Home On singular integral operators along surfaces
Article
Licensed
Unlicensed Requires Authentication

On singular integral operators along surfaces

  • Ahmad Al-Salman ORCID logo EMAIL logo and Abdulla M. Jarrah
Published/Copyright: March 28, 2025
Become an author with De Gruyter Brill

Abstract

Suppose that Ξ© ∈ L 1 ⁒ ( π•Š n - 1 Γ— π•Š n - 1 ) is a homogeneous function of degree zero in the sense

Ξ© ⁒ ( t ⁒ x , s ⁒ y ) = Ξ© ⁒ ( x , y )   for anyΒ  ⁒ t , s > 0

satisfying the cancellation property

∫ π•Š n - 1 Ξ© ⁒ ( u , β‹… ) ⁒ 𝑑 Οƒ n ⁒ ( u ) = ∫ π•Š m - 1 Ξ© ⁒ ( β‹… , v ) ⁒ 𝑑 Οƒ m ⁒ ( v ) = 0 .

Under suitable growth conditions on the mappings Ο• 1 , Ο• 2 : ( 0 , ∞ ) β†’ ℝ , we prove that the singular integral operator

T Ξ© ( Ο• 1 ↫ Ο• 2 ) ⁒ ( f ) ⁒ ( x , y ) = p.v. ⁒ ∫ ℝ n Γ— ℝ m f ⁒ ( ( x - Ο• 1 ⁒ ( | v | ) ⁒ u , y - Ο• 2 ⁒ ( | u | ) ⁒ v ) ) ⁒ Ξ© ⁒ ( u , v ) | u | n ⁒ | v | m ⁒ 𝑑 u ⁒ 𝑑 v

is bounded on L p ⁒ ( ℝ n Γ— ℝ m ) , 1 < p < ∞ , provided the kernel function Ξ© satisfies weak size conditions. Furthermore, we prove the boundedness of the related truncated maximal singular integral operators.

MSC 2020: 42B20; 42B15; 42B25

References

[1] H. Al-Qassem and Y. Pan, L p boundedness for singular integrals with rough kernels on product domains, Hokkaido Math. J. 31 (2002), no. 3, 555–613. Search in Google Scholar

[2] A. Al-Salman, Flat singular integrals in product domains, Filomat 18 (2004), 1–13. Search in Google Scholar

[3] A. Al-Salman, Marcinkiewicz integrals along subvarieties on product domains, Int. J. Math. Math. Sci. 2004 (2004), no. 69–72, 4001–4011. Search in Google Scholar

[4] A. Al-Salman, Rough Marcinkiewicz integrals on product spaces, Int. Math. Forum 2 (2007), no. 21–24, 1119–1128. Search in Google Scholar

[5] A. Al-Salman, Singular integral operators on product domains along twisted surfaces, Front. Math. China 16 (2021), no. 1, 13–28. Search in Google Scholar

[6] A. Al-Salman and A. A. Al-Jarrah, On rough singular integrals along surfaces on product domains, Turkish J. Math. 29 (2005), no. 3, 275–285. Search in Google Scholar

[7] A. Al-Salman, H. Al-Qassem and Y. Pan, Singular integrals on product domains, Indiana Univ. Math. J. 55 (2006), no. 1, 369–387. Search in Google Scholar

[8] A. Al-Salman and Y. Pan, Singular integrals with rough kernels, Canad. Math. Bull. 47 (2004), no. 1, 3–11. Search in Google Scholar

[9] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 185–206. Search in Google Scholar

[10] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. Search in Google Scholar

[11] D. Fan, K. Guo and Y. Pan, Singular integrals with rough kernels on product spaces, Hokkaido Math. J. 28 (1999), no. 3, 435–460. Search in Google Scholar

[12] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. (N. S.) 4 (1981), no. 2, 195–201. Search in Google Scholar

[13] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143. Search in Google Scholar

[14] L. Grafakos and A. Stefanov, L p bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), no. 2, 455–469. Search in Google Scholar

[15] J. E. Lewis, R. Selvaggi and I. Sisto, Singular integral operators on C 1 manifolds, Trans. Amer. Math. Soc. 340 (1993), no. 1, 293–308. Search in Google Scholar

[16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. Search in Google Scholar

[17] R. T. Seeley, Singular integrals on compact manifolds, Amer. J. Math. 81 (1959), 658–690. Search in Google Scholar

[18] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University, Princeton, 1993. Search in Google Scholar

Received: 2024-09-23
Accepted: 2024-12-20
Published Online: 2025-03-28

Β© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2024/html
Scroll to top button