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Abstract: This study focuses on slope stability analysis, a
critical process for understanding the conditions, dur-
ability, mass properties, and failure mechanisms of slopes.
The research specifically addresses rotational-type failure,
the primary instability mechanism affecting earth slopes.
Identifying and understanding key factors such as slope
height, slope angle, density, cohesion, friction, water pore
pressure, and tensile cracks are essential for effective sta-
bilization strategies. The objective of this study is to
develop accurate predictive models for slope stability ana-
lysis using advanced intelligent techniques, including data
mining mapping and complex decision tree regression
(DTR). Themodels were validated using performancemetrics
such as mean absolute error (MAE), mean squared error
(MSE), root mean square error (RMSE), and the coefficient
of determination (R²). Additionally, overall accuracy was
assessed using a confusion matrix. The predictive model
was tested on a dataset of 120 slope cases, achieving an
accuracy of approximately 91.07% with DTR. The error rates
for the training set were MAE = 0.1242, MSE = 0.1722, and
RMSE = 0.1098, demonstrating the model’s capability to effec-
tively analyze and predict slope stability in earth slopes and
embankments. The study concludes that these intelligent
techniques offer a reliable approach for stability analysis,
contributing to safer and more efficient slope management.

Keywords: slope stability, earth-slopes, rotational-type
failure, AI algorithms, machine learning

1 Introduction

Slope stability is one of the most important and greatest
challenges in geotechnical engineering during various
engineering designs and constructions [1–7]. Slope stability
refers to the ability of a soil or rock slope to remain in place
and resist failure due to the force of gravity [8–10]. The
stability of a slope depends on factors such as the strength
of the material, the slope angle, the amount and type of
vegetation, and the presence of water or other fluids, geo-
unit condition, the type of soil or rock, the presence of
cracks or other defects, erosion or other processes, and
slope internal specification [11–13]. A slope that is not
stable can result in sliding, rockfalls, toppling, and other
types of mass wasting [14–16]. To assess slope stability, geo-
engineers use a combination of field observations, labora-
tory testing, and modeling to evaluate the factors that
affect stability and to determine the likelihood of failures
[17]. To ensure stability, engineers may use a variety of
techniques, such as soil nailing, anchoring systems, terra-
cing, retaining walls, or the creation of vegetative cover. In
some cases, it may be necessary to modify the slope to
reduce its angle or to reinforce it with materials such as
concrete or steel. The design of these mitigation measures
depends on the specific conditions and characteristics of
the site and the stability issues it presents [18].

It is important to note that slope stability is a complex
and interdisciplinary field, and the assessment and design
of slope stability solutions require the expertise of geo-
engineers who provide appropriate stabilizations [17].
The goal of slope stability analysis and design is to ensure
public safety and prevent damage to property, infrastruc-
ture, and the environment [19]. Thus, providing a detailed
and accurate stability analysis as well as a proper under-
standing of the instability mechanism that might happen
in slopes can be useful. Geometry, stress–strain history,
structural and tectonic conditions, geomorphologic status,
regional climate, seismic activity, water conditions, vegeta-
tion, weathering, drainage pattern, construction activities,
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and special occasions all have a direct impact on the type of
slope failures and sliding mechanisms [20,21]. Depending on
nature of the sliding mass, the slope’s failure mechanisms
can be classified as wedge, planar, toppling, and rotational
(or circular-type) failures [8].

Rotational failure is a common type of slope failure in
which a soil mass or embankment material rotates along a
curved surface, typically a circular or spiral-shaped failure
plane. This type of failure is typically caused by a combina-
tion of factors such as soil strength, slope angle, and the
presence of water or other fluid in the slope material. The
movement of the slope mass can be triggered by changes in
the slope conditions such as heavy rainfall, earthquakes, or
changes in the water table [22,23]. Also, rotational failure
can result in the creation of large circular or spiral-shaped
depressions in the slope, which can be shallow or deep and
can be several to hundreds of meters in diameter. Figure 1
illustrates the main concept of rotational failure, which
occurred in slopes and embankments. The rotational
failure process can be gradual or rapid and can cause sig-
nificant damage to infrastructure and property, as well as
pose a risk to public safety [24]. So, accurate estimation of
the slope stability can be considered as the main duty for
slope or embankment design [25,26].

Numerous approaches have been introduced and used
to analyze or predict slope stability with a background of
more than 300 years, which include a range of simple
evaluations, planar failure, limit state criteria, limit equili-
brium analysis, numerical methods, hybrid and high-order
approaches, which are implemented in two and three
dimensions [27]. These methods have their own certain
advantages and limitations that directly affect the stability

results [28]. Also, there are various uncertainties that are
imposed from stability factors, which have an effect on
stability decisions. In this regard, professionals are always
looking for new and efficient methods that are capable of
reducing the uncertainty rate and increase the accuracy of
the calculations. Recently, with the advancement of intel-
ligent technology applications in geotechnics, various
machine learning-based methods was successfully applied
to predict slope stability and factored parameters sub-
jected to different failure types [29,30]. Table 1 provides a
summary of some relative machine learning-based
methods that are used in slope stability analysis by
researchers. The main objective of the literature on rota-
tional failures on slopes is based on factored parameters
that lead to calculation by these methodologies , which are
presented in Figure 1 properly. These factors are consid-
ered in predictive models by developers to conduct more
accurate results. In such cases, the machine learning-based
methods are chasing several goals like safety factor (FS),
durability status, and stability class or reliability predic-
tions for slopes and embankments. These methods cover
extended aspects of machine learning and data mining
mapping procedures. In the meantime, complex decision
tree regression (DTR) has received remarkable success
recently in stability analysis for geotechnical assessments
[31–34].

DTR is a type of regression analysis method that uses
a tree-like model of decisions and their possible conse-
quences. The goal of DTR is to create a model that predicts
a target numerical value based on certain input features.
Each internal node of the tree represents a test on an input
feature, each branch represents the outcome of the test,

Figure 1: Factored parameters on slope stability subjected to rotational failures.
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and each leaf node represents a predicted value for the
target variable. The prediction of the DTR model is the
average value of the target variable of the samples in
the corresponding leaf node [59]. DRT models overcome
the shortcomings of other data mining mapping techniques
by producing a transparent and structural model that
explicitly represents the relationship between input and
output parameters [60]. The presented study attempted
to use a complex DTR predictive model to provide stability
prediction based on factored parameters, which was imple-
mented on 120 slope cases in Iran.

Considering the wide range of studies on advanced
technologies in slope stability and soil embankment stability
analysis, researchers have explored various approaches.
These include intelligent systems, decision-making techni-
ques, and machine learning methodologies [61–67], as well
as numerous numerical modeling techniques [68–73]. With
reviewing the variety of literature, a main gap that profes-
sionals face with where this study addresses is the need for
more accurate and reliable predictive models for slope
stability analysis, specifically focusing on rotational-type

failures. While previous studies have explored various
methods for slope stability assessment, there has been a
lack of research applying advanced intelligent techniques
like data mining and complex DTR. This study fills that
gap by developing and validating a model that signifi-
cantly enhances the prediction accuracy and reliability
of slope stability assessments.

2 Methods

2.1 DTR principles

The DTR is a tree-like model which uses regression analysis
procedures for decisions and their possible consequences
[59]. Figure 2 provides a basic schematic diagram of DTR
regression trees. DTR is used for both linear and non-linear
relationships between the target variable and input fea-
tures. It can handle high-dimensional input data and

Table 1: A summary of recent slope stability prediction techniques based on machine learning

Reference Computational learning methods Other methods

MLP Fuzzy SVM GA ANFIS RF DT k-NN PSO MC GNB ClM LR DNN

Suman et al. [35] * *
Hoang and Pham [36] * * *
Xue [37] * *
Kang et al. [38] * * * *
Fattahi [39] * * *
Feng et al. [40] *
Rukhaiyar et al. [41] * *
Qi and Tang [42]
Xu et al. [43] *
Bui et al. [44] * * *
Koopialipoor et al. [45] * * * Imperialist competitive
Sari et al. [46] * *
Zhou et al. [47] * * * Gradient boosting
Yuan and Moayedi [48] * * * * *
Gao et al. [49] * Imperialist competitive
Zheng et al. [50] * Limit equilibrium
Palazzolo et al. [51] *
Azmoon et al. [52] * * *
Zhou et al. [53] * *
Mahmoodzadeh et al. [54] * * * * * *
Lin et al. [55] * * Gradient boosting
Nanehkaran et al. [56] * * * * *
Mu’azu [57] * * *
Nanehkaran et al. [58] * * * * Limit equilibrium

MLP: multilayer perceptron, Fuzzy: fuzzy logic, SVM: support-vector machines, GA: genetic algorithm, ANFIS: adaptive neuro-fuzzy inference system,
RF: random forest, DT: decision tree, k-NN: k-nearest neighbour, PSO: particle-swarm optimization, MC: Monte-Carlo simulations, GNB: gaussian
naïve bayes, ClM: clustering method, LR logistic regression, DNN: deep neural networks.
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complex interactions between features. One important
aspect of decision trees is the process of “pruning” the
tree, which involves removing branches that do not con-
tribute much to the accuracy of the model to prevent over-
fitting [75]. Another aspect to consider is the choice of
splitting criterion, such as mean squared error (MSE) or
mean absolute error, which determines how the tree splits
the data based on the input features. DTR can be sensitive
to small variations in the data and can be improved by
using ensemble methods such as random forest regres-
sions [59]. DTR has several advantages and disadvantages,
which can be used in different aspects of decision-based
evaluations [76,77]. Some of the advantages of DTR can be
presented as follows [75]:
− Easy to understand and interpret: The tree structure of a

Decision Tree makes it easy to understand and interpret
the relationships between the features and the target
variable.

− Handles non-linear relationships: Decision Trees can
handle complex non-linear relationships between fea-
tures and target variable.

− Can handle missing values: Unlike many other machine
learning algorithms, Decision Trees can handle missing
values in the data.

− Not sensitive to outliers: Decision Trees are not sensitive
to outliers in the data, as the splits in the tree are based
on the overall distribution of the data.

Also, disadvantages of the DTR are provided as fol-
lows [74]:
− Overfitting: If a decision tree is not pruned, it can

easily overfit the data and perform poorly on new,
unseen data,

− Instability: Decision Trees can be unstable, as small
changes in the data can lead to large changes in the
structure of the tree.

− Bias towards features with many categories: Decision
Trees tend to split more frequently on features with
many categories, which can lead to a bias towards these
features.

Overall, DTR is a powerful and flexible machine-
learning algorithm that can be useful for many regression
problems. However, it is important to carefully evaluate
the advantages and disadvantages and determine if it is
the best approach for a given problem. One of the good
aspects of DTR is chasing various scenarios and variables
to provide accurate result based on existed information,
which are proper circumstances to using in geotechnical
aspect and slope stability assessments. In this regard, DTR
works by dividing the input data into smaller subsets based
on the values of the features and then making predictions
based on the average target value of the samples in each
subset. The process of dividing the data into subsets is
repeated until a stopping criterion is met, such as a minimum
number of samples in a leaf node or a minimum decrease in
the variance of the target variable. The basic steps in DTR
modeling can be presented as follows:
− Select the best feature to split the data: The algorithm

selects the feature that provides the largest decrease in
the variance of the target variable.

− Divide the data into subsets: The data is divided into
subsets based on the values of the selected feature.

− Create a new internal node for the selected feature: The
algorithm creates a new internal node for the selected
feature and adds the subsets as branches.

Figure 2: A schematic diagram for a basic DTR [74].
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− Repeat the process for each subset: The process is
repeated for each subset until a stopping criterion is met.

− Create a leaf node for each subset: Once the stopping
criterion is met, the algorithm creates a leaf node for
each subset and assigns a predicted target value based
on the average of the target values of the samples in that
subset.

− The final result of the DTR is a tree-like model that can
be used to make predictions for new, unseen data.

2.2 Data acquisition and structured
database

The rotational failure for earth slopes and embankments is
targeted in this research. The rotational failure is the main
failure mechanism that threatens soil slope worldwide,
and providing an alternative stability prediction model
can be used frequently to cover the analytical gap in tradi-
tional stability analysis. As presented in Figure 1, there are
several certain factored parameters that have a direct
impact on soil slope and embankment’s stability, which
include slope height, slope angle, density, cohesion, fric-
tion, water pore pressure, and tensile crack. These para-
meters can be categorized into several main triggering
groups such as geometric partial factors, geo-materials par-
tial factors, strength partial factors, and water conditions.
These factored parameters are imposed on slope stability
status, and the durability of slope, which leads to stable or
unstable conditions was considered as input parameters.
The FS, slope durability status (SDS), and stability class
were considered as main output values.

The prepared database from 120 different earth-slope
and embankment cases contains seven input variables and

three output variables data. The input parameters consist
of slope height (H), slope angle (β), density (γ), cohesion (c′),
friction (ϕ′), water pore pressure (U), tensile crack (V), and
output parameters are FS, SDS, and stability class. The
prepared database was randomly divided into testing
(30% for the main database) and training (70% for the
main database) datasets. The database contains 120 cases,
which are segregated into 84 cases for the training dataset
and 36 cases for the testing dataset which both stable and
unstable slopes are considered. It should be noted that the
primary dataset used in this study comprises a variety of
case reports from different regions of Iran. These reports
were compiled by researchers and professionals and
include both literature reviews and technical notes. The
input and output parameters, histograms, and statistical
features of the discussed database are shown in Table 2.
The main statistical indexes used in this study are the
minimum (max), maximum (min), mean, standard devia-
tion (Std.Dev.), variance, and skewness values. The main
limit state circumstance was selected for FS variation (FS
= 1.0), which represents stability class and slope dur-
ability. So, for all stability calculations, FS is greater
than 1.0, slope is considered as stable; and for FS less
than 1.0, slope is considered as unstable. It should be
noted that the slope at the F.S is equal to 1.0, the prob-
ability of stability status is equal to 50%; so, the state is
considered as the critical state.

Additionally, the Variance Accounted For (VAF) was
used to indicate how much of the variance in a dependent
variable can be explained by one or more independent
input variables in a predictive model. In practical terms,
VAF helps to understand the proportion of the total varia-
bility in the outcome variable that is attributable to the
predictors or explanatory variables being studied. So,
higher VAF values suggest that a larger proportion of the

Table 2: Statistical features analysis for input and output factored parameters

Parameter Max Min Mean Std.Dev. Variance Skewness VAF (%)

Input
Slope height (m) 25.0 3.50 14.25 8.77 84.59 1.92 88.1
Slope angle (degree) 90.0 32.0 61.00 23.67 90.88 2.21 75.8
Density (kN/m3) 21.0 17.3 19.15 1.51 80.06 1.84 78.5
Cohesion (kPa) 62.0 0.00 31.0 25.31 64.87 2.20 89.0
Friction (degree) 39.2 30.0 34.6 3.755 25.19 2.13 93.1
Water pore-pressure 0.50 0.00 0.25 0.204 0.042 0.82 71.6
Tensile crack (m) 1.20 0.10 0.65 0.449 0.211 1.05 77.8

Output
F.S 2.0 0.0 1.0 — — — —

Stability class 1.0 0.0 1.0 — — — —

SDS Stable Unstable Critical — — — —
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variability in the dependent variable is accounted for by
the model, which generally indicates a better fit of the
model to the data. It should be noted that VAF is used in
machine learning in slightly different ways depending on
the context and the specific type of model. The presented
study used explained variance value which indicates the
proportion of the total variance in the target variable that
is captured by the model. It helps evaluate how well the
model explains the variability of the target.

2.3 Predictive model implementation

DTR regression is a decision tree algorithm used for the
prediction of continuous variables. The algorithm works
by recursively splitting the data into subsets based on the
features that best explain the target variable. The tree is
constructed by repeating the following steps (Figure 3):
− Step 1: Select the feature that provides the highest reduc-

tion in variance or mean squared error as the split
criteria.

− Step 2: Partition the data based on the selected feature
and assign the resulting subsets to child nodes of the
current node.

− Step 3: At each leaf node, the prediction is made by
computing the mean of the target variable for the sam-
ples in that node.

− Step 4: The algorithm continues until a stopping cri-
terion is reached, such as a maximum depth of the
tree, a minimum number of samples required at a leaf
node, or a minimum reduction in variance or MSE at
each split.

− Step 5: Once the tree is built, predictions can be made by
traversing the tree to find the leaf node that best fits
the input data and returning the mean prediction for
that node.

These steps are implemented in stability analysis
based on input parameters to get output results, which
was implemented in the Python high-level programming
language. Used hyperparameters for DTR include the max-
imum depth of the tree, the minimum number of samples
required at a leaf node, and the criteria used to determine
the best split at each node (such as MSE or variance reduc-
tion). Hyperparameters are commonly used to optimize the
fitting process which can increase the machine learning
model prediction accuracy. These hyperparameters can
be tuned through methods such as cross-validation to
find the optimal combination for a given problem. Using
hyperparameters increases the learning rate and overall

accuracy estimation in machine learning algorithms. The
model learning rate (test/train ratio) is a response to esti-
mated errors each time the model weights are updated. In
fact, how quickly the model adapts to the problem is con-
trolled by the learning rate. While larger learning rates
result in rapid changes and require fewer training epochs,
smaller learning rates require more training epochs due to
smaller changes to the weights at each update. In parti-
cular, the learning rate is used configurable hyperpara-
meters [78]. It has a small positive value, usually between
0.0 and 1.0. The learning rate used in this study was
selected by optimizers, which for 0.01 and no momentum
was scheduled via callbacks in Keras support. Pearson’s
Phi coefficient was estimated for each input and output
parameter, which is presented in Figure 4. Pearson’s Phi
coefficient is a measure of association between two nom-
inal variables. It ranges from −1 to 1 and provides the
strength and direction of the relationship between the
two variables. A value of 1 indicates a strong positive asso-
ciation, a value of −1 indicates a strong negative associa-
tion, and a value of 0 indicates no association. Pearson’s
Phi is commonly used in contingency table analysis [78].

Figures 5 and 6 provide the scatterplots and statistical
analysis for normalization for input data used in this study,
which is included H, β, γ, c′, ϕ′, V parameters. A scatterplot
is a type of data visualization that displays the relationship
between two variables [79], which normally input para-
meters for a specific type of analysis. It consists of points
plotted on a two-dimensional plane, where each point
represents the value of one variable relative to the other
[78]. Scatterplots are particularly useful for identifying

Figure 3: Process flowchart of the implemented DTR method.
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patterns, trends, and potential correlations between vari-
ables. For instance, if the points on the plot form a clear
pattern, such as a straight line, it suggests a strong relation-
ship between the variables, while a more scattered

distribution indicates a weaker relationship or no rela-
tionship at all. By visually examining the scatterplot,
analysts can gain insights into the nature and strength
of the relationship between the variables, helping them

Figure 4: Pearson’s coefficient for each factored parameters.

Figure 5: The scatterplot for input data used in this study.
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make informed decisions in the process of modeling
[79]. Statistical normalization, in other words, refers
to the process of transforming data into a standard
format to make it more interpretable or comparable
[78]. Normalization techniques are commonly used in
data preprocessing to address issues such as varying
scales, units, or distributions among different variables.
One of the most common normalization techniques is
z-score normalization (standardization), where each data
point is transformed to have a mean of zero and a standard
deviation of one [78]. This method allows analysts to
compare variables on a common scale and facilitates the
interpretation of statistical measures such as means and
standard deviations. Other normalization techniques include
min–max scaling, where data is scaled to a fixed range

(e.g., between 0 and 1), and robust scaling, which is less
sensitive to outliers compared to standardization [79].

2.4 Model validations

To assess the DTR method rigorously, its accuracy was
evaluated using statistics from the confusion matrix and
statistical error indexes. A confusion matrix is a table used
to evaluate the performance of a classification model. It
summarizes the true positive, false positive, true negative,
and false negative predictions made by the model. The
entries in the matrix are used to calculate various evalua-
tion metrics such as accuracy, precision, recall, and F1

Figure 6: The statistical analysis for normalization of input parameters: (a) H, (b) β, (c) γ, (d) c′, (e) ϕ′, (f) V.
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score, which provide insight into the model’s performance
and help identify areas for improvement. Confusion
matrices are commonly used in fields such as machine
learning to provide performance analysis for different
learning algorithms [78]. The coordination of the positivity
and negativity of the variables, as well as the evaluation
criteria estimations in a confusion matrix [79], is presented
in Figure 7. In accordance with this figure, the evaluation
criteria estimated via the confusion matrix can be calcu-
lated as follows:

=
∑ +

∑ + + +
Accuracy

TP TN

TP FP FN TN
, (1)

=
∑

∑ +
Precision

TP

TP FP
, (2)

=
∑

∑ +
Recall

TP

TP FN
. (3)

Additionally, the mean absolute error (MAE), MSE, and
root-mean-square error (RMSE) were considered as error
evaluation indexes, which provide the DTR-based model
errors during prediction. MAE is a commonly used metric
for evaluating the accuracy of a prediction algorithm. It
measures the average of the absolute differences between
the predicted values and the actual values. It is defined as
MAE = (1/n) × Σ|actual – predicted|, where n is the number
of samples and actual and predicted are the actual and
predicted values, respectively. MAE provides a robust mea-
sure of prediction accuracy, as it is insensitive to outliers.
MSE is a common metric for evaluating the accuracy of a
prediction algorithm. It measures the average of the
squared differences between the predicted values and
the actual values. It is defined as MSE = (1/n) × Σ(actual −
predicted)2. The squared differences amplify larger errors
compared to the absolute differences in MAE, making MSE
a more sensitive measure of prediction accuracy. RMSE is a
commonly used metric for evaluating the accuracy of a
prediction algorithm. It is the square root of the mean of
the squared differences between the predicted values and

the actual values. It is defined as RMSE = √(MSE) = √((1/n) ×
Σ (actual – predicted)2). RMSE provides a more interpre-
table measure of prediction accuracy, as it is expressed
in the same units as the actual and predicted values.
Conversely,

∣ ∣∑= × -
n

MAE
1

Actual Predicted , (4)

( )∑= × −
n

MSE
1

Actual Predicted ,2 (5)

( )∑= = × −
n

RMSE MSE
1

Actual Predicted .2 (6)

3 Results

Based on the methodology previously discussed, this
research attempted to use the DTR classification algo-
rithm to investigate rotational failure in earth-slopes
and embankments. In this regard, the main factored para-
meters conclude H, β, γ, c′, ϕ′, U, and V was considered as
input data that directly affected on slope’s stability, F.S, and
SDS are used for prediction modelling by DTR. Results were
validated using statistical error indices and a confusion
matrix, which are commonly used performance controllers
for machine learning algorithms. The modeling results
were plotted, and the coefficient of determination (R2)
was estimated for all the predictions in both testing and
training datasets. As presented in Table 2, the output of
the model was shown as FS, SDS, and stability class for
slope, which are discrete quantities. These discrete quan-
tities are adopted and estimated from continuous input
quantities, which is consistent with the functional nature
of the forecasting algorithm used. This issue will also have
a significant impact on increasing the accuracy of model
implementation. Figures 8 and 9 provides the predictive
model results for both the testing and training databases
for estimating FS, SDS, and stability classes. Table 3 illus-
trates the results of the linear relationship between FS
and factored parameters, as predicted by the model-stu-
died slope cases for both testing and training datasets.
Also, Table 4 provides information about the model vali-
dation process. Figures 10–12 provide model accuracy
and errors during the process as well as decision levels
that consider calculating stability classes with the DTR
algorithm.

Figures 8 and 9 are provide detailed variations of
actual FS, SDS, and stability class for earth-slope versus
predictive values for both testing and training datasets

Figure 7: The confusion matrix and evaluation criteria [79].
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which is resulted from main database contained 120 slope
cases. The results were measured by the coefficient of
determination (R2) and linear regression to understand
the scattering status of the obtained results. The figures

show that R2 values for testing and training datasets are
0.9645 and 0.9589, respectively. R2 results indicate that the
model has good agreements with the prediction of actual
data in both testing and training sets.

Figure 9: SDS and stability class variations between actual-predicted values in train and test datasets.

Table 3: DTR regression relationships obtained by predictive model

Index Dataset Relation

F.S Train F.S = 0.0172γ – 0.0392β – 0.00428H + 0.085c′ + 0.0054ϕ′ – 0.31U – 0.21V + 0.9452
Test F.S = 0.0083γ – 0.042β – 0.0061H + 0.077c′ + 0.002ϕ′ – 0.56U –0.32V + 1.068

Stability class/SDS Train SC or SDS = 1 (stable) if F.S is x > 1.0001
Test SC or SDS = 0 (unstable) if F.S is x < 1.0000

Figure 8: F.S variations between actual-predicted values in train and test datasets.
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Table 3 shows the relationship between the DTR pre-
diction model with FS, SDS, and stability class. Slope stabi-
lity is directly increased by c′, ϕ′, γ and decreased by β,H, V,
U. These factored parameters also show a linear relation-
ship with slope durability and slope classes. Table 3 shows
that γ, c′, ϕ′, have positive effects on FS, while U, V, H and β
have negative effects. So, the stabilization process has to be
considered based on increases positive partial factors (like
enhancing the geo-material propitiates and modifying
geometry and reinforce slope mass) by considering all
negative parameters (like geometrical modification with
efficient drainages). Table 4 presents the estimated con-
fusion matrix and statistical error indexes for the DTR
predictive model. The model achieves 90.25% precision
and 91.07% accuracy in calculating the FS. The SDS and
stability class have 86.29 and 86.29% precision and 89.56
and 89.60% accuracy values, respectively. The FS prediction

has MAE, MSE, and RMSE values of 0.1242, 0.1722, and
0.1098, whereas SDS and stability class have values of
0.2571, 0.2663, 0.2344 and 0.1925, 0.1932, 0.1650. These find-
ings demonstrate, from a practical standpoint, that the DTR
algorithm is effective and useful for predicting the
sfactored-based stability analysis for soil slopes and
embankments.

4 Discussion

This article highlights the importance of input factors in
affecting the performance of DTR models. . Some key para-
meters are:
− Maximum tree depth: Controls the size of the tree and

limits the number of splits in the tree, which affects the

Table 4: Validation table for prediction process estimated by DTR model

Parameter Dataset Confusion matrix MAE MSE RMSE

Precision Recall Accuracy

F.S Train 0.9025 0.9025 0.9107 0.1242 0.1722 0.1098
Test 0.8811 0.8825 0.8711 0.2360 0.2441 0.2209

SDS Train 0.8629 0.8535 0.8629 0.2571 0.2663 0.2344
Test 0.8077 0.8044 0.8044 0.2700 0.2736 0.2557

Stability class Train 0.8956 0.8960 0.8960 0.1925 0.1932 0.1650
Test 0.8673 0.8649 0.8648 0.2102 0.1988 0.1920

Figure 10: Predictive model loss function and accuracy for training and test dataset.
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model’s ability to capture complex relationships between
features and the target.

− Minimum samples per leaf node: Specifies the minimum
number of samples required to form a leaf node, which
affects the model’s ability to generalize to new data.

− Splitting criterion: Determines how the model selects the
best feature to split on at each node, such as MSE
or MAE.

− Maximum number of features to consider when splitting:
Controls the number of features considered when

making a split, which can help reduce overfitting by lim-
iting the model’s ability to memorize the training data.

− Regularization: This parameter controls the complexity
of the tree by adding penalties to the cost function that
the model is trying to minimize. Common regularization
techniques include L1 (Lasso) and L2 (Ridge) penalties.

− Pruning: This technique involves removing branches of
the tree that do not contribute much to the overall per-
formance of the model. Pruning helps to reduce over-
fitting and improve the interpretability of the model.

Figure 11: The SDS, F.S and stability class variations for test-train datasets based on decision frequency.
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− Random seed: Specifying a random seed value for the
model can ensure that the same results are obtained
each time the model is trained, even with the same
data and parameters.

− The results from the DTR model showed high accuracy
and precision in predicting the FS, SDS, and stability
class for slopes and embankments. The model’s R²
values (0.9645 for testing and 0.9589 for training data-
sets) indicate a strong correlation between the pre-
dicted and actual values, suggesting that the model is
reliable for practical applications. The influence of the
parameters on slope stability was consistent with geo-
technical principles: parameters like cohesion (c′),
internal friction angle (ϕ′), and unit weight (γ) posi-
tively impacted the FS, while height (H), slope angle
(β), pore-water pressure (U), and surcharge (V) nega-
tively impacted it. This aligns with the understanding
that improving soil strength and reducing destabi-
lizing forces enhances slope stability.

− Proper tuning of these parameters can result in better
model performance, improved accuracy, and reduced
overfitting. So, it is important to keep in mind that over-
fitting is a common problem in regression trees and can
be mitigated by carefully choosing the input parameters,
as well as by using cross-validation to evaluate the per-
formance of the model on unseen data. Additionally, it is
a good practice to compare the performance of mul-
tiple models with different input parameters to find
the best-performing model. Even though the DTR
model performed well in the prediction of slope

stability conditions, overfitting has to be considered
each time using DTR. Generally, regression trees are
prone to overfitting, which means that the model
becomes too complex and fits the training data too
well, resulting in poor generalization to new data.
Overfitting occurs when the tree has too many splits
and becomes too deep, leading to a model that is too
complex to effectively capture the underlying pat-
terns in the data. To combat overfitting in DTR, there
are several techniques that can be used such as
pruning, regularization, cross-validation, and feature
selections. The presented study used cross-validation,
pruning, and regularization techniques to reduce the
overfitting in the learning procedure of the model.

In comparing these findings with previous research, it
is essential to highlight both the similarities and differ-
ences (e.g., [80–89]):
− Accuracy and Model Performance: The precision and

accuracy of the DTR model (over 90% for FS and around
86% for SDS and stability class) are comparable to or
even exceed those reported in previous studies using
different machine learning models, such as support
vector machines (SVM) or neural networks, which typi-
cally report accuracy in the range of 80–90%.

− Parameter Influence: Previous studies also consistently
report the positive impact of cohesion (c′), internal fric-
tion angle (ϕ′), and unit weight (γ) on slope stability, and
the negative impact of factors like slope height (H) and
slope angle (β). However, the DTR model’s ability to
explicitly show the linear relationships between these
factors and stability indicators enhances interpret-
ability, which might not be as clear in more complex
models like neural networks.

− Model Validation Metrics: The use of MAE, MSE, and
RMSE for validation is standard in the field. The rela-
tively low error values in this study suggest that the DTR
model is particularly well-suited for this type of predic-
tion, potentially offering an advantage over more com-
putationally intensive methods like deep learning,
which may require larger datasets and more compu-
tational resources.

− Practical Implications: The practical utility of the DTR
model, given its balance of accuracy and interpretability,
may surpass that of more complex models, particularly in
engineering applications where understanding the influ-
ence of specific parameters is crucial. This can lead to
better-informed decisions in slope stabilization efforts.

As compared to selected studies, the DTR model not
only aligns with findings from previous studies but also

Figure 12: The results statistical normalization for predict and calculated
F.S values.
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offers clear advantages in terms of accuracy, interpret-
ability, and practical applicability. Future research could
explore combining DTR with other models or hybrid
approaches to further enhance prediction accuracy and
broaden the model’s applicability to different types of
slopes and geotechnical conditions.

5 Conclusion

This study introduces an advanced predictive model that
utilizes data mining and complex DTR algorithms to assess
slope stability based on a comprehensive database of 120
slope cases from Iran. The model demonstrates significant
effectiveness, achieving an accuracy of 91.07% and a pre-
cision of 90.25% for predicting the FS. For SDS, the model’s
accuracy is 86.29%, and it performs with an accuracy range
of 89.56–89.60% for stability class predictions. The model’s
performance is further validated by error metrics, with
MAE, MSE, and RMSE values indicating robust prediction
capabilities. A notable finding of this study is the substan-
tial impact of parameters such as cohesion (c′), friction (ϕ′),
and density (γ) on slope stability, where increased values
enhance stability. Conversely, higher slope angle (β), height
(H), tensile crack (V), and water pore-pressure (U) are
found to negatively influence stability. This insight pro-
vides a clear understanding of how various factors interact
to affect slope stability. To maximize the utility of the DTR
model, it is recommended that it be applied in real-world
slope stability assessments, especially in regions with geo-
logical conditions similar to those of the Iranian slopes
studied. Future research should focus on adapting the
model to different geographical locations and soil types
to enhance its generalizability. Additionally, integrating
real-time monitoring data could further improve the
model’s accuracy and responsiveness. However, the study
acknowledges certain limitations. The model is based on a
specific dataset from Iran, which may restrict its applic-
ability to other regions with different environmental and
geological conditions. Additionally, the model’s effective-
ness depends on the accuracy of input parameters and
may not account for all variables affecting slope stability.
Ongoing refinement and validation with diverse datasets
are crucial to address these limitations and fully exploit the
model’s potential across various contexts.
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