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Abstract: Effective management of watershed risks and
landslides necessitates comprehensive landslide suscept-
ibility mapping. Support vector machine (SVM) and random
forest (RF) machine learning models were used to map the
landslide susceptibility in Morocco’s Taounate Province.
Detailed landslide inventory maps were generated based
on aerial pictures, field research, and geotechnical survey
reports. Factor correlation analysis carefully eliminated
redundant factors from the original 14 landslide triggering
factors. As a result, 30% of the sites were randomly chosen
for testing, whereas 70% of the landslide locations were
randomly picked for model training. The RF model achieved
an area under the curve (AUC) of 94.7%, categorizing 30.07%
of the region as low susceptibility, while the SVM model
reached an AUC of 80.65%, indicating high sensitivity in 53.5%
of the locations. These results provide crucial information for
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local authorities, supporting sound catchment planning and
development strategies.

Keywords: management, landslide susceptibility, machine
learning models, factor correlation analysis, area under
the curve, Morocco

1 Introduction

Landslides are one of the world’s natural geohazards. They
change the terrain and disrupt people’s lives and commu-
nities wherever they occur [1-3]. The severity of climate
change, unexpected construction projects, and recent global
economic expansion have all intensified the social repercus-
sions of landslides [4,5]. Statistical analysis by the Disaster
Epidemiology Research Center shows that more than 17% of
the natural disaster deaths are caused by landslides and
other mass movements [6,7]. In northern Morocco, land-
slides are among the most prevalent natural disasters fol-
lowing floods and droughts, which are regarded as the most
serious danger to the country’s socioeconomic growth [8,9].

While traditional methods of landslide susceptibility
mapping (LSM) have provided valuable insights, they often
rely heavily on expert knowledge and can be limited by data
availability. Recent studies employing machine learning
(ML) techniques, such as random forest (RF) and support
vector machine (SVM), have shown promise in improving
the accuracy and handling complex datasets. However,
there remains a lack of comparative analyses that assess
the performance of these models in specific regions with
diverse geological characteristics. This study aims to address
this gap by evaluating the effectiveness of SVM and RF
models in mapping landslide susceptibility in the Oued
Aoulai watershed, highlighting their respective advantages
and limitations.

The early warning system effectively mitigates the risk
of catastrophic landslides, encompassing both spatial and
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temporal failures [10-12]. As a result, numerous landslide
prediction approaches have gained prominence in recent
years, focusing on LSM methods, among others [13,14].
() Deterministic methods, which include “expert knowl-
edge-based methods” and geomorphologic mapping. These
methods rely on the expertise of geologists, geomorphologists,
and other experts to assess site vulnerability based on field
observations and existing knowledge [15]. (i) Statistical tools
include logistic regression (LR), weight of evidence, and fre-
quency ratio (FR) [16,17]. (iii) Artificial intelligence and ML
include techniques such as decision tree (DT), SVM, and artifi-
cial neural network [18-20].

The models were validated using a separate dataset
that included both historical landslide occurrences and
environmental factors relevant to the study area. The RF
model achieved an area under the curve (AUC) value of
94.7%, while the SVM model reached an AUC of 80.65%.
This validation dataset was composed of 30% of the total
landslide inventory, ensuring a robust evaluation of model
performance.

ML methods offer a more effective approach to LSM
compared to traditional expert opinion-based and analy-
tical methodologies due to their ability to process large
datasets and identify complex patterns [21-23]. Compre-
hending the mechanism of landslides is necessary in order
to appropriately implement LSM. After that, one must look
at the connection between causative variables and land-
slide occurrence [24].

Despite the growing use of ML models in LSM, there
remains a lack of comparative studies that systematically
evaluate the performance of different algorithms in specific
geographic contexts, such as the Oued Aoulai watershed in
Morocco. This study aims to fill this gap by not only com-
paring the efficacy of SVM and RF models but also by asses-
sing their contributions to effective risk-reduction strategies
based on local geological and environmental conditions.

This research aims to evaluate the use of prediction
rate and FR models in determining the landslide risk of the
Oued Aoulai watershed in Taounate Province, Morocco.
The research objective is to assess the benefits and draw-
backs of these models as well as their ability to provide
efficient risk-reduction techniques. This study employs
SVM and RF models due to their complementary strengths
in handling LSM. SVM is selected for its effectiveness in
high-dimensional spaces, where it can accurately classify
and predict landslide occurrences by identifying optimal
decision boundaries. Conversely, RF is chosen for its robust-
ness and ability to aggregate multiple DTs, which enhances
the predictive accuracy and reduces the likelihood of over-
fitting. Together, these models provide a comprehensive
approach to analyzing landslide susceptibility in the Oued
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Aoulai watershed. There have been many landslides in the
study area in the past. To the best of our knowledge, state-of-
the-art technologies have been integrated into this research
together with a thorough evaluation of the available scien-
tific literature. The next step is to make systematic geogra-
phical links between certain characteristics and landslide
episodes. Performance curves and matrices were used to
evaluate the accuracy of RF and SVM models.

2 Methods

In this study, factors influencing landslide susceptibility
were selected based on expert judgment and a thorough
review of relevant literature, resulting in an initial list of 14
potential triggering factors. When they are selected one by
one using the slope unit as the base unit, the RF and SVM
models yield different ratios of the susceptibility map. A
factor correlation analysis was conducted to identify multi-
collinearity among these factors, leading to the elimination
of two redundant variables. Additionally, a sensitivity ana-
lysis was performed to assess the contribution of each factor
to landslide occurrences, enabling us to prioritize the most
significant variables for modeling. Figure 1 depicts the flow-
chart of this study, describing the essential steps involved in
developing the landslide status factor, inventory, and com-
parison, in addition to applying different ratios and models.
These methods ensured a robust selection of factors for
the study area, enhancing the reliability of the susceptibility
maps.

2.1 Study area

The Oued Aoulai catchment located in the Taounate Province
is a sub-catchment of the Oued Ouergha catchment. It divides
the Taounate Province into northern and southern parts and
represents the case study for this research. In the northern
part of Taounate, between latitudes 34°48'39.60"N and 34°33"
16.77'N and longitudes 4°5620.63E and 4°58'11.20E, the Oued
Aoulai catchment is located in a region (Figure 2) with an area
of 370 km?, a length of 27 km, and a width of 19 km and con-
trolled by the Ghafsay and Ratba weather stations. It is home
to a diverse population around 91,900, whose livelihoods
depend heavily on agriculture and natural resources. The
region has experienced numerous landslides, which pose sig-
nificant risks to local communities by damaging the infra-
structure, disrupting the transportation networks, and
affecting the agricultural productivity [25,26]. Previous
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Figure 1: Flowchart of the research methodology.

research studies in the region indicate that landslides
have not only led to economic losses but also threatened
the safety and well-being of residents [27,28]. Given this con-
text, effective LSM becomes crucial for informing risk man-
agement strategies and enhancing community resilience.

Part of the western Mediterranean’s Alpine chain is
the Rif chain, which is located in northern Morocco and
is distinguished by its intricate geology. Its present struc-
ture was determined by the movement of internal zones
toward the WSW and by the African and European NS
convergence during the Neogene [29,30]. It consists of three
major structural areas, such as inner areas, flysch zones,
and outer areas, from which ancient furrows and folds are
derived from north to south.

_____________________________

The research region is a part of the Mesorifan zone in
the middle Rif area, which is made up of Neogene basins
(Rhafsai, Tafrant, Taounate Bouhadi, and Dhar Souk), all of
which have a synclinal structure framed by NE-SW, EW,
NW accidents-SE [31]. The whole outline is an arc with a
concavity-directed NE. The Aoulai watershed is part of the
Tafrant-Rhafsai synclinal basin formed from Triassic to
Quaternary rocks.

The facies are composed of Jurassic limestone, marl
limestone, marl, thick Cretaceous marl, and marl lime-
stone; the Tertiary cover began in the Eocene (white
marl containing chert rock), then the Lower Miocene
(alternating marl and sandy limestone) and the Upper
Miocene, consisting of blue marl and marl sandstone.
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Figure 2: Geographic setting of the research area.

Quaternary is prominent and widespread in terraces or
dispersed parts of the basin.

2.2 Application of various ratios and models
2.2.1 RF model

Several independent DTs that are all capable of producing
results make up the RF model [32]. Based on DTs, the RF
model is a categorization approach [33]. Data scientists fre-
quently utilize the supervised learning method RF. Every DT
starts with a randomly chosen sample, uses it for training,
and then replaces it with the original data [34]. The RF
model consists of multiple DTs that are trained indepen-
dently using a method known as bootstrap aggregating or
bagging. In this process, each tree is constructed using a
random subset of the training data, generated by sampling
with replacement. This means that some observations may
be used multiple times in a single tree, while others may not
be included at all. By averaging the predictions from all the
DTs, the RF model reduces the variance associated with
individual trees, thus minimizing the risk of overfitting to
the training data. This ensemble approach enhances the
model’s generalization capability on unseen data. It is a
reliable model that combines the outputs of several DTs
into a single result and may be applied to regression and

classification applications. Since the RF selection of each
split node depends on two data objects — out-of-bag (OOB)
and neighbor — RF is known for its high accuracy in pre-
dicting outliers [35]. When these DTs are combined, the
result is the RF. In terms of outcome, this is how the RF
performs better than the DT model (equation (1)).
k
H(X) = avgy max ) I(hy(X) = Y), o))
i=1
where avyx shows the average, and the indicator function is
denoted by I.

The RF model has many advantages, such as (i) determining
correlations between variables without generating any central
hypotheses [36], (ii) being a better ML program for assessing
hierarchical situations in big data [36], and (iii) ranking the inde-
pendent variables according to importance [37]. This approach
also has the advantage of meticulously eliminating the problem
of overfitting the data by (i) building multiple trees, (i) bootstrap-
ping observations, and (iii) dividing the nodes into optimal divi-
sions within a randomized subset [38].

2.2.2 SVM model

The SVM family of automatic learning algorithms addresses
issues with anomaly detection, regression, and classification.
Vapnik was the one who first suggested the SVM for
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regression [39]. In a high-dimensional or infinite space, the
SVM generates a single hyperplane or a group of hyperplanes.
It is applicable to both regression and classification.

Their foundation lies in the quest for the ideal marginal
hypersurface that, to the greatest extent feasible, distinguishes
or categorizes the data while remaining as remote from every
observation as feasible. The idea is to identify a discriminative
function or classifier with the largest potential generalization
capacity that is known as predictive quality [20].

Frequently, SVMs depend on “kernels” to get around this.
By projecting the data into a feature space — a vector space of
higher dimension — or by bringing them back to the two-
dimensional space, these mathematical functions enable the
separation of the data [40]. The nonlinear decision boundary
was explained by a kernel function K (equation (2)) [39].

K(%, %) = 000)T0(%). @

The function @& was used to map the training vector (x)
into a high-dimensional space. To deal with nonlinear pro-
blems, three kernel functions were regularly introduced.
This study used three types of kernel functions listed below:
the linear kernel function (equation (3)), radial basis kernel
function (equation (4)), and polynomial kernel function
(equation (5)). Using geographic information system (GIS)
methods, the environmental parameters were determined.

K&, %) =X * X, 3)
K (%, X)) = exp{-/8°|IX; - X[}, @

where 2 is the radial basis function’s bandwidth.
K, %) = (X + 1), &)

when y > 0, the polynomial kernel has degree d.

2.3 Landslide inventory, risk variables, and
data sources

For this investigation, the following were the main sources
of data: (1) published survey data and landslide reports,
(2) Landsat 8 remote sensing images, (3) a 15 m resolution
digital elevation model (DEM), and (4) topographic and
geology maps at a scale of 1:50,000.

2.3.1 Landslide inventory

Using a geology inventory to find and classify landslides is a
helpful method for LSM. Precise mapping of landslide sus-
ceptibility was established by gathering pertinent reports
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and photos, as well as by carrying out a survey at a
1:50,000 scale. There have been numerous recorded land-
slides in the area, including rock blades, debris flows,
and debris avalanches. In the present study, the landslide
dataset comprises a total of 200 documented landslide
events within the Oued Aoulai watershed, with 140 land-
slides used for model training and 60 for validation. The
dataset includes various types of landslides, such as debris
flows, rockfalls, and translational slides, which are preva-
lent in the region. Key characteristics of the landslides
include their geographical distribution, with occurrences
primarily concentrated in steep slopes and areas with spe-
cific geological formations. This diverse dataset allows for a
comprehensive evaluation of the models’ performance and
enhances the reliability of the susceptibility mapping. This
study used the fieldwork, data from satellite image analysis,
and historical records to create a map of active landslides. In
this way, a list of almost 1,000 landslides in the research
region was generated.

2.3.2 Landslide causative factors

The factors considered for LSM in the Oued Aoulai watershed
were briefly outlined by using in-depth literature review,
brainstorming, and discussion with experts. The data sources
for these factors include satellite imagery for land cover clas-
sification, topographic maps for slope analysis, and geological
surveys for understanding subsurface conditions. The factors
were processed using GIS software, which facilitated spatial
analysis and integration of various datasets, alongside statis-
tical analysis tools for correlation and sensitivity assessments.
This streamlined approach ensures that the factors are rele-
vant and effectively contribute to the susceptibility mapping
process.

The features of the research area guided the subjective
selection of landslide-causing elements [41]. The topographic
position index (TPI), topographic wetness index (TWI), lithology,
distance from faults, slope gradient, slope aspect, soil texture,
curvature, precipitation, land use and land cover (LULC), dis-
tance from highways, and normalized difference vegetation
index (NDVI) were among the 14 landslide-causing components
that were investigated in this study. The selection of these fac-
tors was based on expert judgment, a review of the literature,
and the availability of data at the appropriate scale by referring
to successful research outcomes from the published literature
such as Sachdeva et al. and Bashir et al. [42,43]. Slope inclination
— landslides occur more frequently on hillside slopes that are
steeper [44]. Since the slope gradient affects the soil moisture
content and is required for subsurface flow [45], this has a
direct bearing on how frequently landslides occur.
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NDVI is recognized as an important variable in land-
slide susceptibility modeling, even though it significantly
enhances the cohesiveness and shear strength of lithologic
mass and immobilizes vast amounts of water [44,46]. Using
the January 2023 images, equation (6) was applied to deter-
mine the present research region’s NDVI value.

NDVI = (NIR - R)/(NIR + R), (6)

where the electromagnetic spectrum’s red band is denoted
by R and the near-infrared band is represented by NIR.

Elevation is a topographical feature that affects how
unstable slopes are. Almost all landslide susceptibility eva-
luations employ it often [47]. In terms of LULC, landslides
are mostly caused in the study area by anthropogenic
activities such as infrastructure development and urbani-
zation. Roads and structures must be constructed because of
these activities, which may alter the stability of the slope
and the original geological conditions [48,49]. Earlier models
included data on land use and cover [50-52] to assess vul-
nerability to natural disasters such as avalanches, flooding,
wildfires, and landslides.

Soil texture describes each soil profile’s materials and
physical properties, with soil texture data taken from labora-
tory analyses. Tectonic deformations that might result in
landslides are defined as weak spots in the rock, character-
ized by a drop in resistivity and can be brittle (faults, shears,
etc.) or ductile folds [53-55]. Thus, the elimination of faults
may serve as a warning indicator for landslides. The runoff
from rivers contributes significantly to undercutting phe-
nomena that increase the pore water pressure in the vicinity
and trigger landslides [56]. As such, it has a major impact on
the susceptibility to landslides [57].

One essential terrain variable used in many different
kinds of geomorphometric research is curvature [58]. There
are two types of curvatures: plane curvature and profile
curvature. It is well established that the profile curvature
controls these materials’ downslope acceleration and decel-
eration to affect material deposition, while surface runoff’s
convergence and dispersion are directly impacted by plane
curvature [59].

The TPI is the difference between a single cell’s height
and the average height of its neighbors [60,61]. The TWTI is
one of the characteristics that demonstrates the hydrolo-
gical process linked to the build-up of water flow based on
the regulation of the slope factor in a region [62]. Slope
affects the hydrological cycle in observable ways in loca-
tions with high relief.

In terms of Aspect, the slope gradient can affect land-
slides both directly and indirectly in several processes,
including the orientation of discontinuities, wind and
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precipitation patterns, soil moisture concentration, root
development evapotranspiration, hydrological processes,
vegetation, and solar radiation [63].

One of the significant anthropogenic activities that
alters the morphology of natural slopes is the road building.
This changes how close the slopes are to roads and forecasts
the intensity of the landslides [64]. Precipitation data can be
used to calculate the amount of water that accumulates and
causes landslides, as well as the movement of materials and
soil [65]. Lithology is important to LMS and influences var-
ious types of landslides. Numerous mechanical and physical
properties, including the kind, degree of weathering resis-
tance, density, durability, and permeability, are present in
these units [66].

3 Results and discussion

3.1 Factors contributing to landslides

Building upon established techniques in the field, such as
those demonstrated by [61] in their LR model case study,
our approach integrates multiple ML models, including
SVMs and RF. These methodologies are supported by recent
findings in the literature [62], which highlight the efficacy of
ML techniques in accurately predicting landslide suscept-
ibility based on environmental factors.

Slope inclination: The slope map (Figure 3a) for this
inquiry was created using the DEM and ranged from 0 to
55. The map was constructed at a resolution of 12 m.

NDVI: The current research region’s NDVI values range
from -0.13 to 0.67, where a positive number implies vege-
tated regions and a negative one denotes the barren land
(Figure 3b).

Elevation: The elevation map in this study was made
in accordance with the DEM’s classification. It was situated
above the sea level at a height of 198-1,583 m (Figure 3c).

LULC: The land use map used in this study was derived
from the “Sentinel-2 10-Meter LULC” dataset. Six distinct
land use types were identified in the research region: trees,
water, crops, cultivated land, bare soil, and grassland
(Figure 3d).

Soil type: The research region had an average soil
composition of 18% sand, 32% silt, and 50% clay. Figure
3e illustrates the distribution of soil texture in the research
region.

Distance from faults: Using GIS software, Euclidean
Distance tool, a map was created, and the distance to faults
was plotted. The 1:50,000 scale geology maps of the
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research area provided the faults employed in this inves-
tigation (Figure 3f). There could be anywhere from 0 to
400 m between faults.

Distance from rivers: The hydrographic network for this
study was created using a DEM with a resolution of 12 m. The
Euclidean distance approach in GIS software was used to
derive the river’s distance, which spans from 0 to 500 m.

Curvature: The plane and profile curvatures were
derived from the DEM using GIS software. In the study
area, the profile curvature exhibits a convex, flat shape,
with values ranging from -4.43 to 4.66. Convex curvatures
indicate a decelerating flow, while concave curvatures indi-
cate an accelerating flow. The area’s plane curvature often
depicts the flow’s convergence and divergence along a sur-
face since it is perpendicular to the direction of the sharpest
gradient. The three plane curvatures of the research region
are concave, convex, and flat, and they range from -4.39 to
4.64 (Figure 4a).

TPI: Topographic landforms like valleys, slopes, and
ridges can be identified by applying particular thresholds
to the TPI values. Because hills are the source of most land-
slide ruts, the TPI may be utilized to produce a landslide
susceptibility map. The TPI for the study area spans from
-25.95 to 32.01 (Figure 4b).

TWI: The terrain wetness index highlights the signifi-
cant influence of topography and soil moisture content on
landslide probability. The research area’s TWI (Figure 4c)
varies from 2.41 to 21.6.

Aspect: The slope gradient in the research area was
utilized to generate nine categories using the DEM: flat (1),
north, northeast, east, southeast, south, southeast, west,
and northeast (Figure 4e).

Distance from roads: The elimination of highways
could be a sign that landslides are about to happen. In
the current experiment, the range of highway distances
(0-500m) was generated using the Euclidean distance
tool within the GIS software (Figure 41f).

Rainfall: The rainfall condition map is illustrated in
Figure 5a, and Figure 5b shows the geographical distribu-
tion of average precipitation data over 10 years.

Lithology: The Moroccan Ministry of Mines and Geology
provided two geological maps (scale, 1/50,000) from which the
lithology used in this study was derived; Rhafsay-kelaa des
sles and Tafrannt de I’Ouerra-Moulay Bouchta (Figure 5b).

3.2 Multicollinearity analysis

Determining the multicollinearity of land cover factors
(LCFs) is essential in any multivariable landslide simulation.

DE GRUYTER

The extent to which independent variables are interdepen-
dent can significantly impact a model’s overall accuracy.
Excessive multicollinearity, for example, may reduce the
predictive power of the model, emphasizing the need for
rigorous assessment to ensure the stability and reliability
of simulation results [67,68].

The 14 components’ multicollinearity was tested using var-
iance inflation factors (VIFs) and tolerances. Multicollinearity is
defined as a tolerance of less than 0.2 or a VIF of 5.0 or more
[63,64]. These thresholds are commonly used in statistical ana-
lysis to identify potential multicollinearity issues among pre-
dictor variables. A tolerance value below 0.2 indicates that the
variable shares a significant amount of variance with other
predictors, which can lead to unreliable coefficient estimates
and inflated standard errors. Similarly, a VIF exceeding 5.0
suggests that the variable is highly correlated with one or
more other predictors, warranting further investigation to
ensure the stability and reliability of the model. Investigation
of the conditioning variables indicates that every landslide
conditioning variable utilized in the LSM for this case study
is trustworthy and safe to apply (Table 1).

The result demonstrates that the lowest TOL value is
somewhat greater. Elevation reaches the maximum VIF of
2.147012 and the lowest TOL of 0.46576, indicating that the
maximum VIF is likewise far below the cutoff level.

3.3 Pearson correlation coefficient

The Pearson correlation coefficient, abbreviated “r,” is a
popular statistical metric for determining the direction
and strength of a linear relationship between two vari-
ables. Equation (7) defines how to calculate this coefficient
and gives a numerical representation of the degree of
linear relationship between the two parameters:

_ Covix,y) _ [x-u)(y-p)]

X,y 0x0y

, M

00y

where

— Cov(x,y) represents the covariance of x and y between
two elements; o, and g, represent the standard devia-
tions of x and y, respectively, and u, and u, represent the
means of x and y, respectively.

Equation (3) depicts the mathematical expectation. A
Pearson correlation coefficient absolute value greater than
0.5 often indicates a significant link between the two para-
meters [68,69]. The correlation coefficient matrix of this
study reveals no strong correlations among the 14 condi-
tioning factors, indicating that no conditioning factors
need to be eliminated (Figure 6).
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Table 1: Multicollinearity diagnosis results

Variable VIF Tolerance
Curvature 2.147012 0.46576
DT rivers 2.095214 0.47728
DT roads 1.816736 0.55044
Slope 1.47478 0.67807
DT faults 1.461652 0.68416
Aspect 1.461243 0.68435
Rainfall 1.440201 0.69435
TWI 1.31355 0.7613
TPI 1.280253 0.7811
Soil type 1.240115 0.80638
Lithology 1.213983 0.82373
DEM 1.181745 0.84621
NDVI 1.161018 0.86131
LULC 1.146891 0.87192

3.4 Mapping the susceptibility of landslides

Figure 7 compares two landslide susceptibility maps cre-
ated with RF and SVM models. From extremely low to
extremely high susceptibility classifications, five were
identified (Figure 8). Specific vulnerable zones were

identified using the outcomes of each landslide suscept-
ibility model. The proportional percentages of the area
that each vulnerability class was assigned in the models
were carefully selected to give thorough information
and enhance the comparison analysis’s granularity.

3.5 Model performance and validation

The current study used a variety of statistical and graphical
performance measures to assess the prediction perfor-
mance of the SVM and RF models. For classification pro-
blems, the confusion matrix was frequently utilized. False
positive (FP), false negative (TN), true positive (TP), and
false negative (FN) values were used to identify counts of
genuine and predicted values. TP stands for the number of
properly categorized genuine landslide pixels, TN for accu-
rately classified non-landslide pixels, FP for accurately
classified non-landslide pixels, and FN for accurately clas-
sified actual landslide pixels. The following calculations
were performed: accuracy, precision, recall, confusion
matrix, mean absolute error (MAE), and root mean
square error (RMSE).
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AUC values from receiver operating characteristic of imbalanced data, as it provides a single metric that cap-
(ROC) curves are often used to calculate the classification tures the model’s ability to differentiate between classes,
performance. The AUC is particularly valuable in the context regardless of their distribution. This is crucial in landslide
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Figure 7: Generated landslide susceptibility maps using the SVM and RF.
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Figure 9: Implemented model’s stacked ROC curves.

susceptibility modeling, where the number of susceptible
versus non-susceptible locations may not be evenly distrib-
uted. A higher AUC indicates better model performance
across all classification thresholds [70,71], making it a pre-
ferred metric for evaluating the efficacy of our models. The
greater the AUC score, the better the model forecasts land-
slides and non-landslides. The AUC prediction curve was
generated using the landslide inventory training dataset,
while the AUC validation curve and performance matrices
were created using the validation dataset.

Table 2: Models’ RMSE and AUC

DE GRUYTER

Figure 9 displays the training accuracies of the SE-FR
and SE-SVM models, which were 94.7 and 80.65 AUC,
respectively. According to the confusion matrices, the SE-
FR and SE-SVM models have 0.946 and 0.906 accuracy,
0.904 and 0.863 precision, and 0.982 and 0.902 recall,
respectively. Table 2 displays the MAE and RMSE values
for the SE-FR and SE-SVM models, which were 0.053 and
0.193, 0.230 and 0.439, respectively. According to the studies
of Youssef et al., Aguirre-Gutiérrez et al., and Sestras et al.
[8,72,73], evaluating a model’s performance using a single
metric, such as AUC, is not necessarily meaningful, because
high AUC does not always imply a high degree of accuracy
in spatial predictions.

Both models exhibit good prediction, recall, and accu-
racy scores, and their respective MAE and RMSE errors fall
within acceptable bounds, according to the prediction matrix
results. These statistical and visual performance measures
show that both models have respectable error values and a
strong potential for prediction. As a result, it was discovered
that RF performed better than the SVM model when utilizing
the AUC technique. However, when the RMSE technique was
used, the SVM fared better than the RF model.

4 Conclusions

LSM is a crucial geomatic technique for effective risk
assessment and watershed management because different
regions of Morocco are always at risk due to factors such
as lithology, climate, geology, land use/cover, vegetation,
anthropogenic interventions, and other related factors.
The current study employed two ML models to evaluate
the specified region in terms of landslide scenarios: SVM
and RF. This was done since creating viable and realistic
susceptibility maps is essential for preventive actions and
treatments. According to the thorough investigation and
analytical approach, the RF model classified 30.07% of
the research region as low susceptible to landslides, 8.88%
as moderately susceptible, and 61.06% as extremely suscep-
tible. On the other hand, the SVM model determined that
35.41% of the region was susceptible to landslides at a low
level, 11.08% at a moderate level, and 53.5% at a high level.

Performance indicators Precision Accuracy Recall MAE RMSE AUC
Model RF 0.904 0.946 0.982 0.053 0.230 947
SVM 0.863 0.906 0.902 0.193 0.439 80.65
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The performance of the models was tested using the AUC
and RMSE measurements, and the results were favorable.
The RF model had an AUC of 94.7%, while the SVM model
had an AUC of 80.65%. In the end, the RF and SVM models
provide strong and trustworthy findings for mapping the
susceptibility of landslides. Since the resulting hazard mapping
scenarios give crucial information for informed watershed
planning and development strategies, they are of great value
to local authorities.
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