Startseite On the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector

  • Alexander Kharazishvili EMAIL logo
Veröffentlicht/Copyright: 30. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.

MSC 2010: 28A05; 28D05; 03E25

References

[1] Bernstein F., Zur Theorie der trigonometrischen Reihe, Leipz. Ber. 60 (1908), 325–338. Suche in Google Scholar

[2] Cichon J., Kharazishvili A. and Weglorz B., Subsets of the Real Line, Wydawnictwo Uniwersytetu Lodzkiego, Lodz, 1995. Suche in Google Scholar

[3] Hamel G., Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x+y)=f(x)+f(y), Math. Ann. 60 (1905), 459–462. 10.1007/BF01457624Suche in Google Scholar

[4] Kechris A. S., Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. 10.1007/978-1-4612-4190-4Suche in Google Scholar

[5] Kharazishvili A. B., Nonmeasurable Sets and Functions, North-Holland Math. Stud. 195, Elsevier Science, Amsterdam, 2004. Suche in Google Scholar

[6] Kharazishvili A. B., Topics in Measure Theory and Real Analysis, Atlantis Stud. Math. 2, Atlantis Press, Paris, 2009. 10.2991/978-94-91216-36-7Suche in Google Scholar

[7] Kharazishvili A. B., Measurability properties of Vitali sets, Amer. Math. Monthly 118 (2011), no. 8, 693–703. 10.1201/b17298-11Suche in Google Scholar

[8] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Pr. Nauk. Uniw. Śla̧skiego Katowicach 489, Uniwersytet Śla̧ski, Warsaw, 1985. Suche in Google Scholar

[9] Kuratowski K., Topology, Vol. I, Academic Press, New York, 1966. Suche in Google Scholar

[10] Miller A. W., Special subsets of the real line, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam (1984), 201–233. 10.1016/B978-0-444-86580-9.50008-2Suche in Google Scholar

[11] Morgan, II J. C., Point Set Theory, Pure Appl. Math, 131, Marcel Dekker, New York, 1990. Suche in Google Scholar

[12] Oxtoby J. C., Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces, Grad. Texts in Math. 2, Springer, New York, 1971. 10.1007/978-1-4615-9964-7Suche in Google Scholar

[13] Raisonnier J., A mathematical proof of S. Shelah’s theorem on the measure problem and related results, Israel J. Math. 48 (1984), no. 1, 48–56. 10.1007/BF02760523Suche in Google Scholar

[14] Shelah S., Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. 10.1007/BF02760522Suche in Google Scholar

[15] Sierpiński W., Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105–111. 10.4064/fm-1-1-105-111Suche in Google Scholar

[16] Solovay R. M., A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. 10.1142/9789812564894_0025Suche in Google Scholar

[17] Vitali G., Sul Problema Della Misura dei Gruppi di Punti di una Retta. Nota, Gamberini e Parmeggiani, Bologna, 1905. Suche in Google Scholar

Received: 2015-1-8
Accepted: 2015-6-3
Published Online: 2016-8-30
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0036/pdf?lang=de
Button zum nach oben scrollen