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Abstract: Normalized difference vegetation index (NDVI)
and land surface temperature (LST) are important indica-
tors of ecological changes, and their spatial and temporal
variations and spatial coupling can provide a theoretical
basis for the sustainable development of the ecological
environment. Based on the MOD13A1 and MOD11A2 data-
sets, the spatial distribution characteristics of NDVI and
LST from 2000 to 2020 were analyzed, and the trend change
slope method and spatial coupling model were used to
calculate the significant changes. Finally, the spatial cou-
pling model was used to calculate the spatial coupling
degree between NDVI and LST. The study shows that: (1)
From 2000 to 2020, the annual NDVI value of the Mu Us
Sandy Land was between 0.25 and 0.43, showing a stable
upward trend overall, with an increase rate of 0.074/(10a).
The proportion of improvement areas in the study area is
81.48%. (2) There are significant differences in the spatial
distribution of surface temperature in Mu Us Sandy Land,
showing an overall trend of decreasing from northwest to

southeast and higher in the west than in the east. The LST
of Mu Us Sandy Land is greatly affected by changes in land
use types. The spatiotemporal variation trend of LST is
different from the gradual warming trend of global climate
change. The main reason is that human activities have
changed land use types and increased local vegetation cov-
erage. (3) There is a significant negative correlation
between LST and NDVI in Mu Us Sandy Land, with an R2

of 0.5073 and passing the significance test at the 0.01 level.
This indicates that ecological engineering policies can
effectively reduce LST in the study area, thereby achieving
the effect of improving the environment. The overall spa-
tial coupling between LST and NDVI is at a very high level,
with an average coupling degree of 0.895 in the study area.
The twomainly exhibit a state ofmutual antagonism in space,
reflecting the importance of green vegetation in regulating
regional climate and LST. The vegetation index and spatio-
temporal variation of LST in Mu Us Sandy Land are the result
of the joint influence of human activities and climate change,
and human activities dominated from 2000 to 2020.

Keywords:Mu Us sandy land, surface temperature, vegeta-
tion index, temporal and spatial changes, spatial coupling

1 Introduction

Land surface temperature (LST) is an important parameter
for studying energy and material exchange between the
surface and atmosphere, playing an important role in
regional and global surface ecosystems [1–3]. The variation
of surface temperature at the regional scale is closely
related to various environmental factors such as vegeta-
tion, hydrology, and climate [4–6]. It has been widely
applied in urban heat island effects [7–10], ecological envir-
onment assessment [11,12], climate change [13–15], vegeta-
tion monitoring [16–18], and many other directions. The
normalized difference vegetation index (NDVI) can be
used to characterize the growth status of regional vegetation
and is an important parameter for ecological environment
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assessment [19–22]. Among the environmental factors that
affect surface temperature changes, vegetation is the
most affected by human activities. Therefore, studying
the response relationship between surface temperature
and vegetation index is of great significance.

In recent years, due to the impact of global climate
change and human activities, there have been significant
changes in global biodiversity, ecosystems, and their ser-
vices [23], and the ecological environment quality in arid
and semi-arid areas has also fluctuated. The relationship
between LST and NDVI, as important parameters in ecolo-
gical environment change research, is one of the hot topics
in ecology. The rapid development of remote sensing tech-
nology and the widespread application of satellite data
provide abundant data sources for obtaining regional
surface temperature and vegetation indices. At present,
domestic and foreign scholars mainly use remote sensing
technology to study the spatiotemporal variation charac-
teristics of long-time series of LST and NDVI at the regional
scale [24,25], influencing factors research [26], and correla-
tion analysis [27,28]. Such as Ebrahim et al. [29] used Mod-
erate Resolution Imaging Spectrometer (MODIS) data to
analyze the spatiotemporal changes of LST in central Italy
through Sen’s slope and nonparametric Mann–Kendall
trend test. The results showed that LST was significantly
negatively correlated with altitude. Xuzhen et al. [30] used
MODIS NDVI data and the Hurst index to study the tem-
poral and spatial evolution trend and future sustainability
of NDVI in the Lancang Mekong River Basin. The results
showed that the NDVI in the study area generally showed a
fluctuating upward trend, and there were differences in
the growth rate of NDVI in different regions, with the
highest growth rate in China. However, there is a relative
lack of research on the coupling relationship between the
two. LST and NDVI are the most important indicators in
ecological environment research, and there is an interac-
tive and coupled relationship between the two. On the one
hand, surface temperature promotes or inhibits vegetation
growth through the influence of solar radiation and under-
lying surface changes; on the other hand, vegetation can
absorb solar radiation energy and release water vapor
through transpiration to lower surface temperature.
Therefore, studying the spatiotemporal variation patterns
of LST and its spatial coupling relationship with NDVI can
effectively reflect the trend of ecological environment
change in the study area, which is of great significance in
ecology and climate research. It can be used to analyze
land use change, observe climate change, and evaluate
the health status of ecosystems, which helps to provide a
theoretical basis for improving regional ecological envir-
onment models.

The climate of Mu Us Sandy Land is arid, and the
ecological environment is fragile, making it the most eco-
logically sensitive area in the agricultural pastoral ecotone
of northwest China. Due to the influence of China’s ecolo-
gical policies and human activities, the vegetation coverage
of Mu Us Sandy Land has undergone significant changes.
The continuous monitoring of surface temperature and the
analysis of its spatial coupling relationship with the vege-
tation index can provide theoretical support for the
rational utilization of water resources and the restoration
of the ecological environment in Mu Us Sandy Land.
Therefore, the main contributions of this work are
• Through MODIS LST, NDVI products and Trend change
slope method, analyze the spatiotemporal distribution
characteristics of LST and NDVI in Mu Us sandy land
from 2000 to 2020.

• Through the spatial coupling model, explore the spatial
coupling relationship between land LST and NDVI.

• Estimate the correlation between LST and NDVI.
• Discuss the impact of meteorology, land use types, and
vegetation changes on LST.

2 Materials and methods

2.1 Overview of the study area

Mu Us Sandy Land is located in the hinterland of the Loess
Plateau, spanning the northern part of Yulin City, the
southern part of Ordos City, and the northeastern part of
Yanchi County (37.45°–39.37°N, 107.67°–110.67°E) (Figure 1).
It covers an area of approximately 42,200 km2, with an
average elevation of around 1,300 m, gradually increasing
from east to west and reaching a maximum of 1,900 m in
the southern part. The Mu Us Sandy Land is located in the
transitional zone between arid and semi-arid regions and
is a transitional zone between desert grasslands, grass-
lands, and forest grasslands in China, with a very fragile
ecological environment [31–33]. The research area is
mainly characterized by a temperature continental cli-
mate, with drought and uneven distribution of rainfall.
Rainfall is mainly concentrated from June to August, with
an annual precipitation of 250–440mm, increasing from
west to southeast. There are differences in the spatial dis-
tribution of water resources in the Mu Us Sandy Land, with
drought and water scarcity in the northwest and abundant
surface and groundwater in the southeast. There are
numerous rivers, including the Wuding River, Tuwei River,
and Kuye River, which run through the southeast of the
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sandy land, providing important guarantees for the ecolo-
gical environment restoration and agricultural develop-
ment in the southeast of Mu Us Sandy Land.

2.2 Data sources and processing

This study used data from the MODIS surface tempera-
ture product, sourced from the MODIS/TERRA satellite
MOD11A2 surface temperature 8 days composite product
provided by NASA from 2000 to 2020, with a spatial reso-
lution of 1 km (Table 1). The image row numbers covering
the research area are H26V04 and H26V05, totaling 1,820
images. Using format conversion, projection transforma-
tion, concatenation, and cropping to obtain the 8 days
composite surface temperature data of the study area,
and then using the weighted average method to obtain

monthly and annual surface temperature data of the Mu
Us Sandy Land from 2000 to 2020. The calculation of
remote sensing data was completed under ENVI 5.3 soft-
ware. The NDVI data are sourced from MODIS 16 d com-
posite data, consisting of a total of 786 images with row
and column numbers H26V04 and H26V05. The spatial
resolution is 500 m, and the temporal resolution is 16
days. Two images can be obtained per month, and the
average of the two is taken as the vegetation index for
the current month. Convert HDF format to TIFF format
data using ENVI5.3 software and perform projection con-
version, stitching, cropping, and resampling.

The meteorological data are sourced from the China
Meteorological Data Network (https://data.cma.cn/). There
are a total of six national meteorological stations in the
research area, namely Hengshan Station (53,740), Jingbian
Station (53,735), Dingbian Station (53,725), Yanchi Station
(53,723), Yulin Station (53,646), and Etuoqi Station (53,529).

Figure 1: Geographic location and DEM of Mu Us Sandy Land.

Table 1: Source and description of research data

Name and description Period Spatial and
temporal resolution

Data sources

LST: MOD11A2 2000–2020 1,000 m National Aeronautics and Space Administration (https://
search.earthdata.nasa.gov/)8 days

NDVI: MOD13A1 2000–2020 500m National Aeronautics and Space Administration (https://
search.earthdata.nasa.gov/)16 days

Meteorological data: China Surface
Climate Normals Dataset

2000–2020 — China Meteorological Data Network (https://data.cma.cn/)
1 days

LULC: China Multi-Period Land Use
Remote Sensing Monitoring Dataset

2000–2020 1,000 m Resource and Environmental Science Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn/)5 Year
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The meteorological data include eight types of daily data
such as surface temperature, temperature, and precipita-
tion. The monthly and annual average temperature data
of each station are obtained through statistical analysis,
and the average temperature of six meteorological sta-
tions in Mu Us Sandy Land is calculated as the tempera-
ture of the study area. Land use and land cover (LULC) grid
data are provided by the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/). The data production is based on
Landsat series satellite data as the data source and is com-
pleted through image classification and manual visual inter-
pretation [34]. The spatial resolution of the dataset is 1 km,
including six primary types: cropland, woodland, grassland,
water area, built-up land, and unused land.

2.3 Research methods

2.3.1 Maximum value synthesis method

Maximum value compositions is an internationally recog-
nized method for NDVI data statistics. The maximum value
synthesis method can eliminate interference from factors
such as air pollution, clouds, and solar altitude angle and
obtain the best NDVI value for vegetation growth in the
study area. This study selected the NDVI values of Mu Us
Sandy Land from January to December every year from
2000 to 2020 and took the average of two data periods per
month as the vegetation index data for that month. Then,
using the maximum value synthesis method, the maximum
value of each pixel was extracted as the NDVI value for that
year. The formula is

( )=NDVI Max NDVI ,i ij (1)

where NDVIi represents the NDVI value in the i-th year,
with values ranging from 1 to 21, representing the years
2000–2020, respectively. NDVIij represents the NDVI value
in the j-th month of the i-th year, with values ranging from
1 to 12, representing the months 1–12, respectively.

2.3.2 Trend change slope method

The trend change slope method is a pixel scale-based trend
analysis method widely used in the analysis of spatiotem-
poral changes of large-scale surface parameters. This
article uses the trend change slope method to simulate
the trend of surface temperature changes at the pixel scale

in the study area, analyzes the spatial variation patterns of
surface temperature at different periods in the Mu Us
Sandy Land, and obtains the change slope of each pixel
during the study time period. The interannual change
trend of the pixel is judged by the magnitude of the slope.
The calculation formula is referenced in [35]:
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where Slope is the slope of the NDVI change trend and N is
the number of years during the monitoring period. This
study was divided into two time periods, 2000–2010 and
2010–2020, with a value of 11; NDVIi represents the vegeta-
tion index for the i-th year. When Slope >0, it indicates that
vegetation growth tends to improve, while Slope <0 indi-
cates that vegetation growth tends to deteriorate.

The significance of Slope will be further verified by
the Mann–Kendall nonparametric statistical test [30],
described as follows:
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where n represents the time series length, sgn is a symbolic
function, and the value range of the statistic Z can evaluate
the significance of NDVI. In this study, the significance of
the NDVI time series trend was judged at the 0.05 and 0.01
confidence levels. The definition of insignificant change is
(|Z| < 1.96), the significant change is (1.96 < |Z| < 2.58), and
the extremely significant change is |Z| > 2.58.

2.3.3 Spatial coupling model

Coupling is a concept in physics that refers to the phenom-
enon of two or more elements or systems interacting and
influencing each other. The coupling degree is used to
measure the degree of interaction between elements or

4  Liangyan Yang et al.



systems. A spatial coupling model is selected to calculate
the spatial coupling degree between NDVI and LST in Mu
Us Sandy Land. The calculation formula is

( ) ( )

( ) ( )
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In equation (3), C is the coupling degree; F(x) and g(x)
are the normalized values of NDVI and LST at x, respec-
tively. Referring to the literature [3], the spatial coupling
index is divided into four levels, with coupling degrees [0,
0.3], (0.3, 0.5], (0.5, 0.8], and (0.8, 1.0) indicating extremely
poor, poor, good, and excellent coupling effects, respectively.

2.3.4 Pearson correlation coefficient

The Pearson correlation coefficient is a statistic that mea-
sures the strength and direction of the linear relationship
between two continuous variables [36]. The values of the
Pearson correlation coefficient range from −1 to 1. The
calculation formula is

( )( )

( ) ( )
=

∑ − −
∑ − ∑ −

=

= =
R

Y Y X X

Y Y X X

̅ ̅

̅ ̅

,
i i i

i i i i

1

1
2

1
2

where X̅ and Y̅ are the means of variables x and y,
respectively.

3 Results and analysis

3.1 NDVI spatiotemporal distribution
characteristics

3.1.1 NDVI time distribution characteristics

Figure 2 shows the interannual variation trend of NDVI in
Mu Us Sandy Land. From Figure 2, it can be seen that from
2000 to 2020, the annual NDVI value of the Mu Us Sandy
Land was between 0.25 and 0.43, showing a stable upward
trend with an increase rate of 0.074/(10a). There were occa-
sional fluctuations, with a significant downward trend
observed from 2013 to 2015. Through meteorological data
analysis, it was found that the precipitation in the study
area decreased significantly in 2015, and insufficient water
affected the growth of vegetation. Overall analysis shows
that the NDVI value of the Mu Us Sandy Land showed a
continuous upward trend from 2000 to 2020, mainly due to
the implementation of ecological environment protection

policies such as afforestation and wind and sand fixation in
the study area, which maintained an overall upward trend
in vegetation coverage of the Mu Us Sandy Land. The NDVI
value in the study area fluctuates locally due to the uncer-
tainty of water and heat changes.

3.1.2 Spatial distribution characteristics of NDVI

Figure 3 shows the spatial distribution of NDVI mean in Mu
Us Sandy Land from 2000 to 2020. According to the changes
in vegetation cover, the NDVI of the study area is divided
into nonvegetation area (NDVI ≤ 0.2), extremely low vege-
tation area (0.2 < NDVI ≤ 0.3), low vegetation area (0.3 <

y = 0.0074x + 0.2524

R² = 0.8104

-0.1

0

0.1

0.2

0.3

0.4

0.5

2000 2005 2010 2015 2020

N
D

V
I

Year

Year-on-year growth rates NDVI

Figure 2: Interannual variation of NDVI in Mu Us Sandy Land from 2000
to 2020.

Figure 3: Annual mean spatial distribution of NDVI in Mu Us Sandy Land
from 2000 to 2020.

Spatiotemporal variation pattern and spatial coupling relationship  5



NDVI ≤ 0.4), medium vegetation area (0.4 < NDVI ≤ 0.5),
high vegetation area (0.5 <NDVI ≤ 0.6), and dense vegetation
coverage area (0.6 < NDVI) [37]. The spatial distribution of
NDVI in Mu Us Sandy Land shows significant differences,
with an overall trend of gradually increasing from north-
west to southeast. Dense vegetation areas are distributed on
both sides of rivers in the study area and within the terri-
tory of Ningxia Hui Autonomous Region. High vegetation is
mainly distributed in the southeast of Mu Us Sandy Land,
located in Yulin City, Shaanxi Province. The terrain of this
area is mainly low mountains and hills, with relatively
abundant water resources and suitable water and thermal
conditions for vegetation growth. The central vegetation
area is distributed in the central and eastern part of the
research area, which is located in the agricultural forestry
transitional zone. The vegetation is mainly grassland, and
the vegetation coverage is not high. The low vegetation
area and no vegetation area are located in the northwest
of the research area, which is the grassland area. The ter-
rain is mostly eroded sand dunes and grassland between
dunes, with low vegetation coverage and fragile ecological
environment, which is easily affected by the natural envir-
onment and human activities.

3.2 NDVI dynamic change characteristics

Figure 4 shows the slope and significance distribution of
NDVI trend changes in Mu Us Sandy Land from 2000 to
2020, and Table 2 shows the statistical table of different
NDVI trend changes in Mu Us Sandy Land. The slope of
NDVI variation in Mu Us Sandy Land from 2000 to 2020 was
−0.0240–0.0389, with an average value of 0.0073. From
2000 to 2020, the NDVI of Mu Us Sandy Land was mainly
improved and basically unchanged, with the proportion of
basically unchanged areas accounting for 18.39% of the
study area. It was mainly distributed in the windy and
sandy areas in the northwest of the study area, where
precipitation was sparse and vegetation was mainly sparse

grasslands. The proportion of improvement areas in the
study area is 81.48%, with the vast majority being extre-
mely significant improvement areas, distributed in the

Figure 4: NDVI variation trend (a) and significance test (b) in Mu Us
Sandy Land from 2000 to 2020.

Table 2: Statistical table of different trends in NDVI changes in Mu Us Sandy Land

Slope Significance level Z value Trend of change Ratio (%)

<−0.0005 <0.01 Extremely significant degradation 0.04
<−0.0005 0.01–0.05 Significant degradation 0.05
<−0.0005 ≥0.05 Slight degradation 0.04
−0.0005–0.0005 ≥0.05 Basically unchanged 18.39
>0.0005 ≥0.05 Slight improvement 4.97
>0.0005 0.01–0.05 Significant improvement 12.67
>0.0005 <0.01 Extremely significant improvement 63.84
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central and eastern parts of the study area. The degraded
area is relatively small, accounting for 0.12% of the
study area.

3.3 Spatial and temporal distribution
characteristics of surface temperature

Figure 5 and Table 3 show the spatial distribution of sur-
face temperature in the Mu Us Sandy Land in 2000, 2010,
and 2020, as well as the statistical table of the proportion of
different surface temperatures. From the chart, it can be
seen that the surface temperature of Mu Us Sandy Land
has obvious spatial distribution characteristics, showing a
gradually increasing trend from southeast to northwest.
The distribution pattern of surface temperature in Mu Us
Sandy Land varies in terms of time distribution, with sur-
face temperature mainly concentrated at 32–36°C in 2000,
accounting for 76.01%. In 2010, the surface temperature
was concentrated at 30–34°C, accounting for 67.37%. The
distribution of surface temperature in 2020 was relatively
uniform between 28 and 36°C. From 2000 to 2020, the
number of low-temperature areas continued to increase.
The areas below 28°C in 2000 were relatively scattered in
the study area, and the area continued to expand. In 2020,
low-temperature areas were scattered throughout the
eastern and southern parts of the study area. The main
reason for the high distribution of surface temperature
in the western region is that the human density is rela-
tively low, the land use type is mainly unused land, and
the density of surface vegetation coverage is relatively low.
The low values are distributed in the eastern and southern
regions, where water resources are relatively abundant,
human activities are more frequent, agriculture and for-
estry development are relatively good, and land use types

change significantly, mainly grassland, farmland, and
forest land. The surface temperature shows a continuous
downward trend.

In order to further analyze the variation pattern of
surface temperature in Mu Us Sandy Land from 2000 to
2020, this study divided the trend of surface temperature
change in Mu Us Sandy Land from 2000 to 2020 into seven
levels based on trend analysis and significance analysis
(Figure 6 and Table 4): extremely significant decrease, sig-
nificant decrease, weak significant decrease, stable zone,
weak significant increase, significant increase, and extre-
mely significant increase. Among them, the extremely sig-
nificant decrease zone, significant decrease zone, and weak
significant decrease zone accounted for 20.33, 12.07, and
6.70% of the study area, while the stable zone accounted
for 57.53% of the study area. The weak significant increase
zone, significant increase zone, and extremely significant
increase zone accounted for 1.01, 1.35, and 1.02% of the
study area, respectively. The area of surface temperature
rise is concentrated in the western part of the study area,
with a relatively small proportion. The stable area of sur-
face temperature is distributed in the west and scattered in
the middle of the study area, which is the main dynamic
change feature of surface temperature in the study area.
The declining areas are mainly distributed in the central
and eastern parts of the research area, with a wide area

Figure 5: Spatial distribution map of annual LST in Mu Us Sandy Land from 2000 to 2020. (a) 2000, (b) 2010, and (c) 2020.

Table 3: Proportion of different LST in Mu Us Sandy Land from 2000
to 2020

LST/°C 2000 2010 2020

<30 1.26 12.75 32.30
30–32 9.05 27.94 23.65
32–34 31.07 39.43 23.91
34–36 44.94 17.71 16.49
>36 13.68 2.17 3.64
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distribution. The most significant decline is mainly concen-
trated in the northeast, distributed in Yuyang City and
Shenmu City. The overall trend of surface temperature
variation in Mu Us Sandy Land is similar to the distribution
pattern of high and low temperatures in the study area,
mainly due to the impact of human activities on land use
types in the central and eastern regions.

From 2000 to 2020, the surface temperature of Mu Us
Sandy Land fluctuated between 30.94 and 34.23°C, with an
average surface temperature of 32.29°C, showing an overall
downward trend. The change pattern of surface tempera-
ture is different from the gradual warming trend of global
climate change. The main reason is that Mu Us Sandy Land
is the main area for afforestation and returning farmland
to forests and grasslands in China. Human activities have
changed the land use type of the study area, reduced
unused land area, and increased air humidity and surface
evapotranspiration, thereby reducing the solar shortwave
radiation received by the surface and maintaining a down-
ward trend in surface temperature.

3.4 Annual LST variation characteristics of
different land use type

Using overlay analysis to statistically analyze the average
annual surface temperature of different land use types in
Mu Us Sandy Land from 2000 to 2020 (Table 5). According
to Table 5, there is a significant difference in annual sur-
face temperature among different land use types. Con-
struction land and unused land are the two land types
with the highest surface temperature in the study area,
at 33.25 and 33.20°C, respectively. Forest land and grassland
are the second highest, with surface temperatures of 32.53
and 31.31°C, respectively. Farmland and water have the
lowest surface temperatures, at 30.99 and 29.76°C, respec-
tively. In cultivated land and water areas, water resources
are relatively abundant, and higher evapotranspiration
absorbs some of the solar radiation energy, resulting in
lower surface temperatures. Construction land and unused
land have no vegetation cover on their surfaces, and the
surface temperature rises rapidly under the influence of
solar radiation. The average surface temperature of each
land use type showed a trend of first decreasing and then
increasing. The decrease in surface temperature from 2000
to 2010 was related to national policies. From 1999 to 2010,
the country implemented the project of returning farm-
land to forests and grasslands, which effectively prevented
the process of land desertification, increased vegetation

Table 4: Statistical table of different trends in LST Changes in Mu Us Sandy Land

Slope Significance level P Trend of change Ratio (%)

<−0.05 <0.01 Extremely significant degradation 20.33
<−0.05 0.01–0.05 Significant degradation 12.07
<−0.05 ≥0.05 Slight degradation 6.70
−0.05–0.05 ≥0.05 Basically unchanged 57.53
>0.05 ≥0.05 Slight improvement 1.01
>0.05 0.01–0.05 Significant improvement 1.35
>0.05 <0.01 Extremely significant improvement 1.02

Table 5: Average LST of different land use types in Mu Us Sandy Land
from 2000 to 2020

LST (°C) 2000 2010 2020 Mean value

Cultivated land 32.18 30.33 30.29 30.99
Woodland 33.80 31.88 31.87 32.53
Meadow 32.43 30.50 31.46 31.31
Waters 30.60 29.41 30.45 29.76
Land used for building 34.19 32.47 33.05 33.25
Unutilized land 34.45 32.56 32.90 33.20

Figure 6: Interannual variation trend of LST in Mu Us Sandy Land.
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coverage in the study area, and significantly improved the
ecological environment quality of Mu Us Sandy Land. The
surface temperature has rebounded again from 2010 to
2020, which is related to the continuous warming of the
global climate.

3.5 Spatial coupling analysis of surface
temperature and vegetation index

The 2D scatter plot tool of ENVI was used to obtain the
scatter distribution maps and linear regression equations
of LST and NDVI (Figure 7). R2 of the two was 0.5073 and
passed the significance test at the 0.01 level, indicating a
significant negative correlation between LST and NDVI in
the Mu Us Sandy Land. This indicates that ecological engi-
neering policies such as afforestation and wind and sand
fixation can effectively reduce surface temperature in the
study area, thereby achieving the effect of improving the
environment.

To further investigate the spatial correlation between
LST and NDVI, a spatial coupling degree model was used to
calculate the spatial coupling degree between LST and
NDVI in the Mu Us Sandy Land. The results are shown in
Figure 8. The overall spatial coupling between LST and
NDVI is at a very high level, and the two mainly exhibit

an antagonistic state in space. An increase in vegetation
coverage can effectively reduce surface temperature,
which occurs in most areas of the Mu Us sandy land. The
increase in construction land has led to an increasingly
prominent negative feedback effect of vegetation coverage
on surface temperature, which is mainly affected by the
urbanization process.

Statistical analysis was conducted on the coupling
degree zones of the Mu Us Sandy Land, and the results
are shown in Table 6. According to Table 6, the coupling
degree of Mu Us Sandy Land in the range of (0.8, 1.0] has
the highest number of grids, followed by (0.5, 0.8], [0, 0.3],
and (0.3, 0.5]). The average coupling degree in the study
area is 0.895, further proving the significant correlation
between LST and NDVI and reflecting the importance of
green vegetation in regulating regional climate and surface
temperature.

Figure 7: 2D scatter plot of LST and NDVI.

Figure 8: Spatial coupling distribution of LST and NDVI in Mu Us
Sandy Land.

Table 6: Statistical table of spatial coupling between LST and NDVI in Mu
Us Sandy Land

Coupling
degree

Coupling
effect

Grid
number

Proportion (%) Mean
coupling
degree

[0, 0.3] Range 2,359 2.58 0.895
(0.3, 0.5) Poor 334 0.36
(0.5, 0.8) Preferably 8,551 9.34
(0.8, 1.0) Excellent 80,278 87.71
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4 Discussion

The Mu Us Sandy Land is located in the northwest arid and
semi-arid areas, with a terrain mainly composed of wind-
blown sand and grassland. The ecological environment is
fragile, and it has a unique agricultural pastoral transi-
tional zone. Based on MODIS data, studying the spatiotem-
poral distribution patterns of surface temperature and
vegetation coverage, and further exploring the interrela-
tionship between surface temperature and vegetation
changes, evaluating the impact of vegetation on surface
temperature, can provide a scientific basis for ecological
environment protection and adaptation to climate change.
According to the analysis of the interannual variation
trend of NDVI in Mu Us sandy land, the overall NDVI
showed a fluctuating upward trend from 2000 to 2020,
indicating that the vegetation in the study area was gen-
erally developing in a good trend, which was consistent
with the research results of Zuguang et al. [38] in the
Yellow River Basin and Tong et al. [39] in the northern
Loess Plateau. However, NDVI showed a relatively large
downward trend in 2015. By reviewing the climate change
in the study area, it is found that 2015 is the minimum point
of temperature and precipitation in Mu Us sandy land
[40–42], indicating that the main reason for the sudden
change of NDVI in Mu Us sandy land in 2015 is the lack
of hydrothermal conditions.

Vegetation index and surface temperature are impor-
tant input parameters for studying water cycle, energy
cycle, and ecological environment changes [29,43]. Clari-
fying the spatiotemporal evolution patterns of vegetation
index and surface temperature in Mu Us Sandy Land is
helpful for the rational allocation of water resources and
the sustainable development of the ecological environment
in the research area. Over the years, the average annual
precipitation in Mu Us sandy land is 337.8 mm, the inter-
annual fluctuation of precipitation is large, and the
upward trend is not obvious [44]. However, the vegetation
index of the Mu Us Sandy Land has steadily increased,
indicating that China has made significant achievements
in the implementation of large-scale projects such as
returning farmland to forests and grasslands, diverting
floods and silting land, constructing wind and sand pre-
vention forests, and managing steep slopes under the lea-
dership of the country and the government. In the context
of global temperature rise, the surface temperature of the
Mu Us Sandy Land has shown a downward trend, which is
different from the change patterns in places such as the
Yunnan-Kweichow Plateau [45]. The main reason is the
implementation of ecological policies such as returning
farmland to forests and grasslands, windbreak and sand

fixation, and afforestation, which have changed the land
use type and climate of Mu Us Sandy Land, increased vege-
tation coverage in the study area, and thus reduced sur-
face temperature. Therefore, there is a close relationship
between surface temperature and vegetation coverage,
which is regulated through interactions: (1) Reflection
and absorption: Vegetation can reflect solar radiation
and reduce the area of direct sunlight shining on the sur-
face, thereby reducing the absorption capacity of the
surface. (2) Evapotranspiration: Vegetation evaporates
soil moisture into the atmosphere through transpiration,
which lowers surface temperature. Evapotranspiration
uses water within plants to transfer heat, thereby redu-
cing surface heat. (3) Climate regulation: The stomata of
plants can be opened and closed for regulation, reducing
water evaporation and preventing overheating. When
the temperature rises, plants reduce the opening of
stomata, reduce water evaporation, and thus lower the
surface temperature. (4) Shadow effect: The growth of
vegetation forms shadows, which can lower the tempera-
ture of the soil surface in direct contact with sunlight,
thereby lowering the surface temperature. Overall, the
higher the vegetation coverage, the lower the surface
temperature, and the growth and protection of vegetation
are important factors in reducing surface temperature.

The spatiotemporal variation of vegetation index and
surface temperature is the result of the comprehensive
influence of geographical factors, climate factors, and
socio-economic factors. This study only analyzed the spa-
tial variation and coupling relationship between the two,
which has significant limitations in research. Moreover,
the Mu Us Sandy Land has a large area that spans multiple
administrative regions. There are significant differences in
ecological and environmental policies among different
administrative regions, resulting in different directions of
vegetation index changes in the north-south and east–west
regions of the Mu Us Sandy Land. This is also the main
reason for the trend of surface temperature changes in
the Mu Us Sandy Land to show an increase in the west
and a decrease in the east. The quantification of the impact
mechanism of ecological policies has always been a hot
and difficult research topic in land science and ecological
science, and it is also a key research direction in the future.

5 Conclusions

Using MOD13A1 and MOD11A2 as data sources, the spatial
distribution characteristics of NDVI and LST in Mu Us
Sandy Land from 2000 to 2020 were analyzed. ENVI and
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MATLAB software were used to calculate the significant
trend changes of NDVI and LST over the years. Finally, a
spatial coupling model was used to calculate the spatial
coupling degree between NDVI and LST in four seasons,
and the spatial coupling differentiation characteristics of
Mu Us Sandy Land were analyzed. The main conclusions
are as follows:
(1) From 2000 to 2020, the annual NDVI value of Mu Us

Sandy Land was between 0.25 and 0.43, showing a
stable upward trend with an increase rate of 0.074/
(10 a). The main reason for this was the implementa-
tion of ecological and environmental protection poli-
cies such as afforestation and wind and sand fixation in
the study area, which had individual year fluctuations.
The reason for this was the uncertainty of water and
heat changes. The spatial distribution of NDVI in Mu Us
Sandy Land shows significant differences, with an
overall trend of gradually increasing from northwest
to southeast. The slope of NDVI variation in Mu Us
Sandy Land from 2000 to 2020 was −0.0240–0.0389,
with an average value of 0.0073. The proportion of
improvement areas in the study area is 81.48%, with
the vast majority being extremely significant improve-
ment areas, distributed in the central and eastern parts
of the study area.

(2) There are significant differences in the spatial distribu-
tion of surface temperature in Mu Us Sandy Land,
showing an overall trend of decreasing from northwest
to southeast and higher in the west than in the east. The
surface temperature of Mu Us Sandy Land is greatly
affected by changes in land use types, and there is a
significant difference in surface temperature among
different land use types. Construction land and unused
land have the highest surface temperature, followed by
grasslands and forests, and finally, farmland and water
bodies. The spatiotemporal variation trend of surface
temperature in Mu Us Sandy Land is different from the
gradual warming trend of global climate change. The
main reason is that human activities have changed
land use types and increased local vegetation coverage.
Human activities have had a significant impact on sur-
face temperature, reflecting the importance of green
vegetation in regulating regional surface temperature.
Therefore, the spatiotemporal variation of surface tem-
perature in the Mu Us Sandy Land is the result of the
joint influence of human activities and climate change,
and human activities dominated from 2000 to 2020.

(3) The R2 of LST and NDVI is 0.5073 and has passed the
significance test at the 0.01 level, indicating a signifi-
cant negative correlation between LST and NDVI in
Mu Us Sandy Land. This indicates that ecological

engineering policies such as afforestation and wind
and sand fixation can effectively reduce surface tem-
perature in the study area, thereby achieving the effect
of improving the environment. Moreover, the overall
spatial coupling degree between LST and NDVI is at a
very high level, with an average coupling degree of
0.895 in the study area. The two mainly exhibit a state
of mutual antagonism in space, further proving the
significant correlation between LST and NDVI, and
reflecting the importance of green vegetation in regu-
lating regional climate and surface temperature.

It is hoped that the presented results could be used to
analyze land-use change, observe climate change, and
assess the health of the ecosystem, which will help to
provide a theoretical basis for improving the regional eco-
logical and environmental model. However, the interpreta-
tion of policies still needs to be deepened. In terms of
research data, the lack of detailed socio-economic statis-
tical data is a shortcoming of this study. In addition, the
resolution of the surface temperature data used in this
study is 1 km, and the spatial resolution is relatively coarse,
which has caused certain limitations to this study. Therefore,
the direction of future work is to provide more in-depth
analysis for the study of the ecological environment of the
Mu Us Sandy Land by utilizing higher-resolution satellite
data, such as Landsat, Sentinel, and GaoFen, and more
advanced data analysis models, and by taking into account
socio-economic and policy documents.
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