

⟨v, cj⟩0,β =
1

√β(tj) − β(tj−1)

tj

∫
tj−1

v(s)[β(s) − β(tj−1)] dβ(s) + hv(tj)√β(tj) − β(tj−1).

In particular, for mX∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , GE[F|X∞]( ⃗ξ) is given by the expression of GE[F|Zg⃗ ,∞]( ⃗ξ) replac-
ing ξj by

ξj−ξj−1
√β(tj)−β(tj−1)

.

Proof. It is not difficult to show that for u ∈ [0, T],

cj(u) =
β(u) − β(tj−1)

√β(tj) − β(tj−1)
χ[tj−1 ,tj)(u) + χ[tj ,T](u)√β(tj) − β(tj−1).

Since
zj(α) =

α(tj) − α(tj−1)

√β(tj) − β(tj−1)
,

the first result immediately follows from Theorem 4.10. The second result follows from the fact that

GE[F|X∞]( ⃗ξ) = GE[F|Zg⃗ ,∞](ϕ( ⃗ξ)),

where ϕ is given by (3.6).
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Letting v ≡ 1 in Theorem 4.10, we have the following corollary which is one of our main results.

Corollary 4.12. Suppose that ∫ℝ exp{u[β(T) − β(0)]} dφ(u) < ∞. For ξ0 ∈ ℝ, let

K(ξ0) = exp{
1
6 [β(T) − β(0)]

3 + β(T)[α(T) − α(0)] − Iα,β(β)(α) + ξ0[β(T) − β(0)]}.

Then, for mZ ⃗e,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , we have

GE[exp{
T

∫
0

x(u) dβ(u)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Z ⃗e,∞]( ⃗ξ) = K(ξ0) exp{−

1
2

∞
∑
j=1
[
T

∫
0

cj(u) dβ(u)]
2

+
∞
∑
j=1
[ξj − zj(α)]

T

∫
0

cj(u) dβ(u)}.

Proof. Let v ≡ 1 in Theorem 4.10. Since hv(u) = ∫
T
u 1 dβ(u) = β(T) − β(u), we have

‖hv‖20,β =
T

∫
0

[β(T) − β(u)]2 dβ(u) = 13 [β(T) − β(0)]
3

and

Iα,β(hv)(α) =
T

∫
0

[β(T) − β(u)] dα(u) = β(T)[α(T) − α(0)] − Iα,β(β)(α).

Moreover, we have hv(0) = β(T) − β(0) and ⟨v, cj⟩0,β = ∫
T
0 cj(u) dβ(u). Now, the corollary follows from Theo-

rem 4.10.

Corollary 4.13. Under the assumptions as in Corollary 4.12, for mZg⃗ ,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , we have

GE[exp{
T

∫
0

x(u) dβ(u)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Zg⃗ ,∞]( ⃗ξ) = K(ξ0) exp{−

1
8

∞
∑
j=1
[β(tj) − β(tj−1)][2β(T) − β(tj) − β(tj−1)]2

+
1
2

∞
∑
j=1
[ξj − zj(α)]√β(tj) − β(tj−1)[2β(T) − β(tj) − β(tj−1)]}.

In particular, GE[F|X∞]( ⃗ξ) is given by the right-hand side of the above equality replacing ξj by
ξj−ξj−1

√β(tj)−β(tj−1)
.

Proof. By Corollary 4.11,
T

∫
0

cj(u) dβ(u) =
[β(tj) − β(tj−1)]2

2√β(tj) − β(tj−1)
+ √β(tj) − β(tj−1)[β(T) − β(tj)]

=
1
2
√β(tj) − β(tj−1)[2β(T) − β(tj) − β(tj−1)].

Now, the validity of the corollary follows from Theorem 3.9, Corollaries 4.11 and 4.12.

Remark 4.14. For the conditioning Z ⃗e,∞, the Radon–Nikodym derivatives of the general type of cylinder
functions and the functions in a Banach algebra given in [4] can be expressed by similar forms in [4] with
(e1 , e2 , . . . , en) replaced by (e1 , e2 , . . . ).

5 Applications to the time integrals

In this section, we apply the simple formulas given in Section 3 to various functions containing the time integral.

Example 5.1. For m ∈ ℕ and t ∈ [0, T], let Ft(x) = [x(t)]m for x ∈ C[0, T], and suppose that ∫ℝ |u|
m dφ(u) < ∞.

By Theorems 2.1, 2.2, 3.7 and [5, Theorem 7], for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[Ft|Z ⃗e,∞]( ⃗ξ) =
[ m2 ]

∑
k=0

m!
2kk!(m − 2k)!

[ ⃗ξ ⃗e,∞,β(t) + Iα,β(P⊥⃗e,∞,βχ[0,t])(α)]
m−2k‖P⊥⃗e,∞,βχ[0,t]‖

2k
0,β , (5.1)
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where [ ⋅ ] denotes the greatest integer function. In addition, by (P1), (P2) and Theorem 3.9,

GE[Ft|Zg⃗ ,∞]( ⃗ξ) =
[ m2 ]

∑
k=0

m!
2kk!(m − 2k)!

[Ξ(∞, ⃗ξ)(t) + α(t) − P∞,β(α)(t)]m−2k[Φj(t, t)]k ≡ G1(t, ⃗ξ) (5.2)

for t ∈ [tj−1 , tj) and for mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 . Furthermore, if t = T , then ‖P⊥g⃗ ,∞,βχ[0,T]‖
2
0,β = 0 since 1 = χ[0,T] ∈ V

which is generated by the gj . Consequently, we have

GE[FT |Zg⃗ ,∞]( ⃗ξ) = [ξ0 +
∞
∑
l=1
ξl√β(tl) − β(tl−1)]

m

for mZg⃗ ,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 . In particular, by Theorem 3.9, we have

GE[FT |X∞]( ⃗ξ) = ξmT

for mX∞ a.e. ⃗ξ ∈ ℝℵ0 , where limn→∞ ξn = ξT .

Now, we can obtain the following example by Example 5.1.

Example 5.2. For m ∈ ℕ, let F(x) = ∫T0 [x(t)]
mdλ(t) for x ∈ C[0, T], where λ is a finite complex measure on the

Borel class of [0, T], and suppose that ∫ℝ |u|
mdφ(u) < ∞. Then for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , GE[F|Z ⃗e,∞]( ⃗ξ) is given by

GE[F|Z ⃗e,∞]( ⃗ξ) =
T

∫
0

GE[Ft|Z ⃗e,∞]( ⃗ξ) dλ(t),

where GE[Ft|Z ⃗e,∞]( ⃗ξ) is expressed by (5.1). In addition, for mZg⃗ ,∞ a.e. ⃗ξ = (ξ0 , ξ1 , . . . ) ∈ ℝℵ0 , we have

GE[F|Zg⃗ ,∞]( ⃗ξ) = ξmT λ({T}) +
∞
∑
j=0
[Ξ(∞, ⃗ξ)(tj)]mλ({tj}) +

∞
∑
j=1
∫
(tj−1 ,tj)

G1(t, ⃗ξ) dλ(t), (5.3)

where G1(t, ⃗ξ) is given by the right-hand side of (5.2). We note that GE[F|X∞]( ⃗ξ) can be obtained from (5.3) by
Theorem 3.9 replacing Ξ(∞, ⃗ξ)(tj) by ξj . In particular, if α(t) = P∞,β(α)(t) and dλ(t) = dβ(t) for t ∈ [0, T], then,
by Theorem 3.9 and [3, Corollary 3.9], we have

GE[F|Zg⃗ ,∞]( ⃗ξ) =
∞
∑
j=1

[ m2 ]

∑
k=0

m−2k
∑
l=0

m!(l + k)![β(tj) − β(tj−1)]
l
2+k+1[Ξ(∞, ⃗ξ)(tj−1)]m−2k−lξ lj

2k l!(m − 2k − l)!(l + 2k + 1)!
.

Under the conditions stated above,GE[F|X∞]( ⃗ξ) is given by the above equality replacing l
2 + k + 1, Ξ(∞, ⃗ξ)(tj−1),

ξj by k + 1, ξj−1 and ξj − ξj−1, respectively.

Example 5.3. Let s1 , s2 ∈ [0, T] and let G(s1 , s2 , x) = x(s1)x(s2) for x ∈ C[0, T]. Then G(s1 , s2 , ⋅ ) is wα,β;φ-inte-
grable by [5, Theorem 5] so that for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[G(s1 , s2 , ⋅ )|Z ⃗e,∞]( ⃗ξ) = ∫
C[0,T]

[Iα,β(P⊥⃗e,∞,βχ[0,s1])(x)+ ⃗ξ ⃗e,∞,β(s1)][Iα,β(P
⊥
⃗e,∞,βχ[0,s2])(x)+ ⃗ξ ⃗e,∞,β(s2)] dwα,β;φ0 (x)

= ⟨P⊥⃗e,∞,βχ[0,s1] ,P
⊥
⃗e,∞,βχ[0,s2]⟩0,β + [ ⃗ξ ⃗e,∞,β(s1)

+ Iα,β(P⊥⃗e,∞,βχ[0,s1])(α)][ ⃗ξ ⃗e,∞,β(s2) + Iα,β(P
⊥
⃗e,∞,βχ[0,s2])(α)]

by Theorems 2.2 and 3.7.

Lemma 5.4. Let s1 , s2 ∈ [0, T]. Then we have the following:
(1) If s1 ∈ [tj−1 , tj] ∪ {T}, s2 ∈ [tk−1 , tk] ∪ {T} for 1 ≤ j < k, then

⟨P⊥g⃗ ,∞,βχ[0,s1] ,P
⊥
g⃗ ,∞,βχ[0,s2]⟩0,β = 0.

(2) If s1 , s2 ∈ [tj−1 , tj], then
⟨P⊥g⃗ ,∞,βχ[0,s1] ,P

⊥
g⃗ ,∞,βχ[0,s2]⟩0,β = Φj(s2 , s1).
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Proof. If s1 ∈ [tj−1 , tj] and s2 ∈ [tk−1 , tk] ∪ {T}, the proof of (1) is similar to the proof of [4, (1) in Lemma 4.6] with
aid of (P2). Since χ[0,T] ∈ V , which is induced by the gj , we have P⊥g⃗ ,∞,βχ[0,T] = 0 so we have

⟨P⊥g⃗ ,∞,βχ[0,T] ,P
⊥
g⃗ ,∞,βχ[0,T]⟩0,β = ‖P

⊥
g⃗ ,∞,βχ[0,T]‖

2
0,β = 0

if s1 = s2 = T , completing the proof of (1). The proof of (2) is similar to the proof of [4, (2) in Lemma 4.6].

Example 5.5. Let s1 , s2 ∈ [0, T] and let G(s1 , s2 , x) = x(s1)x(s2) for x ∈ C[0, T]. Then, by Theorem 3.9, Example 5.3
and Lemma 5.4, we have the following:
(1) If s1 ∈ [tj−1 , tj] ∪ {T}, s2 ∈ [tk−1 , tk] ∪ {T} for 1 ≤ j < k, then, for mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 ,

GE[G(s1 , s2 , ⋅ )|Zg⃗ ,∞]( ⃗ξ) = [Ξ(∞, ⃗ξ)(s1) + α(s1) − P∞,β(α)(s1)][Ξ(∞, ⃗ξ)(s2) + α(s2) − P∞,β(α)(s2)].

In particular, GE[G(s1 , s2 , ⋅ )|X∞]( ⃗ξ) is given by the above equality replacing Ξ(∞, ⃗ξ) by P∞,β( ⃗ξ).
(2) If s1 , s2 ∈ [tj−1 , tj], then for mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 ,

GE[G(s1 , s2 , ⋅ )|Zg⃗ ,∞]( ⃗ξ) = [Ξ(∞, ⃗ξ)(s1)+ α(s1)− P∞,β(α)(s1)][Ξ(∞, ⃗ξ)(s2) + α(s2) − P∞,β(α)(s2)] +Φj(s2 , s1).

In particular, GE[G(s1 , s2 , ⋅ )|X∞]( ⃗ξ) is given by the above equality replacing Ξ(∞, ⃗ξ) by P∞,β( ⃗ξ).

We now have the following theorem from [3, Theorem 3.3], based on Theorem 3.7 and Example 5.3.

Theorem 5.6. For x ∈ C[0, T], let

G3(x) = [
T

∫
0

x(t) dλ(t)]
2

,

where λ is a finite complex measure on the Borel class of [0, T]. Suppose that

T

∫
0

[α(t)]2 d|λ|(t) < ∞ and ∫
ℝ

u2 dφ(u) < ∞.

Then, for mZ ⃗e,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[G3|Z ⃗e,∞]( ⃗ξ) =
T

∫
0

T

∫
0

⟨P⊥⃗e,∞,βχ[0,s1] ,P
⊥
⃗e,∞,βχ[0,s2]⟩0,β dλ

2(s1 , s2) + [
T

∫
0

[ ⃗ξ ⃗e,∞,β(s) + Iα,β(P⊥⃗e,∞,βχ[0,s])(α)] dλ(s)]
2

.

Using the same method as in the proof of [3, Theorem 3.3] with aid of Lemma 5.4, Example 5.5 and Theorem 5.6,
we can prove the following corollary.

Corollary 5.7. Let the assumptions be as in Theorem 5.6. Then, for mZg⃗ ,∞ a.e. ⃗ξ ∈ ℝℵ0 , we have

GE[G3|Zg⃗ ,∞]( ⃗ξ) =
T

∫
0

T

∫
0

Λ(s1 ∨ s2 , s1 ∧ s2) dλ2(s1 , s2) + [
T

∫
0

[Ξ(∞, ⃗ξ)(s) + α(s) − P∞,β(α)(s)] dλ(s)]
2

,

where
Λ(s, t) =

∞
∑
j=1
χ[tj−1 ,tj]2 (s, t)Φj(s, t)

for (s, t) ∈ [0, T]2, s1 ∨ s2 = max{s1 , s2} and s1 ∧ s2 = min{s1 , s2}. In particular, GE[G3|X∞]( ⃗ξ) is given by the
above equality replacing Ξ(∞, ⃗ξ) by P∞,β( ⃗ξ).

Remark 5.8. We note that the range of the conditioning function Z ⃗e,∞ in this paper is infinite dimensional
while the conditioning function Z ⃗e,n in [4] is vector-valued but its range is finite dimensional. Although the
expressions of the formulas in Theorem 3.7 and in other results are similar to those in [4], their proofs in this
paper are different from the proofs in [4]. We also note that the topology onℝℵ0 is the product topology, so that
the Borel σ-algebraB(ℝℵ0 ) is induced by this topology.
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