
Research Article

Erteng Wang, Xinwei Zhai*, Yaoshen Huang, Chengze Li, Ruihuan Su, Lei Wu, Gaorui Song,
Zhiang Guo, Wanfeng Chen, and Jinrong Wang

Permian tectonic switch of the southern Central
Asian Orogenic Belt: Constraints from
magmatism in the southern Alxa region, NW
China

https://doi.org/10.1515/geo-2022-0618
received September 19, 2023; accepted January 28, 2024

Abstract: Late Paleozoic plutons are widely distributed in
the Alxa region, southernmost Central Asian Orogenic Belt,
and provided an important clue in constraint for the
closing time of the Paleo-Asian Ocean (PAO). In this article,
we present new zircon U-Pb ages and whole-rock geochem-
ical data from the Permian Huoersen and Zongnaishan
plutons in the southern Alxa region. The Huoersen gabbro
(ca. 285 Ma) is enriched in large-ion lithophile elements
and depleted in high-field strength elements, similar to
the features of continental marginal arc. They were most
likely generated by partial melting of depleted mantle that
was modified by subduction metasomatic fluids. The
Zongnaishan granites (ca. 267 Ma) show characteristics
of I-type granites and were generated in a syn-collision
setting. The Huoersen granites (ca. 259 Ma) are peralka-
line and have positive ƐNd(t) (+1.2 to +1.5) values, exhi-
biting A2-subtype granites affinities. They were formed
by melting of lower crust in post-collision extension set-
ting. Based on geodynamic mechanism, a three-stage evo-
lution model is delineated: subduction, syn-collision to

post-collisional extension for oceanic branch of the PAO
during the Permian. In general, the rock assemblages
indicate a tectonic switch from subduction to post-colli-
sion extension regimes and the final closure of the PAO.

Keywords: geochemical, Permian, tectonic switch, Alxa
region, Central Asian Orogenic Belt

1 Introduction

Plate tectonic is the predominant process of global tectonic,
and its main forms are oceanic subduction-closure and
subsequently continental collision [1–3]. The Central Asian
Orogenic Belt (CAOB), one of the largest mega-accretive
orogenic belts in the world, is bounded by the Eastern
European Craton to the east, the Tarim Craton and North
China Craton to the south, and the Siberia Craton to the
north (Figure 1a) [4–7]. The CAOB is a collage of geological
bodies formed in subduction closure of the Paleo-Asian
Ocean (PAO) during Neoproterozoic to Mesozoic, which is
regarded as one of the significant geological events during
the global plate tectonic [8–11]. Recent researches show the
PAO was finally closed in the Tianshan-Solonker suture
zone, southern CAOB [12]. However, compared with the
eastern and western parts of the CAOB [13–20], less atten-
tions are paid for the middle part and further study is vital
and necessary.

The Alxa region is located in the southernmost margin
of the middle CAOB (Figure 1a) and bounded by the
Solonker suture zone to the east and Tianshan-Beishan
suture zone to the west (Figure 1b) [12,21]. Magma and
tectonic activities of the Alxa are strong, and it is charac-
terized by an abundance of the acid and mafic-ultramafic
magmatism (Figure 1c) [20,22,23]. For a long time, the clo-
sure time of the PAO in the Alxa region has been highly
controversial, such as in the middle to late Devonian [24],
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or late Carboniferous to early Permian [20,25,26], and sub-
duction of the PAO until the middle Permian to early
Triassic [27] (and others references). Notably, the Paleozoic
tectonic transformation from subduction to post-collision
was widely manifested by magmatism related to subduc-
tion and closure of the PAO in the southern Alxa region
[22,28,29]. So, to better constrain the timing of subduction
and closure of the PAO, a detailed study of Alxa region
rocks’ assemblage is important.

Here, we report continental marginal arc gabbro, I- and
A-type granites about subduction, syn-collision to post-colli-
sion setting in the Zongnaishan-Shalazhashan, southern
Alxa region. We present geochronological, geochemical,
and Sr–Nd–Hf isotopic data for the granite and gabbro.
We further discuss their petrogenesis and the deep-level
processes relating to the magmatic activity and thus provide
constraints on the evolution of the Alxa region and the
timing of the closure of the PAO branch.

Figure 1: (a) The location of the Alxa region in the simplified tectonic sketch map of the Central Asian Orogenic Belt (modified after [5]). (b) Tectonic
outline of the surrounding Alxa in North China (modified after [64]). (c) Geological map of the Alxa region (YTZ – Yagan tectonic zone, ZHTZ –

Zhusileng-Hangwula tectonic zone, ZSTZ – Zongnaishan-Shalazhashan tectonic zone, NLTZ – Nuoergong–Langshan tectonic zone, modified after [71]).
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2 Geological setting

The Alxa region, belonging to the southernmost part of the
CAOB (Figure 1a), is located at the intersection of Tarim
Craton, North China Craton, and Qilian Orogenic belt,
which was initially regarded as an eastern extension of
the North China Craton (Figure 1b) [30,31]. In particular,
through the restoration of metamorphic, paleomagnetism,
and mélange, the Alxa region showed an inconsistent tec-
tonic history with the North China Craton [32].

The Alxa region has four major tectonic zones, e.g.
Yagan tectonic zone, Zhusileng-Hangwula tectonic zone,
Zongnaishan-Shalazhashan tectonic zone, and Nuoergong–
Langshan tectonic zone from north to south, and divided
by three major faults and ophiolite belts: the Yagan fault,
the Enger Us fault (ophiolite belt), and the Qugan Qulu fault
(ophiolite belt) (Figure 1c). The Enger Us Ophiolite Belt might
represent the major oceanic branch of the PAO, with the age
of 300Ma [33,34], while the Qugan Qulu Ophiolite Belt (ca.
275Ma) [34] is a back arc basin, which is formed by the
southward subduction of branch PAO and had closed during
the late Paleozoic [10,27,35].

In the southern Alxa region, the desert-covered area
has a crystalline basement of Neoproterozoic Granite gneiss,
which is mainly distributed in Nuoergong–Langshan tec-
tonic zone [36]. The limestone and dolomite of Cambrian
to Ordovician are sparsely distributed, while the Upper
Paleozoic strata are very common (Figure 1c). The Devonian
strata are clastic-carbonate sedimentary formation of neritic
facies, and the Carboniferous to Permian strata major are
conglomerate, sandstone, carbonate rock, volcanic rock, and
pyroclastic rock [30,37].

Late Paleozoic Granites are widespread with less basic
rocks in the Alxa region (Figure 1c). The corresponding
tectonic environments are of great dispute, and previous
studies gave different ideas: active continental margin
environment [19,23,35,38], the intraplate setting [39], or
post-collision extensional environment [20].

3 Sample descriptions

The Huoersen pluton and the Zongnaishan pluton are
located at the Zongnaishan-Shalazhashan tectonic zone,
south of the Enger Us Ophiolite Belt (Figure 1c). The
Huoersen pluton consists of granite and gabbro, and the
gabbro was intruded into by granite (Figure 2a). The Zong-
naishan pluton consists of granites and intruded into the
Carboniferous strata (Figure 2b). We sampled Huoersen
granite, Huoersen gabbro, and Zongnaishan granite for
analysis of geochronology and whole rocks geochemistry.

The grayish-black Huoersen gabbros (Figure 3a) with
gabbro-structure are mainly composed of plagioclase
(55%), pyroxene (20%), amphibole (20%), and iron (<5%).
The plagioclase grain is euhedral to subhedral. The pyroxene
is allotriomorphic granular and filled in the interspace of
plagioclase, and partly chloritized. The hornblende is idio-
morphic and semi-idiomorphic (Figure 3b). The Huoersen
granites are flesh-red and massive-structure, and mainly
composed of plagioclase (45%), quartz (35%), K-feldspar
(10%), and biotite (5%) and a few accessory minerals of
zircon and iron (<5%). The biotite grain occurred in the
form of inclusion (Figure 3c and d). The fresh

Figure 2: (a) Geological map of the Huoersen pluton (modified after geological map of 1:200,000). (b) Geological map of the Zongnaishan pluton
(modified after geological map of 1:200,000).
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Zongnaishan granite is flesh-red (Figure 3e), with medium
granitic texture and massive structure. The main mineral
composition is potassium feldspar (40%), plagioclase (10%),
quartz (35%), biotite (5–10%), and a small amount of amphi-
bole (<5%) (Figure 3f).

4 Analytical methods

Zircon cathodoluminescence (CL) images were obtained at
the Langfang Chenxin Geological Service Co., Hebei, China.
U-Pb dating, whole-rock major, trace element, and Sr-Nd-
Hf isotope analyses were performed at the Key Laboratory
of Mineral Resources in Western China, Lanzhou University,
Lanzhou, China.

4.1 Zircon U-Pb dating

After separation by conventional heavy liquid and magnetic
techniques, zircon grains from studied samples were hand-
picked and embedded in an epoxy mount under a binocular
microscope and then polished to expose half of the zircon
grains. The U-Pb isotope ratios of the selected zircons were
measured using an Agilent 7500X inductively coupled plasma
mass spectrometry (ICP-MS) instrument combinedwith a Geo-
Las200M laser ablation (LA) system. The zircon standard
91500 [40] was used as the age standard. The reference glass
NIST 610 [41] and Si were applied as external and internal
standards, respectively. The spot diameter was ∼30 μm and
the analytical techniques are referred to [42]. Data reduction

Figure 3: Representative field photographs and photomicrographs. (a and b) For the Huoersen gabbro. (c and d) For the Zongnaishan granite. (e and
f) For the Huoersen granite. Mineral abbreviations: Qtz, quartz; Pl, plagioclase; Bt, biotite; Mus, muscovite; Am, amphibole; Kfs, K-feldspar; Px:
pyroxene.
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was performed using the Glitter (ver. 4.0) program, and
common Pb was corrected using the common lead correction
program [41]. Concordia plots and weighted mean ages were
generated using the Isoplot program [43]

4.2 Major and trace element analyses

Major element compositions were analyzed by ICP optical
emission spectroscopy. The analytical accuracy was better
than 2%. The loss on ignition (LOI) was obtained by heating
approximately 0.5 g of dried sample powder at 1,000°C for
2 h. Trace element contents were analyzed by ICP-MS on an
Agilent 7700X instrument, and the analytical errors were
less than 10%. The US Geological Survey reference mate-
rials AGV-2 and BCR-2 were used as standards.

4.3 Whole-rock Sr-Nd-Hf isotopic

The rock samples’ powders were mixed with 0.5 ml 60 wt%
HNO3 and 1.0 ml 40 wt% HF in high-pressure PTFE bombs.
These bombs were steel-jacketed and placed in the oven at
195℃ for 3 days for digestion. The digested samples were
then dried on a hotplate at 150℃ for 2 h and reconstituted
in 1.5 ml of 1.5 N HCl before ion exchange purification. The
analytical procedure was the same as that described by
[44]. The diluted solution was introduced into a Nu Instru-
ments Nu Plasma II MC-ICP-MS (Wrexham, Wales, UK)
through a Teledyne Cetac Technologies Aridus II desolating
nebulizer system (Omaha, Nebraska, USA). Raw data of
isotopic ratios were internally corrected for mass fractio-
nation by normalizing to 86Sr/88Sr = 0.1194, 146Nd/144Nd =

0.7219 for Nd, and 179Hf/177Hf = 0.7325 for Hf with exponen-
tial law. International isotopic standards (NIST SRM 987 for
Sr, JNdi-1 for Nd, Alfa Hf) were periodically analyzed to
correct instrumental drift. Geochemical reference mate-
rials of USGS BCR-2, BHVO-2, AVG-2, and RGM-2 were
treated as quality control.

5 Results

5.1 Zircon U-Pb age

The LA-ICP-MS zircon dating results of Huoersen granite,
Huoersen gabbro, and Zongnaishan granite from the Alxa
region are given in Table 1.

5.1.1 Huoersen gabbro

The zircons from the Huoersen gabbro are 100–150 μm
long euhedral, in which ratios of length to width vary
from 1:1 to 1:2. The CL image of zircons has obvious con-
centric oscillatory zoning (Figure 4a) and high Th/U ratios
(0.28–2.16), indicating a magmatic origin [44]. The nine zir-
cons from Huoersen gabbro were analyzed for U-Pb ages,
with a 206Pb/238U weighted mean age of 285.0 ± 2.1 Ma (mean
square of weighted deviates [MSWD] = 0.24) (Figure 4a).

5.1.2 Zongnaishan granite

The zircons from Zonnaishan granites show subhedral
granular with sizes ranging from 50 to 70 μm and have
dark bands in the CL image (Figure 4b). Seventeen zircons
for Zongnaishan granite were analyzed. The Th/U ratios
from 0.22 to 2.65 indicate the characteristics of magmatic
zircons [45]. Seventeen zircon ages ranged from 259 ± 6 to
277 ± 8 Ma, with a weighted mean age of 267.3 ± 3.5 Ma
(MSWD = 1.9) (Figure 4b).

5.1.3 Huoersen granite

The zircon from the Huoersen granites shows euhedral to
subhedral with sizes ranging from 50 to 150 μm and has
oscillatory zoning in the CL image (Figure 4c). Twenty zir-
cons for granite were analyzed. They have high Th/U ratios
(0.36–0.68), which are characteristics of magmatic zircons
[45]. Nineteen zircon analyses yielded concordant 206Pb/238U
ages ranging from 257 ± 3 to 265 ± 3Ma, 207Pb/235U ages
ranging from 256 ± 3 to 264 ± 4Ma, with a concordant
206Pb/238U age of 259.1 ± 0.51Ma (MSWD = 0.091) (Figure 4c).

5.2 Whole-rock major and trace element
composition

Whole-rock major and trace element compositions of all
samples fromHuoersen granite and gabbro and Zongnaishan
granite are given in Table 2.

5.2.1 Huoersen gabbro

The samples of Huoersen gabbro have low-to-moderate
LOL (1.32–1.83%). They show high CaO (9.9–12.7 wt%),
MgO (7.0–8.6 wt%), and TiO2 (1.8–2.0 wt%), low SiO2
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Table 1: Zircon LA-ICP-MS U-Pb isotopic data of the Huoersen and Zongnaishan pluton in the southern Alxa region

Spot no. Isotopic ratios Ages (Ma)

207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U

Ratios ±1σ Ratios ±1σ Age ±1σ Age ±1σ

Huoersen gabbro
16HEN1-1 0.33537 0.00414 0.04505 0.00056 294 3 284 3
16HEN1-2 0.34448 0.00698 0.04534 0.00058 301 5 286 4
16HEN1-3 0.30928 0.00395 0.04548 0.00056 274 3 287 3
16HEN1-4 0.33601 0.0044 0.04489 0.00055 294 3 283 3
16HEN1-5 0.32553 0.00833 0.04505 0.00058 286 6 284 4
16HEN1-6 0.33971 0.00761 0.04544 0.00056 297 6 286 3
16HEN1-7 0.31949 0.00709 0.04495 0.00056 282 5 283 3
16HEN1-8 0.34199 0.00398 0.04539 0.00052 299 3 286 3
16HEN1-9 0.30707 0.0058 0.04544 0.00053 272 5 286 3
Zongnaishan granite
16ZN1-1 0.31475 0.01218 0.04104 0.00106 278 10 259 6
16ZN1-2 0.29263 0.01258 0.04225 0.00112 261 10 267 6
16ZN1-3 0.30369 0.0133 0.04267 0.00114 269 10 269 8
16ZN1-4 0.31630 0.01188 0.04260 0.00112 279 10 269 6
16ZN1-5 0.31847 0.01432 0.04309 0.00118 281 12 272 8
16ZN1-6 0.30383 0.01082 0.04204 0.0011 269 8 265 6
16ZN1-7 0.32037 0.0146 0.04278 0.00118 282 12 270 8
16ZN1-8 0.29858 0.0124 0.04129 0.00112 265 10 261 6
16ZN1-9 0.31734 0.0131 0.04398 0.00120 280 10 277 8
16ZN1-10 0.33119 0.01528 0.04213 0.00120 290 12 266 8
16ZN1-11 0.32052 0.0137 0.04364 0.00120 282 10 275 8
16ZN1-12 0.33054 0.01488 0.04303 0.00118 290 12 272 8
16ZN1-13 0.31241 0.01442 0.04228 0.00118 276 12 267 8
16ZN1-14 0.31095 0.0132 0.04254 0.00114 275 10 269 8
16ZN1-15 0.29175 0.01294 0.04144 0.00112 260 10 262 6
16ZN1-16 0.31947 0.01336 0.04283 0.00114 281 10 270 8
16ZN1-17 0.30283 0.01292 0.04274 0.00114 269 10 270 8
Huoersen granite
16HEN7-1 0.29175 0.00513 0.04173 0.00046 260 4 264 3
16HEN7-2 0.29309 0.00469 0.0411 0.00045 261 4 260 3
16HEN7-3 0.28699 0.00623 0.0408 0.00046 256 5 258 3
16HEN7-4 0.29099 0.00395 0.04097 0.00045 259 3 259 3
16HEN7-5 0.29202 0.00389 0.04087 0.00044 260 3 258 3
16HEN7-6 0.29011 0.0058 0.04083 0.00046 259 5 258 3
16HEN7-7 0.28892 0.00725 0.04092 0.00048 258 6 259 3
16HEN7-8 0.2923 0.00387 0.04074 0.00044 260 3 257 3
16HEN7-9 0.29053 0.00414 0.04121 0.00045 259 3 260 3
16HEN7-10 0.29147 0.00442 0.04101 0.00045 260 3 259 3
16HEN7-11 0.29047 0.00385 0.04071 0.00044 259 3 257 3
16HEN7-12 0.28973 0.00414 0.0406 0.00044 258 3 257 3
16HEN7-13 0.29017 0.00391 0.04058 0.00044 259 3 256 3
16HEN7-14 0.29157 0.00445 0.04091 0.00045 260 3 258 3
16HEN7-15 0.28985 0.00382 0.04094 0.00045 258 3 259 3
16HEN7-16 0.29205 0.00519 0.04161 0.00046 260 4 263 3
16HEN7-17 0.29679 0.00528 0.04189 0.00047 264 4 265 3
16HEN7-18 0.29331 0.00394 0.04132 0.00045 261 3 261 3
16HEN7-19 0.2898 0.00376 0.04101 0.00045 258 3 259 3
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(45.7–48.3 wt%), Al2O3 (14.4–16.5 wt%), and K2O (1.2–2.0 wt%)
contents, and relatively high Na2O (3.4–4.5 wt%), with low
K2O/Na2O ratios (0.3–0.6). In the TAS diagram (Figure 5a),
samples are plotted into in the field of monzogabbro. In the
SiO2-K2O diagram (Figure 5b), most samples plot into the
shoshonitic series.

The samples of Huoersen gabbro have high rare earth
element (REE) (435–535 ppm). In the chondrite normalized
REE diagram (Figure 6a), samples show higher light REE
(LREE) and relatively lower heavy REE (HREE), with (La/Yb)N
ratios of 32.81–51.63. In the primitive mantle-normalized
spider diagram (Figure 6b), the samples exhibit enrich-
ments in LILEs (e.g., Rb, Sr, Ba), weakly enrichments in
Zr-Hf, and depletions in HFSEs (e.g., Nb, Ta, Ti).

5.2.2 Zongnaishan granite

The samples of Zongnaishan granites have moderate SiO2

(67.3–69.9%), Al2O3 (15.7–16.2%), Na2O (3.8–4.0%), and K2O
(4.4–4.7%) contents, and the ratios of K2O/Na2O are 1.1–1.2.
The samples plot into the field of quartz monzonite in the
TAS diagram (Figure 5a) and belong to the high-K calc-alka-
line series in the K2O-SiO2 diagram (Figure 5b). The samples
have low TiO2 (0.30–0.39 wt%), CaO (1.52–2.07 wt%), and
MgO (0.54–0.61 wt%) contents, and Mg number [Mg# =

Mg/(Mg + Fe2+)] values are 27–32. In the A/NK-A/CNK dia-
gram (Figure 5c), the samples’ plot belongs to the peralu-
minous series.

The REE of samples varies from 144 to 329 ppm. In the
chondrite normalized REE diagram (Figure 6c), the sam-
ples are characterized by moderate negative Eu anomaly
with δEu values of 0.30–0.49. In the primitive mantle-nor-
malized spider diagram (Figure 6d), the samples exhibit
enrichments in Rb, Th, U, and K and depletions in Nb, Ta,
Sr, P, and Ti.

5.2.3 Huoersen granite

The samples of Huoersen granite exhibit extreme high SiO2

(74.78-77.44 wt%) contents, low TiO2 (0.18–0.22 wt%), Al2O3

(11.61–12.35 wt%), MgO (0.13–0.22 wt%), P2O5 (0.01–0.05 wt%),
and CaO (0.23–0.70 wt%) contents, with Mg# values ranging
from 45 to 63. The Na2O and K2O contents of 3.46–4.04wt%
and 4.52–5.72 wt%, respectively. All samples spot fall in the
granite field in the TAS diagram (Figure 5a) and belong to
high K-cala alkaline and shoshonite series in the SiO2 vs K2O
diagram (Figure 5b). In addition, they display character-
istics of peralkaline series in the A/NK vs A/CNK diagram
(Figure 5c).

Figure 4: Representative CL images and zircon U–Pb concordia diagram
for the samples from the southern Alxa region. (a) Huoersen gabbro. (b)
Zongnaishan granite. (c) Huoersen granite.
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These granite samples have high REE contents (230–280 ppm).
In the chondrite-normalized REE diagrams (Figure 6e),
the granite shows enriched LREE, with middle negative
Eu anomalies (Eu/Eu* = 0.16−0.17). In the primitive mantle-
normalized trace element diagrams (Figure 6f), all granites
sample depletions in Ba, Nb, Ta, Sr, P, and Ti, and enrich-
ments in Rb, Th, U, P, K, and Pb.

5.3 Whole-rock Sr-Nd-Hf isotopic

Whole-rock Sm-Nd and Lu-Hf isotopic data for the Huoersen
gabbro and granite in the Alxa region are given in Table 3.
Whole-rock Rb-Sr and Sm-Nd isotopic data for the Zong-
naishan granite in the Alxa region are given in Table 4.
The initial 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, and εNd(t) and
εHf(t) values were calculated by using the ages of zircon U-Pb
for all samples.

5.3.1 Huoersen gabbro

The samples from Huoersen gabbro have initial 143Nd/144Nd
ratios of 0.512372–0.512383 and positive εNd(t = 285Ma)
values of +2.1 to +2.3. They show high initial 176Hf/177Hf
values of 0.282847–0.282896 and positive εHf(t) values of
+9.0 to +10.7, yielding two-stage Hf model ages of
832–791 Ma.

5.3.2 Zongnaishan granite

The Zongnaishan gabbro have low initial 87Sr/86Sr values of
0.707527–0.708414. They show initial 143Nd/144Nd values of
0.512191–0.510041 and negative εNd(t) values of −0.37 to
−0.43, yielding two-stage Nd model ages of 1.58–1.43 Ga.

5.3.3 Huoersen granite

The Huoersen granites have 143Nd/144Nd ratios of
0.512579–0.512588 and 176Hf/177Hf ratios of 0.282886–0.282900.
Their initial 143Nd/144Nd and 176Hf/177Hf values vary from
0.512366 to 0.512378, 0.282811 to 20.282900, respectively, and
positive εNd(t) values of +1.2 to +1.5 and εHf(t) values of +7.1 to
+7.7, yielding two-stage Hf model ages of 733–622Ma.
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6 Discussion

6.1 Petrogenesis

6.1.1 Huoersen gabbro

The samples from Huoersen gabbro exhibit high MgO
(6.96–8.62 wt%) contents, and varied greatly Mg# values
(45–63) lower than values of primary magma (68–75) [46].
The contents of Cr (26–198 ppm) and Ni (169–223 ppm)
varied widely, mean the parent magma of sample under-
went fractional crystallization of olivine and pyroxene. In
addition, the samples display slightly negative Eu anomalies
(Figure 6a) and enrichment in Sr, suggesting that the frac-
tional crystallization of plagioclase is weak.

The calc-alkaline Huoersen gabbro shows the charac-
teristics of the island arc in the primitive-mantle-normal-
ized trace element variation diagrams (Figure 6b), such as
depleted in HFSEs (e.g., Nb, Ta, Ti) and enrichments in
LREE and LILEs [47,48]. Remarkably, the Nb-Ta depletion

could be induced by the crustal contamination of the basic
magma [49]. But there is no clear contaminate signal of
crustal materials for the samples from Huoersen gabbro:
(a) the sample displays weakly negative Zr-Hf anomalies
(Figure 6b), (b) their U/Nb ratios are very steady and not
positively correlated with SiO2 contents (Figure 7), and (c)
the Lu/Y (0.01), Nb/La (0.08), and Nb/Ce (0.04) are much
lower than the range of continental crust values (Lu/Y of
0.16–0.18, Nb/La of 0.69, and Nb/Ce of 0.33) [50]. Further-
more, the subduction metasomatic fluids could also result
in the Nb-Ta depletion, and the southern Alxa region was at
a subduction of PAO tectonic setting during the early Per-
mian [10,64,22,25]. In summary, the magmatic composition
of Huoersen gabbro had not been significantly affected by
crustal material involvement.

The samples from Huoersen gabbro have high La/Nb
ratios (10.4–17.4), indicating that their magma sources
were the product of lithospheric mantle (La/Nb ratios
greater than 1.5), rather than asthenosphere mantle
(La/Nb ratios less than 1.5) [51]. In addition, the sample has

Figure 5: (a) Total alkali vs silica diagram [72], (b) K2O vs SiO2 diagram [73], and c A/NK vs A/CNK diagram [74].
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the geochemical characteristics of arc magma, reflecting
the magmatic source that may be modified by subduction
metasomatic fluids. The results are different from the
magma of MORB (mid-ocean ridge basalt) or OIB (ocean
island basalt) subjected to crustal contamination. However,
the Nd-Hf isotopic systematics of Huoersen gabbro indicate
that their sources are depleted mantle, which exhibit posi-
tive εNd(t) (+2.1 to +2.3) and εHf(t) values (+7.1 to +7.7). These
decoupling characteristics of isotope and trace element are
due to the metasomatism of subduction plates in the
mantle source, resulting in enrichment in incompatible
elements, such as K, Ba, and Sr [52]. Numerous studies
have concluded that the southern CAOB occurred

multistage subduction of oceanic plates during the Paleo-
zoic [10,19,23,29,35,38]. So, the metasomatic components of
the mantle source of the Huoersen gabbro parent magma
are derived from the fluid released by the subduction slabs
during the subduction of the PAO.

In conclusion, the Huoersen gabbro is the product of
the depleted mantle metasomatized by subduction fluids.

6.1.2 Zongnaishan granite

Granites are important components in the continents and
also closely related to collisional orogenic belt [53], which
can be grouped into I-, S-, M-, and A-type granites based on

Figure 6: Chondrite-normalized REE patterns and primitive-mantle-normalized trace element variation diagrams. The data for chondrite and primitive
mantle are from [75]. (a and b) Huoersen gabbro. (c and d) Zongnaishan granite. (e and f) Huoersen granite.
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their geochemical characteristics and tectonic setting [54–58].
The samples from Zongnaishan granite have moderate SiO2

(67.3–69.8 wt%) and Al2O3 contents (15.7–16.2 wt%). Their
A/CNK values (1.05–1.14) are not exactly correspond with the
characteristics of S-type granites (A/CNK value greater than
1.1) [58], and no aluminum-rich minerals (leucite, cordierite,
etc.) are found in the mineral composition, so they do not
belong to S-type granites. The samples have low (Zr + Nb +

Ce + Y) values (154–264 ppm) and 10000Ga/Al ratios of
2.58–2.86. These are not completely consistent with the
high SiO2, (Zr + Nb + Ce + Y) value (greater than 350 ppm)
and 10,000 Ga/Al ratios (greater than 2.6) of A-type granites
[57]. All samples plot into the OTG (unfractionated I- and
S-type granites) field in the (Zr + Nb + Ce + Y) − (NaO2 +

K2O)/CaO diagram (Figure 8). Therefore, the Zongnaishan
granite is in agreement with I-type granites.

The Zongnaishan granites show depleted in HFSEs
(e.g., Nb, Ta, Zr, and Ti), and enrichment in LILEs (e.g.,
Rb and Th), indicating that the magma source is dominated
by components of continental crust. The samples’ enrich-
ment in K and depletion of P also reflect the magma derived
from crust. Moreover, the samples from Zongnaishan have
initial 87Sr/86Sr values of 0.707527–0.708414, and negative εNd(t)
values (−0.37 to −0.43) and two-stage Nd model ages of
1.58–1.43 Ga, suggesting that the Zongnaoshan granite is
the product of remelting Neoproterozoic crust.

6.1.3 Huoersen granite

The samples from Huoersen granite have high SiO2, K2O,
and Na2O contents, low MgO and CaO contents, enrichment
in Rb, Th, U, Zr, and Hf, and depleted in Ba, Sr, Ti, Nb, and
Ta, with 10,000 Ga/Al ratios of 4.2 (Zr + Nb + Ce + Y), values
of 375–486 ppm, and are peralkaline (Figure 4a, A/CNK < 1),
similar to that of A-type granites [54,56,57]. Moreover, all
samples spot into the field of A-type granites in the (Zr + Nb
+ Ce + Y) − (NaO2 + K2O)/CaO diagram (Figure 8). Therefore,
the Huoersen granite belongs to A-type granites.

Previous studies proposed various petrogenetic models
for A-type granites: (a) fractional crystallization of mantle
basaltic magma [59]; (b) partial melting of lower crustal
material [57]; and (c) mixing of mantle magmas with crustal
material [60]. It is usually accompanied by lots of mafic-
ultramafic magmatism if A-type granite is derived from
the crystallization differentiation of partially melted basalt
magma [60], such as alkali granites in the western CAOB
[53,61]. But there are no additional mafic magmas in the
Alxa area. The sample has positive εNd(t) (+1.2 to +1.5) and
εHf(t) values (+7.1 to +7.7), and T2DM of 832–791Ma, indicating
the input of mantle material into crust. Because the femicTa
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constituents (MgO, Fe2O3
T) are low and because no mafic

enclave was found in the sample rock, this could suggest
that the mantle material was less during the magmatism
process. This is obviously different from the granites of
crust-mantle mixed, such as the granites of crust-mantle
mixed are found in Hainan Island, China, and their most
important feature was that they contain a large number of
mafic enclaves [62]. The Nd/Th ratios (2.1–2.5) for Huoersen
granite are close to the crustal source (3) [46], indicating that
Huoersen granites are mainly the products of partial
melting of the lower crust. So, the magma was derived
from underplating resulting in partial melting of Neopro-
terozoic lower crust. The Huoersen granites have a low
content of Sr and negative Eu anomalies (Figure 6e) showing
the fractional crystallization of plagioclase during the pro-
cess of magmatic evolution.

6.2 Tectonic implications

The ophiolite belts and intermediate‐acidic intrusive rock
in the Alxa region record a complete Paleozoic tectonic
history correlated with subduction and closing of PAO.
[10,19,20,22,25,27,35,37,39,63]. The ca. 300 Ma Enger Us
ophiolitic mélange along the Enger Us fault belt is the
oldest ophiolitic in the Alxa region and is considered the
final closure site of the PAO [33,34]. The Zongnaishan-
Shalazhashan tectonic zone in the south of the Enger Us
fault is the product of the island arc magmatic caused by
the south subduction of the PAO during the early Paleo-
zoic, and the ca. 275 Ma Quagan Qulu ophiolitic mélange
is the residual body of the back-arc basin [10,64].

In this article, the geochemical data of Huoersen gabbro
(ca. 285Ma) show enrichment of LILEs and depletion of
HFSEs, indicating a tectonic setting that may directly con-
nected with island arcs. The preceding petrogenetic analysis
also supports that the gabbro originated from partial
melting of lithosphere mantle that was modified by sub-
duction metasomatic fluids. Moreover, in the Hf/3-Th-Ta

Table 4: Whole-rock Sr-Nd isotopic data for the Zongnaishan granite

Sample 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ƐNd(t) fSm/Nd T2DM(Ga)

Zongnaishan granite
16ZN-1 2.35 0.717305 0.708414 0.1179 0.512209 −0.58 −0.40 1.49
16ZN-2 1.941 0.715295 0.707949 0.1120 0.512193 −0.58 −0.43 1.43
16ZN-3 2.134 0.715809 0.707734 0.1236 0.512214 −0.58 −0.37 1.58
16ZN-4 1.871 0.714963 0.707883 0.1245 0.512241 −0.53 −0.37 1.55
16ZN-5 2.109 0.715506 0.707527 0.1141 0.512207 −0.56 −0.42 1.44
16ZN-6 2.059 0.716124 0.708333 0.1166 0.512191 −0.6 −0.41 1.50

Figure 7: U/Nb vs SiO2 diagram of the Huoersen gabbro.

Figure 8: (Na2O + K2O)/CaO vs Zr + Nb + Ce + Y diagrams of the granite
[54]. FG = fractionated felsic granites; OGT = unfractionated I- and S-type
granites; A = A-type granite.
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and Y/15-La/10-Nb/8 diagrams (Figure 9a and b), all sam-
ples were plotted into the island arc basalt and calc-alka-
line arc basalt zone. Further, the Huoersen gabbro formed
in the tectonic setting of the continental marginal arc, rather
than interoceanic arc. The evidences are as follows: (a) inter-
oceanic arc is most likely to occur in the initial stage of slab
subduction, and the PAO was already in the late stage of
subduction during early Permian in the Alxa region
[10,20,30] and (b) they display a trend of continental
marginal arc in the Ce-Yb diagram (Figure 9c). The Enger
Us (ca. 300 Ma) and Quagan Qulu (Ca. 275 Ma) ophiolitic
mélanges sporadically outcrop along two faults in the
Alxa region (Figure 1c), considered a late Paleozoic

ocean-arc system [34], which only implies that the PAO
did not completely disappear prior to early Permian
[10,22]. Researchers have proved that ca. 281 Ma Nuergai
granitoids were occurred in a subduction setting [10]. So,
there was subduction of ocean in the southern Alxa
region during early Permian [27]. In conclusion, the stu-
died Huoersen gabbro was related to this subduction
which was sourced from lithospheric mantle metasoma-
tized by subduction fluids.

The Zongnaishan granite (ca. 267 Ma) belongs to I-type
granite, and all samples plot in the field of volcanic arc and
syn-collisional granites in the Rb-Y + Nb and Nb + Y dia-
gram (Figure 10). Its significant depletion of Nb-Ta and

Figure 9: Trace element discrimination diagrams for the tectonic setting of the Huoersen gabbro. (a) Hf/3-Th-Ta diagram [76]. (b) Y/15-La/10-Nb/8
diagram [77]. (c) Ce-Yb diagram [78]. CAB – continental margin arc basalt, IAB – island arc basalt, BAB – back arc basin basalt, N-MORB – normal mid-
ocean ridge basalt, E-MORB – enriched mid-ocean ridge basalt, IAT – island arc tholeiite, WPT – within-plate tholeiite, WPAB – within-plate alkali
basalt, 1A – calc-alkali basalt, 1B – transition region, 1C – ocean island tholeiite, 2A – Continental basalt, 3A – alkali basalt.

Figure 10: Tectonic environment discrimination diagrams of granite in the studied area. (a) Rb-Y + Nb diagram [79] and (b) Nb-Y diagram [79]. Syn-
COLG – syn collisional granite, VAG – volcanic arc granite, WPG – within plate granite, POG – post-orogenic granite, ORG – oceanic ridge granite.
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enrichment of LILEs (e.g., Rb, Cs, Sr, Ba) (Figure 6c) also
support that they were formed in subduction environ-
ments. Geochemically, the Zongnaishan granites (A/CNK
ratios of 1.01–1.13) have peraluminous characteristics of
syn-collision magma and the significantly distinct low Ga/Al
ratios (2.58–2.86) from the characteristic of intraplate
extension setting [65] More importantly, numerous researches
have suggested that the continental collision of southern Alxa
region terminated at 268Ma [10] (and references therein).
Therefore, it can be concluded that Zongnaishan granites
were generated in a syn-collision regime formed during the
Zhusileng-Hangwula - Zongnaishan-Shalazhashan collision.

Eby [56] divided A-type granites into A1 and A2 sub-
types. A1-subtype granite source is dominated by mantle
and located in intraplate or continental rift environment,
while A2-subtype granite source is dominated by crust,
which is related to post-collision extensional environment.
The Huoersen granites (ca. 259 Ma) have high Y/Nb (2.5–2.9)
and Yb/Ta (4.2–4.8) ratios, indicative of A2-type granites
affinities [56]. Moreover, all are classified into within-plate
granite in the Rb-Y + Nb and Nb-Y diagram (Figure 10).
Spatially, there are lots of late Permian to early Triassic
magmatic activities related to the closure of PAO and sub-
sequently post-collision extension regime in the southern
Alxa region [29,66,67]. The Huoersen granites were pro-
ducts of the post-collision extension setting formed after
the closure of PAO.

In general, a compressional geodynamic setting shows
isotopic excursion to more enriched compositions, and an
extensional setting exhibits excursion to more juvenile
isotopes [68–70]. In the southern Alxa region, gradually
evolved isotope signatures were recorded in the magmatic
rocks during the late Paleozoic (Figure 11). The late Carbo-
niferous to early Permian magmatic rocks demonstrates
decreasing εNd(t) values, suggesting compression produced
by the subduction of the PAO [10]. In contrast, the middle
Permian to early Triassic magmatic rocks exhibit an exten-
sional setting implied by increasing εNd(t) values (Figure 11).
Notably, in the transitional period of early to middle Per-
mian (280–265Ma), a marked shift with decentralized posi-
tive to negative εNd(t) values illustrates a mixed magma
source, corresponding to a tectonic switch from subduction
to post-collision due to the closure of the PAO [10].

Combined with dating results of zircon U-Pb chronology
and geodynamic mechanism of the studied Huoersen and
Zongnaishan plutons, this paper infer that tectonic evolution
of the southern Alxa region during the early Permian to
late Permian involved three stages (Figure 12): a) Subduc-
tion of ocean (branch ocean of PAO) stage during ca.
285 Ma, when the Enger Us ocean southward subduction
to Zongnaishan-Shalazhashan and resulted the formation

of Huoersen gabbro (Figure 12a); b) Syn-collision stage
during ca. 267 Ma, which means the Enger Us ocean closed
during the middle Permian and formed Zongnaishan
granite (Figure 12b); c) Post-collisional extensional setting
during ca. 259 Ma (Figure 12c), and the asthenosphere
mantle was upwelled and underplated lower crust, finally
Huoersen granite were formed. The conclusion is consis-
tent with regional magmatic events in this period.

7 Conclusions

In this article, we present a petrographic, geochronolo-
gical, whole-rock major and trace element, Sr-Nd-Hf iso-
topic data, Permian gabbro, and granite samples from
the Alxa region. The major conclusions are as follows:

(1) The LA-ICP-MS zircon U-Pb age of Huoersen gabbro
and granite, Zongnaishan granite, is ca. 285, 259 and
267 Ma, respectively.

(2) The calc-alkaline Huoersen gabbro is derived from
the depleted mantle metasomatized by subduction fluids.
The I-type Zongnaishan granite is the product of crustal
remelting of Neoproterozoic. The A2-subtype Huoersen gran-
ites are the products of partial melting of the lower crust.

(3) Combined with previous studies, a model is pro-
posed involving subduction (ca. 285 Ma), syn-collision
(267 Ma), and post-collisional extension (ca. 259 Ma) for
an oceanic branch of PAO in the Alxa region.

Figure 11: Whole-rock εNd(t) values vs ages from late Carboniferous to
early Triassic igneous rocks in the Alxa region. Data and arrow from [9]
and the arrow indicate εNd(t) values trends from Late Paleozoic igneous
rocks in the Alxa region.
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