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Abstract

Objectives: Artificial intelligence (AI) is being increasingly
used in medical education. This narrative review presents
a comprehensive analysis of generative Al tools’ perfor-
mance in answering and generating medical exam ques-
tions, thereby providing a broader perspective on AI's
strengths and limitations in the medical education context.
Methods: The Scopus database was searched for studies
on generative Al in medical examinations from 2022 to
2024. Duplicates were removed, and relevant full texts were
retrieved following inclusion and exclusion criteria. Narra-
tive analysis and descriptive statistics were used to analyze
the contents of the included studies.

Results: A total of 70 studies were included for analysis.
The results showed that Al tools’ performance varied when
answering different types of questions and different spe-
cialty questions, with best average accuracy in psychia-
try, and were influenced by prompts. With well-crafted
prompts, Al models can efficiently produce high-quality
examination questions.

Conclusion: Generative Al possesses the ability to answer
and produce medical questions using carefully designed
prompts. Its potential use in medical assessment is vast,
ranging from detecting question error, aiding in exam
preparation, facilitating formative assessments, to support-
ing personalized learning. However, it’s crucial for educa-
tors to always double-check the AI’s responses to maintain
accuracy and prevent the spread of misinformation.
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Introduction

The healthcare field is always quickly and deeply influenced
by technology. Since the emergence of ChatGPT, many gen-
erative artificial intelligence (GAI) models, such as large lan-
guage models, visual generation and video generation mod-
els have come into the public and is increasingly being used
in healthcare field, including clinical decision support, man-
agement, medical research, and education. In medical edu-
cation, GAI has been used for student selection and admis-
sion, augmenting teaching, generating teaching and learn-
ing materials, simulation, supporting personalized learning,
and assessment, etc. [1-3].

Before Al tools can be integrated into medical educa-
tion to assist medical students, they must possess extensive
and accurate medical knowledge [4]. Just as exams are used
to evaluate students’ mastery of knowledge, researchers use
various examinations to assess the medical knowledge of
GAImodels [5-49]. Studies reported that ChatGPT-4 can pass
various medical exams [10, 12, 26, 44], even outperformed
many medical students [10, 26, 44]. Although several review
papers have evaluated AI competencies in taking medi-
cal examinations by their overall accuracy, particularly on
multiple-choice questions [4, 50—52], some questions need
to be answered. Do Al tools like ChatGPT-4 have a stronger
foundation in some medical fields compared to others? In
medical exams, single-best answer multiple-choice ques-
tions (MCQs) are the most common type of question, but
there are other types of questions, such as open-ended ques-
tions. How does GAI perform on different question types?
Regardless of the question type, what are the types of incor-
rect answers? These are the questions this narrative review
aims to address.

Since exams are designed to assess the knowledge mas-
tery of test-takers, the quality of exam questions is cru-
cial. Creating exam questions is a time-consuming task that
requires the question setter not only to have a deep under-
standing of the medical field, but also to have knowledge in
evaluation. In formal exams, a team of assessment experts
typically designs the questions. Studies have explored the
possibility of using GAI for question setting [53-63]. There-
fore, how is the quality of questions generated by GAI and

aoien Access. © 2024 the author(s), published by De Gruyter on behalf of the Shanghai Jiao Tong University and the Shanghai Jiao Tong University School of Medicine
() TA| This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/gme-2024-0021
mailto:tiantianlc@sjtu.edu.cn
https://orcid.org/0000-0002-9996-9756

2 = Qiuand Liu: Capable exam-taker and question-generator: the dual role of generative Al

how to measure the quality? What prompts were used?
These are also questions that this review will explore.
This narrative review aims to answer five research
questions:
Q1: How did AI perform in different types of medical
exam questions?
Q2: How did AI perform in different specialties?
Q3: What were the types of incorrect answers yielded by
AI?
Q4: What were the qualities of Al-generated exam ques-
tions? How to measure?
Q5: What were the prompt strategies when using Al to
answer or generate medical exam questions?

By investigating into the performances of Al tools as both
exam-takers and exam-generators, we can uncover insights
into Al tools’ effectiveness and reliability in medical edu-
cation assessments. This dual perspectives will allow us to
better understand the potential that how Al can enhance
evaluation processes, improve question quality, and con-
tribute to personalized learning experiences.

Methods

Literature search

The literature search and screening process followed the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) guideline [64]. Scopus database was
searched in September 2024 with keywords of “Generative
Artificial Intelligence,” “GAL” “ChatGPT,” “GPT,” “Bard,”
“Bing,” “Claude,” “Gemini,” “DALLE,” “Midjourney,” and
“Stable Diffusion,” as well as “medical examination,”
“medical exam,” “medical assessment,” “medical test” in
title-abstract-keywords, from 2022 to 2024. The records
obtained were examined to eliminate any duplicates. Once
the duplicates were removed, the titles and abstracts of the
retrieved studies were screened to identify those met the
inclusion and exclusion criteria (Table 1). Subsequently, the
full texts of the identified studies were retrieved, and those
inaccessible to the full text were excluded from further anal-
ysis. When necessary, papers from reference were manually
searched.

Data analysis

Data from the included studies were extracted into
Microsoft Excel spreadsheets. The extracted characteristics
of the studies included: title, authors, publication year,
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Table 1: Inclusion and exclusion criteria of the retrieved paper.

Criteria type Description

Inclusion criteria  Peer-reviewed original studies and practical reports
Testing generative artificial intelligence (AI) in any
kinds of medical examinations

Generative Al in generating any kinds of questions
for medical examinations

Literature published from 2022 to 2024

Literature in English

Exclusion criteria  Studies irrelevant to generative Al in medical
examination

Duplicate studies

Letter to editor, editorial, correspondence, reply,

conference paper, and book chapter

medical examination name, examination type, specialty,
question type, country or region of the examination, Al
model, prompt strategy, accuracy rate, passing score,
error type, quality measure, and language interacting
with A, etc. Narrative analysis and descriptive statistics
were used to analyze the contents of the included studies.
When calculating the average accuracy of Al responses
to exam questions in a specific medical specialty, only
studies with at least 10 questions were included, provided
there were at least five such studies. Studies that did not
clearly specify the number of questions were excluded. The
difficulty distributions of exam questions were assumed
similar among studies. Average accuracy was calculated by
dividing the total number of correctly answered questions
in all exams by the total number of questions. The 95 %
confidence interval of the accuracy was estimated using the
binomial distribution.

Ethical review

This review was conducted based on published studies;
therefore, no ethical review was required.

Results

Searched records

The searching strategy resulted in 119 studies. Then, 2 dupli-
cate records, 49 irrelevant studies, and 2 inaccessible ones
were removed; and 3 manually searched records were
added. Ultimately, a total of 70 studies were included in this
review (Figure 1).
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“GAL” “ChatGPT,” “GPT,” “Bard,”
“Bing,” “Claude,” “Gemini,”
“DALLE,” “Midjourney,” “Stable
\l/ Diffusion,” and “medical

examination,” “medical exam,”

Records identified by searching
Scopus: 119

Records after removing duplicates: “medical assessment,” “medical
118 test”

Records  after 49 records excluded due to

eligibility: 69

screening  for

irrelevance

Full text retrieval: 69 2 records excluded due to

inaccessible to full text

Studies included in review: 70 3 records added by manual search

Figure 1: Literature screening diagram.

Al tools’ performance in different types
of medical exam questions

Single-best answer MCQs, choose-n-from-many, true or
false, and open-ended questions are possible question types
in medical examinations. Single-best answer MCQs are very
popular in various medical exams, so Al’s ability to answer
this MCQs has attracted the interest of many researchers.
Meta-analysis of the published studies shown that ChatGPT-
3.5 had an overall accuracy of 61.1 % in Levin et al.’s study
[51], and an overall accuracy of 58 % in Liu et al.’s study
[4], which were quite similar, while ChatGPT-4 had a higher
accuracy of 81 % [4] (Table 2).

Choose-n-from-many is a variant of single-best answer
MCQs, which has two or more correct answers in answer
options. In Haze et al’s study, Al's ability to respond to
this kind of question was inferior to answering single-
best answer MCQs. For example, ChatGPT-4 had an accu-
racy of 69.8 % in answering choose-n-from-many questions,
compared to an accuracy of 83.7% in answering single-
best answer MCQs [39]. However, in Hirano et al’s study,

Table 2: Meta-analysis of AI's accuracy in multiple-choice questions.

Studies Number Al tool Accuracy

of papers with 95 % CI
Levin et al. 2024 [51] 19 ChatGPT-3.5 61.1% (56.1 %-66.0 %)
Liu et al. 2024 [4] 25 ChatGPT-3.5 58 % (53 %-63 %)

29 ChatGPT-4 81% (78 %-84 %)

Al artificial intelligence; (I, confidence interval.
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ChatGPT-4 Turbo/ChatGPT-4 Turbo with vision had similar
accuracy in answering single-best answer MCQs and choose-
n-from-many questions [34] (Table 3).

True/false question is also a variant of MCQs, which
has only two options. Sadeq et al. reported that AI's perfor-
mance in true/false questions was lower than that in MCQs
[6]. For example, ChatGPT-3.5 obtained an accuracy of 23.1 %
in answering true/false questions, while it achieved an accu-
racy of 62.9 % in answering MCQs, and similar trends were
observed in GTP-4, Bard, Bing, Claude, Claude Instant, and
Perplexity [6]. However, in another study, Sood et al. found
that GPT-4 had an accuracy of 83 % in answering true/false
questions, better than answering MCQs, and so did GPT-3.5
(Table 3) [33].

For open-ended questions, ChatGPT-3.5 obtained 66.5 %
accuracy in community medicine [65], 73.6 % in family
medicine [66], and 77.4 % in psychiatry [9]. ChatGPT-4
achieved 75 % accuracy in otolaryngology-head and neck
surgery [5], 81.0 % in family medicine [66] (Table 3). Both
ChatGPT-3.5 and ChatGPT-4 seemed to have a better perfor-
mance compared to answering MCQs, and both exceeded
the common passing threshold of 60 %.

Performance of Al in addressing MCQs across
various specialties

Popular Al tools were employed in answering MCQs,
and their performance varies across different specialties.
Table 4 presents the results categorized by specialties. It
reveals that ChatGPT-3.5 and ChatGPT-4 were most used Al
tools in medical examinations. ChatGPT-3.5 performed best
in psychiatry, with an average accuracy of 74.6 %. Its second-
best performance was in general surgery, reached 70.6 %
accuracy; then in neurology (61.8 %), internal medicine
(61.6 %), and emergency medicine (54.9 %). Its worst perfor-
mance was in pediatrics as well as gynecology and obstet-
rics, with an average accuracy of 53.6 %. While ChatGPT-4
performed better than ChatGPT-3.5, it also performed best
in psychiatry, with an average accuracy of 90.1 %; followed
by internal medicine (84.0 %), general surgery (81.2 %), neu-
rology (78.9 %), pediatrics (78.7 %), emergency medicine
(78.3 %), gynecology and obstetrics (76.8 %). ChatGPT-4 per-
formed worst in osteology, with an average accuracy of
67.4 %. Detailed performance of Al tools across various spe-
cialties were in Supplementary Material 1.

Prompt strategies in answering questions

In many studies, the original examination questions were
directly input to the AI tool [7, 8, 16, 17, 21], which simu-
lated the humans taking the exams. However, a number of
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Table 3: Performance of artificial intelligence (Al) in other question types except single-best answer multiple-choice questions (MCQs).

Studies Question type Number of  Al'tool Accuracy Accuracy of MCQs
questions as reference
Haze et al. 2023 [39] Choose-n-from-many 129  ChatGPT-3.5 41.9% 59.1%
ChatGPT-4 69.8 % 83.7%
Hirano et al. 2024 [34] Choose-n-from- many 16 ChatGPT-4 Turbo 44 % 41 %
ChatGPT-4 Turbo 44 % 41 %
with vision
Sadeq et al. 2024 [6] True/false 13 ChatGPT-3.5 231% 62.9 %
ChatGPT-4 30.8 % 80.7 %
Bard 15.4 % 61.0 %
Bing 30.8 % 68.7 %
Claude 77 % 67.4 %
Claude instant 231% 64.5 %
Perplexity 0% 58.7%
Sood et al. 2023 [33] True/false 182  ChatGPT-3.5 61% 31.7%
ChatGPT-4 83 % 70.7 %
D’Souza et al. 2023 [9] Open-ended question 100 ChatGPT-3.5 77.4 % (773.5 out of 1,000 n.a
points; 61 % 8.0-10.0 points;
31% 5.0-7.9 points; 8 %
3.0-4.9 points; 0% 0.0-2.9
points)
Gandhi et al. 2024 [65] Open-ended question 40  ChatGPT-3.5 66.5 % (133 out of 200 points) n.a.
Huang et al. 2023 [16] Case 15 ChatGPT-4 87.5 % (correctness, 3.5 out of 78.8 %
4)?
Long et al. 2024 [5] Open-ended question 21 ChatGPT-4 75 % (25.5 out of 34 points) n. a.
Mousavi et al. 2024 [66]  Open-ended question 77  ChatGPT-3.5 73.6 % .a.
ChatGPT-4 81.0 % .a.

20ther index including comprehensiveness (3.1 out of 4), novelty (80 %), and hallucination (13.3 %).

Table 4: Performance of Al across specialties.

Specialty Al tool Average accuracy with 95 % CI References
Emergency medicine ChatGPT-3.5 54.9 % (50.6-59.3 %) [6,7, 24, 39, 67, 68]
ChatGPT-4 78.3 % (74.6-82.0 %) [6, 32, 39, 67, 68]
General surgery ChatGPT-3.5 70.6 % (65.9-75.3 %) [6, 19, 22, 24, 26, 31, 50, 67, 69]
ChatGPT-4 81.2 % (78.0-84.3 %) [6,19-21, 26, 31, 32, 50, 67, 69]
Gynecology and obstetrics ChatGPT-3.5 53.6 % (49.6-57.7 %) [6, 22, 24, 26, 31, 38, 39, 46, 67, 69]
ChatGPT-4 76.8 % (72.6-80.9 %) [6, 26, 31, 32, 39, 67, 69]
Internal medicine ChatGPT-3.5 61.6 % (57.9-65.3 %) [6, 24, 26, 31, 67, 69]
ChatGPT-4 84.0 % (81.3-86.7 %) [6, 21, 26, 31, 32, 67, 69]
Neurology ChatGPT-3.5 61.8 % (59.3-64.4 %) [17, 26, 29, 38, 39, 42, 44]
ChatGPT-4 78.9 % (76.5-81.2 %) [26, 28, 29, 32, 39, 42, 44]
Osteology ChatGPT-4 67.4 % (63.4-71.4 %) 1,23, 28, 32, 39, 49]
Pediatrics CharGPT-3.5 53.6 % (49.0-58.1 %) [6, 24, 26, 31, 39, 67, 69, 70]
ChatGPT-4 78.7 % (75.4-81.9 %) [6, 21, 26, 28, 31, 32, 39, 67, 69, 70]
Psychiatry ChatGPT-3.5 74.6 % (69.1-80.0 %) [24, 26, 31, 38, 39]
ChatGPT-4 90.1 % (87.5-92.7 %) [12, 26, 31, 32, 39]

Al artificial intelligence; CI, confidence interval.

studies employed lead-in prompts from simple to complex.
The components in these lead-in prompts could be clas-
sified as basic components and advanced ones (Figure 2).

The most commonly used basic component was requiring
Al to select one correct answer for MCQs [15, 34, 41, 44,
71]. The other basic components were to specify specialty
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Figure 2: Components of prompt in answering and crafting medical exam questions. MCQs, multiple-choice questions.

field [5, 10, 12, 13, 40, 41, 66, 67] and question type [12,
28, 36, 41, 47, 66]. The advanced components included
assigning a professional role in an expertise field [12, 32, 33,
35, 41], explaining and/or justifying its answer [12, 33, 67, 69]
or not explaining or justifying its answer [13, 71, 72], iden-
tifying learning objective [67, 69], chain-of-thought strategy
[32, 34, 41], and few-shot strategy [40]. Roos et al. [10], Wu
et al. [40] and Torres-Zegarra et al. [69] employed structured
prompts that compiled basic and advanced components in a
clearer way (Figure 2). More detailed analysis of prompts in

response to medical exam questions were in Supplementary
Material 2.

Analysis of incorrect AI answers

Several studies analyzed in detail the types of incorrect
answers yielded by AI (Table 5). Guillen-Grima et al. [28]
analyzed wrong answers based on Taxonomy of Medica-
tion Errors by National Coordinating Council for Medication
Error Reporting and Prevention [73], which has 9 categories.
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Table 5: Analysis of incorrect answers.
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Studies Al tool Criteria

Type and number of incorrect answers

Guillen-Grima et al. 2023 [28] GPT-4 NCC MERP

classification

Total 24

Category A-capacity to cause error (n=10)

Category B-error did not reach the patient (n=1)

Category C-error reached patient but did not cause harm (n=3)
Category D-error reached the patient and required monitoring (n=4)
Category E-error caused temporary harm and required intervention
(n=2)

Category F-error lead to initial or prolonged hospitalization (n=2)
Category G-error resulted in permanent patient harm (n=2)
Category H-error necessitated intervention to sustain life (n=0)
Category I-error contributed to or resulted in the death (n=0)

Herrmann-Werner et al. 2024 [12] GPT-4 Bloom’s taxonomy

Total 68
Remember (n=29)
Understand (n=23)
Apply (n=15)
Analyze (n=0)
Evaluate (n=1)
Create (n=0)

Maitland et al. 2024 [18] GPT-4 Clinical thinking

and reasoning

Total 51

Assumption error (n=1)

Base-rate neglect (n=5)
Confabulation error (n=1)
Confirmation biases (n=1)

Context error (n=8)

Factual error (n=27)
Misinterpretation of question (n=5)
Omission error (n=12)

Wang et al. 2023 [41] GPT-3.5 Hallucination

analysis

GPT-4

Total 106

Open-domain error (n=66)
Closed-domain error (n=40)
Total 48

Open-domain error (n=30)
Closed-domain error (n=18)

Al artificial intelligence; NCC MERP, National Coordinating Council for Medication Error Reporting and Prevention.

They identified that in a total of 24 incorrect answers, 10
could cause medication errors (category A), and 8 could not
cause harm to patient (category B—D), while 6 could cause
harm to patient (category E-H), and none would cause
death (category I).

Herrmann-Werner et al. [12] categorized incorrect
answers according to the revised Bloom’s taxonomy, which
has six levels regarding to cognition challenge: “remember,
understand, apply, analyze, evaluate and create”. In a total
of 68 wrong responses, the most incorrect answers were
at the “remember” and “understand” level, with 29 and
23 incorrect answers respectively. Maitland et al. [18] clas-
sified wrong answers into 8 types in accordance with
clinical thinking and reasoning. In 51 incorrect answers,
the factual error was the most common one, followed by

omission error [18]. Wang et al. [41] divided incorrect
answers into open-domain and closed-domain hallucina-
tion. They found that GPT-4 had less open-domain and
closed-domain errors.

Prompt strategies in generating questions

Prompts used to generate medical exam questions were
various (Figure 2). The basic components were the question
types [53-63], subject matter or topics [53—-55, 57-59, 62, 63],
number of questions [53—-63], number of answer options [59,
62, 63], and requirement to provide correct answers [53, 55,
60-63]. The key components included aligning to learning
objective [56, 57, 63], targeted at specific audiences [53, 55,
56, 60, 631, specifying question difficulty level, such as easy
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or difficult [58], knowledge-based [55, 60] or clinical case-
based [55-57]; for generating clinical cases or case-based
questions, the patient details [59] or clinical vignette details
were required [57, 58]. The advanced components included
providing examples (few-shot strategy) [55], referring to
uploaded file as the question source [54, 60, 61], and spec-
ifying the output format of questions and answers [55, 57,
59, 61]. Kiyak et al. [58] employed a well-structured prompt
framework to generate MCQs, which consisted of the above-
mentioned basic, key and advanced components. Detailed
analysis of prompts in generating medical exam questions
were in Supplementary Material 2.

Quality assessment of AI-generated
medical questions

While Al's performance in answering medical questions
could be evaluated by comparing its answers to refer-
ence answers, there are no standard criteria for assessing
AT’s performance in generating medical questions. Thus,
researchers proposed their own quality measures to eval-
uate the quality of Al-generated questions (Table 6).

The commonly used quality measures were clarity
[54, 58, 60, 62] or ambiguity [61], and correctness [55, 58],
accuracy [54] or appropriateness [60]. Measures such as
appropriateness [55, 58], suitability [60], validity [56] or
instructional alignment [61] were used to judge the degree
a question aligned to a topic, content or intended learning
objective. For the difficulty level of the questions, some
researchers used Likert scale to measure the question dif-
ficulty [54, 56, 61, 62], while some other researchers put Al-
generated questions in real exams to measure the difficulty
[57, 63]. Besides, Al-generated questions in real exams were
also assessed by discrimination index [57, 58, 63]. When com-
paring Al-generated questions to those created by humans,
the quality of the Al-generated questions were almost as
good as human-generated ones, either by human judgement
[60, 63] or by test results [57].

Discussion

Principal findings

This narrative review highlights that generative Al tools,
particularly large language models, demonstrated capa-
bilities in answering and creating medical examination
questions. AIs’ performance varied when answering dif-
ferent types of questions, and probably performed best
when answering open-ended questions. AIs’ performance
also varied when answering different specialty questions,

Qiu and Liu: Capable exam-taker and question-generator: the dual role of generative Al == 7

with the best achievement in psychiatry for both ChatGPT-
3.5 and ChatGPT-4 [9, 12, 26], and the worst achieve-
ment in osteology for ChatGPT-4 [11, 23, 49] and in pedi-
atrics as well as gynecology and obstetrics for ChatGPT-3.5
[39, 46, 49, 70]. When guided by appropriate prompts, Al
tools could generate suitable medical exam questions [53],
which were comparable to questions created by humans
[57, 59, 60, 63].

Al tools’ performance is influenced by question types,
specialty knowledge and prompts [20, 39, 67]. MCQs, choose-
n-form-many and true/false questions are objective ques-
tions, and open-ended questions are subjective questions.
Objective questions have question stem and answer options
where the clue to the answer is hidden. Essentially, answer-
ing objective questions is a kind of finding the best match.
There are only two possibilities for an answer: either
it is correct or it is wrong; there is no middle ground.
While open-ended questions, especially clinical vignette-
based questions, require exam taker to apply and synthe-
size their knowledge, and is not an easy task for humans.
However, it seemed not a hard task for Al Al tools achieved
high scores in answering open-ended questions. This might
be due to the grading mechanism. Even if the final decision
iswrong, each key point can get a score. Since Al was trained
on large scale data set, it is quite knowledgeable and easy to
generate clinical vignette-related content that may contain
key points, thus it performs quite well in answering open-
ended questions, not necessary to have real clinical thinking
and reasoning skills.

The performance differences among specialties likely
stem from a combination of factors such as the types of
data available for training the Al, the complexity of clinical
reasoning, and the diagnostic process specific to each field.
Haze et al. [39] investigated the relationship between the
ChatGPT’s accuracy in different specialties and the number
of related documents in the Web of Science Core Collec-
tion. They found significant positive correlation between
the accuracy of ChatGPT-4 and the number of all-type doc-
uments. In specialties like psychiatric, where standardized
questionnaires and diagnostic criteria are well-documented
in textual form, Al can easily process the data, leading to
better performance. In contrast, in fields like orthopedics,
where diagnostic decisions often rely on interpreting med-
ical imaging, current language models like ChatGPT have
limitations, resulting in weaker performance. Pediatrics
and obstetrics/gynecology involve more case-by-case vari-
ability, where factors like age, medical history, and devel-
opmental stage matter significantly. AI model might strug-
gle with the complexities of clinical decision-making, thus
leading to lower performance. Additionally, Al accuracy
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Table 6: Quality assessment of Al-generated items.
Studies Subject Al tool Quantity Quality metrics Metric value
of items
Agarwal et al. 2023 [56] Physiology ChatGPT 110 Validity 3(3-3)p
Difficulty 1(0-1)
Reasoning effort 1(1-2)
Bard 110 Validity 3(1.5-3)
Difficulty 1(1-2)
Reasoning effort 1(1-2)
Bing 100 Validity 3(1.5-3)
Difficulty 1(1-2)
Reasoning effort 1(1-2)
Ayub et al. 2023 [54] Dermatology ChatPDF 40 Accuracy 87.5%
Complexity 75 %
Clarity 77.5%
40 % questions were
accurate and appropriate
Cheung et al. 2023 [60] Internal medicine and ChatGPT plus 50 Appropriateness of the 7.72°
surgery question
Clarity and specificity 7.56
Relevance 7.56
Discriminative power of 7.26
alternatives
Suitability 7.25
Compared with No significant difference
human-generated except for humans got a
questions slightly higher score in
relevance
Coskun et al. 2024 [59] Evidence-based ChatGPT-3.5 15 Discrimination index 6 items greater than 0.3; 5
medicine items greater than 0.25
Grévisse et al. 2024 [61] Endocrinology API (gpt 4- 80 Pertinence 79 %
1106-preview)
Difficulty 36 %
Level of specificity 68 %
Ambiguity 21%
Instructional alignment 84 %
Neurology 20 Pertinence 5%
Difficulty 20 %
Level of specificity 5%
Ambiguity 0%
Instructional alignment 5%
Klang et al. 2023 [55] Internal medicine, GPT-4 210 Correctness n.a.
general surgery,
obstetrics and
gynecology, psychiatry
and pediatric
Appropriateness n.a.
0.5 % false; 15 % needed
revisions
Kiyak et al. 2024 [58] Rational ChatGPT-3.5 10 Correctness 100 %
pharmacotherapy
Clarity 100 %
Appropriateness 20 %

Discrimination index

Greater than 0.3
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Table 6: (continued)
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Studies Subject Al tool Quantity Quality metrics Metric value
of items

Laupichler et al. 2024 [63] Neurophysiology ChatGPT-3.5 25 Difficulty 0.69
Discrimination index 0.24
Compared to 57 % of question sources
human-generated were identified correctly
questions

Rivera-Rosas et al. 2024 [62] Anatomy and ChatGPT-3.5 55 Concise and 89 %

kinesiology comprehensible of

questions
Clarity 91 %
Simpleness of language 91 %
Difficult of questions 24 %

Zuckerman et al. 2023 [57] Reproductive system ChatGPT 29 Difficulty 0.71
Discrimination index 0.23

Compared to
human-generated
questions

No significant difference

aMedian with interquartile range. °Likert scale of 1-10.

tends to decline when questions involve country- or region-
specific knowledge, likely due to limited training on such
localized data [67].

Prompt may also influence AI's accuracy in answer-
ing medical questions. In Herrmann-Werner et al’s study,
detailed prompt resulted in a higher accuracy than the
short prompt did but without significance [12], because
the key components in detailed prompt and short compo-
nent functioned the same, except that detailed one spec-
ified the answer format. When chain-of-though prompt
was employed, ChatGPT could correctly answer more than
half of the originally wrongly answered questions [32].
When few-shot technology was used to enhance Al models’
in-context learning, their performance were improved;
and AI models’ performance were even better when
few-shot technology and external knowledge were com-
bined [40]. However, when the context information “CFPC
exam” were removed from the prompt, it resulted in an
improved accuracy [66], probably because Al did not under-
stand the acronym CFPC correctly. Besides, by highlighting
errors in Al’s answers through prompt engineering, the Al
might arrive at the correct response. However, the studies
included in this review did not address the situation of iden-
tifying AI mistakes and then re-evaluating its subsequent
answers.

When Al gave an incorrect answer, a close look at it
could reveal valuable insights into the limitations of AL
From the viewpoint of outcomes induced by wrong answers
[28], it could remind medical users to always keep in mind

the importance of human oversight and critical evalua-
tion. From the viewpoint of thinking process to identity
where and why the AI’s reasoning went wrong [12, 18, 41], it
could enhance our understanding of the difference between
human judgment and Al reckoning.

Using AI to generate medical exam questions could
save medical educators’ time [60]. To ensure the quality of
Al-generated questions, it is crucial to carefully craft the
prompts as well as critically review the generated ques-
tions. Clarity of the questions is not a problem [54, 58, 60,
62], but appropriateness can be an issue. Medical educators
often instructed Al to generate questions in specific field
or topic [53-55, 57-59, 62, 63], rather than aligning them
with intended learning objectives [56, 57, 63]. This approach
can lead to questions that are correct but not suitable for
assessment [58, 61], whereas focusing on learning objectives
can ensure the validity of the examination [56, 57, 63]. Thus,
instruction to align learning objective in the prompt is key
to generate suitable exam questions.

Critically review Al-generated questions with prede-
fined criteria before putting the questions in an exam is
a good practice [54—-63]. Although these indexes that mea-
sure question quality seemed different, the key measures
should focus on fact correctness and alignment with learn-
ing objectives. For MCQs, possibility of the options is also
a key measure. It could ensure that the questions are not
only correct and relevant but also effectively measure the
intended competencies and knowledge areas. Check the AI-
generated questions in an exam with difficulty level and
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discrimination index [57, 58, 63] could help identify ques-
tions that are either too easy or too hard, as well as those
that do not effectively differentiate between high and low
performers. This analysis can lead to decision on whether
and how to use these questions in future assessment.

The relationship between AI's ability to answer ques-
tions and generate them is an interesting yet under-
explored area, but direct evidence on this topic is scarce
right now. Previous studies have shown that students who
engaged in question generation activities tended to have
better academic performance [52, 74-76], suggesting that
generating questions can enhance learning. This implies
that strong performance in answering questions may be
linked to the ability to generate high-quality questions. How-
ever, since Al models like ChatGPT have been trained on vast
datasets and do not “learn” from the process of generating
questions, their ability to generate and answer questions
is likely correlated to the quality of the specific knowledge
embedded in those datasets.

Implications of Al in medical education

Medical educators can employ Al to verify whether the
questions created by humans for examination contain any
ambiguities or errors [10, 53]. As mistakes are sometimes dis-
covered after formal exams [10, 15, 24], it’s beneficial to have
AT check the quality of the questions, while ensuring that
the exam questions are not leaked. By using Al to answer
these questions and asking it to explain its reasoning, med-
ical educators can quickly spot potential issues in the exam
questions.

Al can serve as a tool for medical students in preparing
for exams. While some argue that Al tools are not yet perfect
in accuracy and thus cannot be considered as learning tools
[4, 54], we, along with some researchers [16, 22, 77], hold
a different perspective. For medical students or residents
taking licensing exams or specialty exams, the passing score
is typically around 60 %-70 % [13, 17, 24, 26, 29, 35, 38],
and they are not required to achieve a very high accuracy
rate. They can use Al as a peer to assist in exam prepara-
tion. As they are not beginners, they should have developed
medical thinking and reasoning skills, enabling them to
judge the quality of AI response, especially when Al pro-
vides explanations for its answers. Although AI’s accuracy
is not top-notch, this can also be an advantage, as it forces
users to maintain critical thinking rather than relying on
Al blindly. If a medical student detects an Al error, pointing
out its mistakes might sometimes lead to the correct answer.
This kind of human-AI collaboration is happening in the
real workplace. The studies included in this review did not
mention the scenario of pointing out Al errors and then
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looking at its answers again. However, for beginners who
are just learning the new knowledge, Al is not an ideal
authoritative source for learning [6], as they lack compre-
hensive judgment capabilities.

With well-crafted prompts, Al can efficiently produce
high-quality examination questions [78]. Clear require-
ments, providing context, alignment with learning objec-
tives, describing clinical scenarios and the provision of
examples [79-81] are all good practices for ensuring the
quality of the questions. Additionally, specifying output for-
mats can significantly reduce the workload of editing. Medi-
cal educators should learn about prompt engineering or fol-
low guidelines for crafting prompts to create excellent ones
[78-81]. Of course, due to the risk of hallucination, human
review of Al-generated questions is always essential [61].

The knowledge-based questions generated by Al can
serve as an effective tool for formative assessment in the
classroom [57, 59, 63]. Medical teachers can use the ques-
tions to gain real-time insights into students’ mastery of
previous knowledge and progress in learning new concepts,
thereby adjust teaching content and pace if necessary. Al-
generated medical cases can be used as material for class-
room discussions [59], fostering students’ clinical judgment
and decision-making skills. Additionally, educators can also
teach students on how to utilize Al for creating questions,
thus, students can use Al for self-assessment to check their
understanding of the knowledge, thus support personalized
learning [82].

The strong capabilities of Al in answering and creating
medical exam questions undoubtedly challenge the tradi-
tional modes of examination [17, 22, 26, 38, 83]. In the near
future, medical exams may more closely mirror real-life
medical practice. For instance, it could involve simulating
scenarios where patients describe their physical discom-
fort to doctors, with these descriptions potentially being
ambiguous or conflicting. Doctors need to make preliminary
judgments and gather key information for decision-making
through questioning, laboratory tests, and other methods,
continuously adjusting and refining their decisions based
on new information. Accordingly, exam questions could
be presented in a step-by-step adaptive manner to simu-
late the actual diagnostic and treatment process. Current
clinical case-based questions, though seemingly complex,
essentially provide necessary and consistent information
in advance, subtly offering exam-takers clues to find the
answers.

As Al technology continues to break new ground,
the capabilities of AI are becoming even powerful. It is
transforming the way we teach and learn. Educators should
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always maintain a vigilant and cautious approach when
utilizing AI in teaching, to ensure that Al tools are used
responsibly and ethically to enhance student learning expe-
riences without compromising the integrity of the educa-
tional process [17, 25, 58, 78].

Limitations

The included studies were only from Scopus database,
which could introduce selection bias and potentially
exclude studies with alternative findings or perspectives on
the topic. Some studies that addressed questions spanning
multiple specialties did not report the AI's performance
within each specialty, which could introduce bias to the find-
ings. Additionally, the uneven categorization of specialties,
and limited number of non-MCQ questions might also influ-
enced the results. Furthermore, with the rapid advance-
ment of Al technology, sophisticated models like ChatGPT-40
are now available for free use. Consequently, findings based
on earlier models may vary from those obtained using the
latest models.

Conclusions

This narrative review analyzed 70 studies using Al in the
field of medical examination. Al tools performed quite well
in answering open-ended questions. Their performance
varied across different specialty questions, with the highest
accuracy in psychiatry for both ChatGPT-3.5 and ChatGPT-
4, while ChatGPT-4 performed the worst in osteology and
ChatGPT-3.5 in pediatrics and gynecology/obstetrics. With
well-crafted prompts, AI models can efficiently produce
high-quality examination questions. By investigating into
the performances of AI tools as both exam-takers and
exam-generators, we suggest their usage in question error
checking, exam preparation, question generation, forma-
tive assessment, and personalized learning. In the same
time, critical judgment should always be applied when
checking Al-yielded answers and Al-generated questions as
these models can produce plausible but inaccurate infor-
mation. Educators must always verify Al outputs to ensure
accuracy and avoid the risk of misinformation in medical
education.
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