Home Traces of Muckenhoupt weighted function spaces in case of distant singularities
Article
Licensed
Unlicensed Requires Authentication

Traces of Muckenhoupt weighted function spaces in case of distant singularities

  • Dorothee D. Haroske EMAIL logo and Therese Mieth
Published/Copyright: December 14, 2016
Become an author with De Gruyter Brill

Abstract

We study Besov and Triebel–Lizorkin spaces with Muckenhoupt weights which have their singularities at some distance from the set where the trace is taken. We exemplify our results for special weights of type w(x)|x|α. The approach is based on atomic decomposition results.

MSC 2010: 46E35; 42B35

References

[1] H. Abels, M. Krbec and K. Schumacher, On the trace space of a Sobolev space with a radial weight, J. Funct. Spaces Appl. 6 (2008), no. 3, 259–276. 10.1155/2008/986720Search in Google Scholar

[2] K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19–31. 10.4064/sm-69-1-19-31Search in Google Scholar

[3] M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math. Z. 250 (2005), no. 3, 539–571. 10.1007/s00209-005-0765-1Search in Google Scholar

[4] M. Bownik and K. P. Ho, Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1469–1510. 10.1090/S0002-9947-05-03660-3Search in Google Scholar

[5] H.-Q. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), no. 3, 581–605. 10.32917/hmj/1206133649Search in Google Scholar

[6] H.-Q. Bui, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. Funct. Anal. 55 (1984), no. 1, 39–62. 10.1016/0022-1236(84)90017-XSearch in Google Scholar

[7] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces, Studia Math. 119 (1996), no. 3, 219–246. Search in Google Scholar

[8] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case q<1, J. Fourier Anal. Appl. 3 (1997), no. Special Issue, 837–846. 10.1007/BF02656489Search in Google Scholar

[9] V. I. Burenkov and M. L. Gol’dman, Extension of functions from Lp (in Russian), Trudy Mat. Inst. Steklov. 150 (1979), 31–51, 321. Search in Google Scholar

[10] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cambridge University Press, Cambridge, 1986. Search in Google Scholar

[11] R. Farwig and H. Sohr, Weighted Lq-theory for the Stokes resolvent in exterior domains, J. Math. Soc. Japan 49 (1997), no. 2, 251–288. 10.2969/jmsj/04920251Search in Google Scholar

[12] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. 10.1515/9781400827268.385Search in Google Scholar

[13] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. 10.1016/0022-1236(90)90137-ASearch in Google Scholar

[14] M. Frazier and S. Roudenko, Matrix-weighted Besov spaces and conditions of Ap type for 0<p1, Indiana Univ. Math. J. 53 (2004), no. 5, 1225–1254. 10.1512/iumj.2004.53.2483Search in Google Scholar

[15] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985. Search in Google Scholar

[16] M. L. Gol’dman, Extension of functions in Lp(m) to a space of higher dimension (in Russian), Mat. Zametki 25 (1979), no. 4, 513–520. Search in Google Scholar

[17] D. D. Haroske, Dichotomy in Muckenhoupt weighted function space: A fractal example, Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel (2012), 69–89. 10.1007/978-3-0348-0263-5_5Search in Google Scholar

[18] D. D. Haroske and I. Piotrowska, Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis, Math. Nachr. 281 (2008), no. 10, 1476–1494. 10.1002/mana.200510690Search in Google Scholar

[19] D. D. Haroske and H.-J. Schmeisser, On trace spaces of function spaces with a radial weight: The atomic approach, Complex Var. Elliptic Equ. 55 (2010), no. 8–10, 875–896. 10.1080/17476930903276050Search in Google Scholar

[20] D. D. Haroske and L. Skrzypczak, Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I, Rev. Mat. Complut. 21 (2008), no. 1, 135–177. 10.5209/rev_REMA.2008.v21.n1.16447Search in Google Scholar

[21] D. D. Haroske and L. Skrzypczak, Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. II: General weights, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 1, 111–138. 10.5186/aasfm.2011.3607Search in Google Scholar

[22] D. D. Haroske and L. Skrzypczak, Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III: Some limiting cases, J. Funct. Spaces Appl. 9 (2011), no. 2, 129–178. 10.1155/2011/928962Search in Google Scholar

[23] A. Jonsson and H. Wallin, Function spaces on subsets of n, Math. Rep. 2 (1984), no. 1. Search in Google Scholar

[24] V. M. Kokilashvili, Maximum inequalities and multipliers in weighted Lizorkin–Triebel spaces (in Russian), Dokl. Akad. Nauk SSSR 239 (1978), no. 1, 42–45. Search in Google Scholar

[25] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. 10.4064/sm-44-1-31-38Search in Google Scholar

[26] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. 10.1090/S0002-9947-1972-0293384-6Search in Google Scholar

[27] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. 10.4064/sm-49-2-101-106Search in Google Scholar

[28] S. M. Nikol’skiĭ, Approximation of Functions of Several Variables and Embedding Theorems, Nauka, Moscow, 1969; 2nd ed., Nauka, Moscow, 1977. English translation: Grundlehren Math. Wiss. 205, Springer, Berlin, 1975. Search in Google Scholar

[29] J. Peetre, The trace of Besov space – A limiting case, Technical report, University Lund, Lund, 1975. Search in Google Scholar

[30] J. Peetre, A counterexample connected with Gagliardo’s trace theorem, Comment. Math. Special Issue 2 (1979), 277–282. Search in Google Scholar

[31] I. Piotrowska, Traces on fractals of function spaces with Muckenhoupt weights, Funct. Approx. Comment. Math. 36 (2006), 95–117. 10.7169/facm/1229616444Search in Google Scholar

[32] I. Piotrowska, Weighted function spaces and traces on fractals, PhD thesis, Friedrich-Schiller-Universität Jena, Jena, 2006. Search in Google Scholar

[33] S. Roudenko, Matrix-weighted Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 1, 273–314. 10.1090/S0002-9947-02-03096-9Search in Google Scholar

[34] S. Roudenko, Duality of matrix-weighted Besov spaces, Studia Math. 160 (2004), no. 2, 129–156. 10.4064/sm160-2-3Search in Google Scholar

[35] V. S. Rychkov, Littlewood–Paley theory and function spaces with Aploc weights, Math. Nachr. 224 (2001), 145–180. 10.1002/1522-2616(200104)224:1<145::AID-MANA145>3.0.CO;2-2Search in Google Scholar

[36] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993. 10.1515/9781400883929Search in Google Scholar

[37] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. 10.1007/BFb0091154Search in Google Scholar

[38] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math. 123, Academic Press, Orlando, 1986. Search in Google Scholar

[39] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Math. Library 18, North-Holland, Amsterdam, 1978. Search in Google Scholar

[40] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983; reprinted 2010. 10.1007/978-3-0346-0416-1Search in Google Scholar

[41] H. Triebel, Theory of Function Spaces. II, Monogr. Math. 84, Birkhäuser, Basel, 1992; reprinted 2010. 10.1007/978-3-0346-0419-2Search in Google Scholar

[42] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monogr. Math. 91, Birkhäuser, Basel, 1997; reprinted 2011. 10.1007/978-3-0348-0034-1_3Search in Google Scholar

[43] H. Triebel, The Structure of Functions, Modern Birkhäuser Classics, Birkhäuser, Basel, 2001. Search in Google Scholar

[44] H. Triebel, Theory of Function Spaces. III, Monogr. Math. 100, Birkhäuser, Basel, 2006. Search in Google Scholar

[45] H. Triebel, Function Spaces and Wavelets on Domains, EMS Tracts Math. 7, European Mathematical Society (EMS), Zürich, 2008. 10.4171/019Search in Google Scholar

[46] H. Triebel and H. Winkelvoß, A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces, Studia Math. 121 (1996), no. 2, 149–166. 10.4064/sm-121-2-149-166Search in Google Scholar

[47] H. Triebel and H. Winkelvoß, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), no. 4, 647–673. 10.1007/PL00004525Search in Google Scholar

Received: 2014-12-19
Accepted: 2015-11-3
Published Online: 2016-12-14
Published in Print: 2017-9-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0066/html?lang=en
Scroll to top button