Home Networks in the mental lexicon – contributions from Hungarian
Article
Licensed
Unlicensed Requires Authentication

Networks in the mental lexicon – contributions from Hungarian

  • László Kovács EMAIL logo , Katalin Orosz and Péter Pollner
Published/Copyright: September 2, 2021
Become an author with De Gruyter Brill

Abstract

Connections between the units of the mental lexicon store information as complex networks, where nodes represent words. With the emergence of network science characteristics of this mental network can be quantified. Present paper investigates the network structure of the mental lexicon of a non-Indo-European language, Hungarian, using a word association database which collected word association data online. The data is examined with statistical measures of networks: path length and degree centrality are calculated. Comparing the network characteristics of the database to the English South Florida Word Association Database we found that both networks display similar characteristics. We show that the central elements of the two databases are the same words (5 out of 7) and that the most central element in the Hungarian database is money, regardless the used centrality measure. The Hungarian database possesses a single, highly connected core, which defines the network properties of the whole database. This connected core is responsible for the short paths inside the lexicon.


Corresponding author: László Kovács, Savaria Department of Business Administration, Faculty of Social Sciences, Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary, E-mail:

Award Identifier / Grant number: K 128780

Acknowledgment

We would like to thank Tamás Vicsek and Gergely Palla for the useful advices. The founders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

  1. Research funding: This research was partially supported by the Hungarian National Research, Development, and Innovation Office (grant no. K 128780).

Appendix

The first 100 words presented in the software ConnectYourMind (Agykapocs) with English translations. Read from the top down. N = noun, V = verb, A = adjective.

alma apple vállalkozás enterprise/company szín color (N) választás election (N)
ember human szék chair (furniture) újság newspaper/news ár price
barátság friendship motor engine/motorbike sok many környezet enviroment
hitel loan/credit nyelv language/tongue venni buy (V) aludni sleep (V)
szép beautyful tudás knowledge információ information nevetni laugh (V)
piros red reklám advertisement politikus politician nyár summer
könyv book (N) foci football/soccer mosoly smile (N) kevés few
ünnepelni celebrate (V) inni drink (V) vám customs kutya dog
autó car diploma degree/diploma bolt shop (N) Magyarország Hungary
biztonság security sport sport (N) állat animal Áfa VAT
tőzsde stock exchange pénz money tiszta clean (A) hobbi hobby
szépség beauty kenyér bread (N) számítógép computer gazdaság economy
politika politics bevásárolni purchase/shop (V) divat fashion (N) szabadidő free time
Tv tv manager manager marketing marketing fordítás translating/translation
olvasni read (V) wellness wellness kórház hospital határ border (N)
drága expensive adó tax (N) bankkártya ATM card vizsga exam (N)
e-mail email (N) olcsó cheap Európa Europe öröm joy (N)
vidám happy szabad free (A) film film (N) múlt past
szerelem love (N) teve camel gyűlölni hate (V) orvos doctor/physician
bank bank (N) hír news egészség health euró Euro
segíteni help (V) enni eat (V) étel food kedves nice/lovely
mobil mobile gazdag rich Internet internet piszkos dirty
zöld green tolmácsolás interpreting sokkolni shock (V) világ world
nyaralás holiday környezetvédelem environmental protection kereskedelem trade (N) új new
ajándék present/gift (N) fizetés wage/salary hangulat mood remény hope (N)

References

Aitchison, Jean. 1987. Words in the mind. Oxford: Basil Blackwell.Search in Google Scholar

Barabási, Albert-László. 2016. Network science. Cambridge: Cambridge University Press.Search in Google Scholar

Barabási, Albert-László, Natali Gulbahce & Joseph Loscalzo. 2011. Network medicine: A network-based approach to human disease. Nature Reviews Genetics 12. 56–68. https://doi.org/10.1038/nrg2918.Search in Google Scholar

Barthélemy, Marc. 2011. Spatial networks. Physics Reports 499(1). 1–101. https://doi.org/10.1016/j.physrep.2010.11.002.Search in Google Scholar

Batool, Komal & Muaz A. Niazi. 2014. Towards a methodology for validation of centrality measures in complex networks. PLoS One 9(4). e90283. https://doi.org/10.1371/journal.pone.0090283.Search in Google Scholar

Bonin, Patrick. 2004. Introduction – mental lexicon: „Some words to talk about words”. In Patrick Bonin (ed.), Mental lexicon: „Some words to talk about words”, vii–xi. New York: Nova Sciencia Publishers.Search in Google Scholar

Borgatti, Stephen P. 2005. Centrality and network flow. Social Networks 27. 55–71. https://doi.org/10.1016/j.socnet.2004.11.008.Search in Google Scholar

Bóta, András & László Kovács. 2015. The community structure of word association graphs. In The Proceedings of the 9th International Conference on Applied Informatics, 113–120. Eger: Eszterházy Károly College.10.14794/ICAI.9.2014.1.113Search in Google Scholar

Bovasso, Gregory, Lorand Szalay, Biase Vincent & Matthew Stanford. 1993. A graph theory model of the semantic structure of attitudes. Journal of Psycholinguistic Research 22(4). 411–425. https://doi.org/10.1007/bf01074344.Search in Google Scholar

Carrington, Peter J., John Scott & Stanley Wasserman (eds.). 2005. In Models and methods in social network analysis. Cambridge: Cambridge University Press.10.1017/CBO9780511811395Search in Google Scholar

Choudhury, Monojit & Animesh Mukherjee. 2009. The structure and dynamics of linguistic networks. In Niloy Ganguly, Andreas Deutsch & Animesh Mukherjee (eds.), Dynamics on and of complex network, 145–166. Boston, Basel & Berlin: Birkhäuser Boston.10.1007/978-0-8176-4751-3_9Search in Google Scholar

Collins, Allan M. & Elizabeth F. Loftus. 1975. A spreading-activation theory of semantic processing. Psychological Review 82(6). 407–428. https://doi.org/10.1037/0033-295x.82.6.407.Search in Google Scholar

Cong, Jin & Haitao Liu. 2014. Approaching human language with complex networks. Physics of Life Reviews 11. 598–618. https://doi.org/10.1016/j.plrev.2014.04.004.Search in Google Scholar

Cramer, Phebe. 1968. Word association. London: Academic Press.Search in Google Scholar

De Deyne, Simon & Gert Storms. 2008a. Word associations: Network and semantic properties. Behavior Research Methods 40(1). 213–231. https://doi.org/10.3758/brm.40.1.213.Search in Google Scholar

De Deyne, Simon & Gert Storms. 2008b. Word associations: Norms for 1,424 Dutch words in a continuous task. Behavior Research Methods 40(1). 198–205. https://doi.org/10.3758/brm.40.1.198.Search in Google Scholar

De Deyne, Simon, Daniel J. Navarro & Gert Storms. 2013. Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods 45(2). 480–498. https://doi.org/10.3758/s13428-012-0260-7.Search in Google Scholar

De Deyne, Simon, Verheyen Steven & Gert Storms. 2016. Structure and organization of the mental lexicon: A network approach derived from syntactic dependency relations and word associationsin. In Alexander Mehler, Andy Lücking, Sven Banisch, Philippe Blanchard & Barbara Job (eds.), Towards a theoretical framework for analyzing complex linguistic networks, 47–79. Berlin & Heidelberg: Springer.10.1007/978-3-662-47238-5_3Search in Google Scholar

Долинский, Владимир Аркадьевич. 2018. Cемейство ранговых распределений в квантитативной лингвистике. [Family of rank distributions in quantitative linguistics.]. Вестник Московского государственного лингвистического университета. Гуманитарные науки 6(797). 124–155.Search in Google Scholar

É. Kiss, Katalin. 2002. The syntax of Hungarian. Cambridge: Cambridge University Press.10.1017/CBO9780511755088Search in Google Scholar

É. Kiss, Katalin. 2009. Hungarian. In Keith Brown & Sarah Ogilvie (eds.), Concise encyclopedia of languages of the world, 514–516. Oxford: Elsevier.Search in Google Scholar

Easley, David & Jon Kleinberg. 2010. Networks, crowds and markets. Reasoning about a highly connected world. Cambridge: Cambridge University Press.10.1017/CBO9780511761942Search in Google Scholar

Figueroa, Jesús G., Esther G. González & M. Solís Víctor. 1976. An approach to the problem of meaning: Semantic networks. Journal of Psycholinguistic Research 5(2). 107–115. https://doi.org/10.1007/bf01067252.Search in Google Scholar

Fitzpatrick, Tess. 2013. Word association. In Carol A. Chapelle (ed.), The encyclopedia of applied linguistics, 6193–6199. Oxford: Wiley.10.1002/9781405198431.wbeal1283Search in Google Scholar

Fitzpatrick, Tess & Thwaites Peter. 2020. Word association research and the L2 lexicon. Language Teaching 53(3). 237–274. https://doi.org/10.1017/s0261444820000105.Search in Google Scholar

Fitzpatrick, Tess, David Playfoot, Alison Wray & Margaret J. Wright. 2015. Establishing the reliability of word association data for investigating individual and group differences. Applied Linguistics 36(1). 23–50. https://doi.org/10.1093/applin/amt020.Search in Google Scholar

Fortunato, Santo. 2010. Community detection in graphs. Physics Reports 486(3–5). 75–174. https://doi.org/10.1016/j.physrep.2009.11.002.Search in Google Scholar

Galton, Francis. 1879. Psychometric experiments. Brain 2. 149–162. https://doi.org/10.1093/brain/2.2.149.Search in Google Scholar

Granovetter, Mark S. 1973. The strength of weak ties. American Journal of Sociology 78(6). 1360–1380. https://doi.org/10.1086/225469.Search in Google Scholar

Gravino, Pietro, Vito Servedio, Alain Barrat & Vittorio Loreto. 2012. Complex structures and semantics in free word association. Advances in Complex Systems 15(3–4). 1250054–1. https://doi.org/10.1142/s0219525912500543.Search in Google Scholar

Ibbotson, Paul, Vsevolod Salnikov & Richard Walker. 2019. A dynamic network analysis of emergent grammar. First Language 39(6). 652–680. https://doi.org/10.1177/0142723719869562.Search in Google Scholar

Kent, Grace H. & Aaron Joshua Rosanoff. 1910. A study of association in insanity. American Journal of Insanity 67(1–2). 37–96; 317–390. https://doi.org/10.1176/ajp.67.2.317.Search in Google Scholar

Kovács, László. 2013. Fogalmi rendszerek és lexikai hálózatok a mentális lexikonban. [Conceptual Systems and Lexical Networks in the Mental Lexicon.]. Budapest: Tinta.Search in Google Scholar

Kovács, László, András Bóta, László Hajdu & Miklós Krész. 2020 forthcoming. Networks in the mind – what communities reveal about the structure of the lexicon.10.1515/opli-2021-0012Search in Google Scholar

Levelt, Willem J. M. 1993. Speaking. From intention to articulation. Cambridge & London: MIT Press.10.7551/mitpress/6393.001.0001Search in Google Scholar

Meara, Paul. 2009. Connected words. Amsterdam & Philadelphia: John Benjamins.10.1075/lllt.24Search in Google Scholar

Mehler, Alexander, Andy Lücking, Sven Banisch, Philippe Blanchard & Barbara Job (eds.). 2016. Towards a theoretical framework for analyzing complex linguistic networks. Berlin & Heidelberg: Springer.10.1007/978-3-662-47238-5Search in Google Scholar

Menczer, Filippo, Santo Fortunato & Clayton A. Davis. 2020. A first course in network science. Cambridge: Cambridge University Press.10.1017/9781108653947Search in Google Scholar

Milroy, Leslie. 1987. Language and social networks. Oxford: Blackwell.Search in Google Scholar

Muehlhaus, Juliane, Stefan Heim, Olga Sachs, Frank Schneider, Ute Habel & Katharina Sass. 2013. Is the motor or the garage more important to the car? The difference between semantic associations in single word and sentence production. Journal of Psycholinguistic Research 42(1). 37–49. https://doi.org/10.1007/s10936-012-9209-3.Search in Google Scholar

Nelson, Douglas L., Cathy L. McEvoy & A. Schreiber Thomas. 1998. The University of South Florida word association, rhyme, and word fragment norms. Available at: http://w3.usf.edu/FreeAssociation/Intro.html.Search in Google Scholar

Newman, Mark E. J. 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23). 8577–8582. https://doi.org/10.1073/pnas.0601602103.Search in Google Scholar

Newman, Mark E. J. 2010. Networks: An introduction. Oxford: Oxford University Press.10.1093/acprof:oso/9780199206650.001.0001Search in Google Scholar

Palla, Gergely, Imre Derényi, Illés Farkas & Tamás Vicsek. 2005. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043). 814–818. Supplementary Information. https://doi.org/10.1038/nature03607.Search in Google Scholar

Postman, Leo & Geoffrey Keppel (eds.). 1970. Norms of word association. New York: Academic Press.Search in Google Scholar

Quillian, Ross M. 1968. Semantic memory. In Marvin Minsky (ed.), Semantic information processing, 227–270. Cambridge: MIT Press.10.1016/B978-1-4832-1446-7.50013-3Search in Google Scholar

Rogers, Timothy T. & James L. McClelland. 2003. The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience 4. 310–322. https://doi.org/10.1038/nrn1076.Search in Google Scholar

Rogers, Timothy T. & James L. McClelland. 2004. Semantic cognition. Cambridge: MIT Press.10.7551/mitpress/6161.001.0001Search in Google Scholar

Sinopalnikova, Anna & Pavel Smrź. 2004. Word Association Thesaurus as a Resource for extending Semantic Networks. In Brian J. d’Auriol (ed.), Proceedings of the International Conference on Communications in Computing, CIC ‘04, 267–273. Las Vegas: CSREA Press.Search in Google Scholar

Solé, Ricard V., Corominas Murtra Bernat, Valverde Sergi & Luc Steels. 2010. Language networks: Their structure, function and evolution. Complexity 15(6). 20–26. https://doi.org/10.1002/cplx.20305.Search in Google Scholar

Soriano-Morales, Edmundo-Pavel, Julien Ah-Pine & Sabine Loudcher. 2016. Using a heterogeneous linguistic network for word sense induction and disambiguation. Computación y Sistemas 20(3). 315–325. https://doi.org/10.13053/cys-20-3-2466.Search in Google Scholar

Stella, Massimo, Nicole M. Beckage & Markus Brede. 2017. Multiplex lexical networks reveal patterns in early word acquisition in children. Scientific Reports 7. 46730. https://doi.org/10.1038/srep46730.Search in Google Scholar

Steyvers, Mark & Joshua B. Tenenbaum. 2005. The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science 29. 41–78. https://doi.org/10.1207/s15516709cog2901_3.Search in Google Scholar

Vitevitch, Michael S., Rutherford Goldstein, Cynthia Siew & Nichol Castro. 2014. Using complex networks to understand the mental lexicon. Yearbook of the Poznan Linguistic Meeting 1(1). 119–138. https://doi.org/10.1515/yplm-2015-0007.Search in Google Scholar

Vylomova, Ekaterina. 2011. On associative experiments. http://it-claim.ru/Persons/Vilomova_Kate/on_associative_experiments.pdf (accessed 30 July 2020).Search in Google Scholar

Watts, Duncan J. 1999. Small worlds. Princeton & Oxford: Princeton University Press.10.1515/9780691188331Search in Google Scholar

Watts, Duncan J. & Steven H. Strogatz. 1998. Collective dynamics of ’small-world’ networks. Nature 393(6684). 440–442. https://doi.org/10.1038/30918.Search in Google Scholar

Published Online: 2021-09-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/glot-2021-2019/html
Scroll to top button