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Abstract: This work presents an in-depth examination of
the Carboniferous volcanic reservoir within the CH471 well
area, situated in the central portion of the Hongche fault
zone on the northwestern margin of the Junggar Basin.
Leveraging seismic data and well connection comparisons,
we scrutinize the tectonic evolution model and elucidate the
impact of the nappe structure of the Hongche fault zone on
the volcanic reservoir. The study has obtained the following
understanding: after the formation of Carboniferous vol-
canic rocks, affected by the Hongche fault structure, a series
of structural superpositions from extension to extrusion and
finally thrust occurred, resulting in a northwestward tilt of
the volcanic rock mass, and a large number of cracks were
generated inside the rock mass. At the same time, the top
was uplifted and affected by weathering and leaching to
form a weathering crust, eventually forming a reservoir.
The northern part is located in the edge area of the eruption
center, and the rock mass has good stratification. The rock
strata have certain constraints on the reservoir distribution,
and the reservoir is inclined along the rock mass. The
southern part is close to the eruption center and features
large volcanic breccia accumulation bodies with strong
internal heterogeneity. The reservoir developed mainly in
the superposition of the range of control of the weathering
crust and dense fracture development, and the rock mass
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morphology does not control the area. Structure is the key to
forming a volcanic rock reservoir, mainly reflected in the
following aspects. First, tectonic activity is accompanied by
fracture development, and fractures are densely developed
in areas with strong activity, which can effectively improve
the physical properties of volcanic reservoirs. Second, tec-
tonic activity leads to the strata uplift and weathering denu-
dation, forming a weathering crust. Within the range of
control of weathering and leaching, the physical properties
of volcanic rocks are improved, and it is easier to form high-
quality reservoirs. Third, the distribution of volcanic rock
masses is controlled by tectonic activity, which affects the
reservoir controlled by the dominant lithology.

Keywords: Hongche fault zone, tectonic evolution, Carboniferous,
volcanic reservoir, connected well comparison, seismic cross-
section

1 Introduction

Volcanic oil reservoirs were first discovered in the eight-
eenth century [1]. It has achieved certain results in many
countries and regions around the world. For example, the
Niigata Basin in Japan, the North Cuba Basin in Cuba, and
the Neuquen Basin in Argentina have obtained industrial
oil flows and large-scale reserves [2-7]. The discovery of
volcanic oil and gas reservoirs in China began in the 1950s,
and industrial oil flows were first encountered in Carboni-
ferous volcanic rocks in the Junggar Basin [8]. Later, break-
throughs were made in 14 petroliferous basins, such as
Santanghu Basin and Songliao Basin [9,10]. By comparing
the volcanic oil and gas reservoirs found in the world, we
can see that almost all types of volcanic rocks have the
precedent of forming effective reservoirs, from acidic vol-
canic rocks to basic volcanic rocks, and whether the litho-
facies is explosive, overflow, or sedimentary facies of
volcanic rocks [11,12]. This phenomenon is due to the fact
that most of the primary pores and fractures of volcanic
rocks are isolated from each other and lack connectivity, it
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is difficult to form high-quality reservoirs in volcanic rocks.
The formation of most volcanic reservoirs depends on later
transformation and is controlled by weathering, leaching,
tectonic evolution, and diagenesis [13-15]. Therefore, the for-
mation conditions of volcanic reservoirs are more random
than those of conventional reservoirs.

Reservoirs have always been the focus of exploration
and development of volcanic oil and gas reservoirs [16-18].
Early studies on volcanic reservoirs mainly focused on
lithofacies, but the final results were not ideal due to the
particularity of the volcanic reservoir mentioned above
[19]. The study of volcanic rock reservoirs has gradually turned
to fracture and weathering leaching and has achieved good
results [20-27]. However, research on the influence of tectonic
evolution on volcanic reservoirs is still relatively weak, espe-
cially against a thrust-nappe tectonic background [28,29].

This study takes the Carboniferous volcanic oil and gas
reservoirs in the CH471 well area under the complex tec-
tonic background of the hanging wall of the Hongche fault
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zone in the northwestern margin of the Junggar Basin as
an example. Based on previous studies, through a combi-
nation of wells and earthquakes, the influence of the thrust
nappe structure on the distribution of volcanic reservoirs
is discussed, and the transformation of volcanic reservoirs
in different tectonic stages is discussed. This study provides
a theoretical reference for exploring volcanic reservoirs in
this region and similar regional backgrounds.

2 Geological setting

The Junggar Basin is located at the junction of Kazakhstan,
Siberia, and the Tarim plates. It was formed during the
collision and closure of the Central Asian Orogenic Belt
(CAOB) in the late Paleozoic and is one of its main tectonic
units (Figure 1a) [30]. The Junggar Basin is a triangle
bounded by the Junggar fold mountain system in the
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Figure 1: Location and geological background of the study area. (a) The tectonic position of Junggar Basin in the CAOB; (b) main tectonic units and
faults around Junggar Basin; and (c) adjacent tectonic units and faults of Hongche fault zone.
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northwest, the Altai orogenic belt in the northeast, and the
Tianshan Mountains in the south (Figure 1b) [31].

The Hongche fault zone is located at the junction of the
northwestern margin of the Junggar Basin and the Western
Junggar fold mountain system (Figure 1c). It is a large-scale
fault zone formed by a combination of thrust or overthrust
faults of different periods and scales [32-34]. The overall
distribution is NE-trending, with a total length of 80 km
and a width of approximately 10-20 km. The western
part is the Chepaizi uplift, and the eastern part is the
Shawan sag, with an area of approximately 1,500 km?.
The activity of the West Junggar orogenic belt influences
its formation and evolution. There is some controversy
about the formation time of the Hongche fault, but most
studies suggest that its activity began in the late Carboni-
ferous [35-39]. The formation of the Hongche fault zone is
divided into five tectonic stages: (1) in the late Carbonifer-
ous—early Permian post-orogenic extensional background,
the fault began to form; (2) the tension in the middle-late
Permian turned into extrusion, and thrusting began; (3) in
the Early Triassic, the tension was inherited and superim-
posed based on the thrust nappe structure; (4) the Jurassic—
Cretaceous activity began to weaken, and oscillation and
fluctuation gradually began; and (5) during the Cenozoic,
thick Neogene strata were deposited in the Chepaizi area,
and no strong deformation was found.

The study area is located in the Carboniferous volcanic
reservoir of the CH471 well area in the middle section of the
hanging wall of the Hongche fault zone. The discovery of
this reservoir began with the deployment of the CH47 well in
1985, which was tested in the Carboniferous volcanic rock
section and obtained industrial oil flow. More than 60 mil-
lion tons of proven petroleum geological reserves have been
found in the Carboniferous volcanic reservoir, which has an
oil-bearing area of 34.64 km?.

After the formation of Carboniferous volcanic rocks, the
study area has undergone superimposed transformation of
multi-stage tectonic movements, such as the Hercynian,
Indosinian, Yanshan, and Himalayan movements, and its
internal structure is complex [31,40—44]. Laterally, two groups
of reverse faults are present in the north-south and east-west
directions (Figure 2). Among them, the north-south fault
dominated by the Hongche fault has the largest scale, many
cutting horizons, and an early formation time. The other
group of east-west faults has a small fault distance, the
main fault layer is Carboniferous in age, the formation time
is late, and the north-south faults formed early are cut. Verti-
cally, Carboniferous, Permian, Jurassic, Cretaceous, Paleo-
gene, Neogene, and Quaternary strata are present from
bottom to top. The Carboniferous strata are the main research
object. The top boundary of the strata is characterized by high
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values in the southwest and low values in the northeast, and
the whole set of strata is a monocline in the northeast direction.
It unconformably overlies the overlying Permian Lower Wuerhe
Formation (P,w), resulting in the lack of the Jiamuhe Formation
(Py), Fengcheng Formation (Py), and Xiazijie Formation (P,x). In
addition, the Carboniferous strata are dominated by igneous
rocks, including tuff, basalt, andesite, and volcanic breccia.

3 Data and study methods

The average thickness of Carboniferous volcanic rocks in
the study area is more than 600 m. However, the drilling
depth of the collected drilling data in this area is relatively
shallow. The main drilling interval is located in the middle
and upper part of the Carboniferous system, and the dril-
ling fails to penetrate the Carboniferous strata. In addition,
volcanic rocks have the characteristics of strong heterogeneity
and rapid lithological changes, which makes it difficult to
identify and explain the distribution and morphology of vol-
canic rock masses by single-well lithology combined with well
comparison. However, due to the good quality of seismic data
in the study area, the seismic reflection waves of the explosive
phase are chaotic, and the seismic waves of the overflow
phase are well-layered. Therefore, we use seismic and logging
data to study the Carboniferous volcanic rocks [45-47].

The seismic data used in this study came from 3D seismic
data collected in the CH45 well area in 2017. The vertical axis
of the seismic data has now been converted to elevation,
which is currently in meters. The stratigraphic calibration
and fault identification of seismic data are mainly based on
research by the Xinjiang Oilfield Company. There were 15
individual well logs, including 11 appraisal Wells and 4 devel-
opment Wells. Three seismic profiles and corresponding well
profiles are drawn, of which two E-W profiles are located in
the north and south of the study area, and the other N-S
profile runs through the whole study area. The longitudinal
distribution characteristics of the volcanic rock mass are ana-
lyzed from the north-south and east-west directions, and its
structural form is clarified (Figure 2).

4 Results

4.1 Structural form of north-south volcanic
rocks

The study area’s north-south seismic profile shows (Figure 3)
that the volcanic rock mass has not undergone large-scale
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deformation in the north-south direction, and the overall
thickness changed little, manifested as the morphological
characteristics of the original volcanic accumulation body.
The seismic interpretation results show several east-west
reverse faults with small fault distances, and the main fault
layer is Carboniferous age. The seismic reflection of the
southern section is relatively messy and should be near
the eruption center, mainly in the explosive phase, and
the stratification is poor. The seismic reflections of the
northern section have clear layered characteristics and rela-
tively good continuity. The seismic reflections are part of the
draped body, which is composed of various lithological
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interbeds, such as explosive facies, overflow facies, and vol-
canic sedimentary facies.

4.2 Structural form of east-west volcanic
rocks (northern section)

The Carboniferous volcanic rocks in the northern part of
the study area have the characteristics of layered seismic
reflection and good continuity (Figure 4). The seismic inter-
pretation results show that the north-south fault is a thrust
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Figure 2: Regional structural map and stratigraphic histogram of the study area.
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Figure 3: Through CH489-CH25 well seismic profile (A-A’).

fault dominated by the Hongche fault zone, with a large
fracture distance and a lot of stratum cutting. Combined
with the analysis of the north-south section, the rock mass
tends toward the northwest, with dip angles of 20-50°,
oblique to the overlying strata, and gradually pinches out
from west to east. The analysis shows that this feature is
due to the influence of the Hongche fault’s thrust nappe
after the volcanic rock’s formation, which leads to the
deformation and inclination of the volcanic rock mass.
The rock mass is uplifted and deposited again after weath-
ering and denudation. The top is the ancient weathering
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crust residue, not the strata, characterized by an oblique
intersection with the overlying strata.

4.3 Structural form of east-west volcanic
rocks (southern section)

Due to the proximity to the eruption center, extremely
thick volcanic breccia accumulations are present in the
southern part of the study area, and seismic reflections
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are more disorderly and do not have stratification. It is
difficult to ascertain whether the volcanic rock mass is
inclined from the seismic profile and whether the top
has been weathered and eroded (Figure 5). However,
some draped bodies are still in the section’s western
part, which is stratified, indicating that the volcanic rock
mass is inclined in a northwest direction.

5 Discussion

5.1 Evolutionary model of Carboniferous
volcanic rocks

Based on the above research, combined with the compara-
tive analysis of different tectonic evolution stages of the
Hongche fault, the evolution model of the Carboniferous
volcanic rock mass in the study area is established, and it is
mainly divided into the following four stages:

(D In the first stage, the early Carboniferous volcanic
rocks erupted and accumulated to form the original vol-
canic edifice (Figure 6a). The lower part developed thick
explosive breccia around the eruption center and gradu-
ally thinned toward both sides. The upper part developed a
draped shape composed of overflow facies, explosive facies,
and volcanic sedimentary layers.

(2) In the second stage, from the late Carboniferous to
the end of the Permian, the volcanic rock mass experienced

Altitude
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a series of complex structural superpositions. From the late
Carboniferous to the early Permian, a fault began to form
under the tensile background of the closure of the ocean
basin until the post-orogenic extension. At the end of the
early Permian, the stress field reversed, the reverse fault
developed, and the hanging wall of the fault was uplifted
(Figure 6b). In the middle-late Permian, the extrusion pres-
sure increased, and the thrust nappe began. The volcanic
rock mass was deformed by extrusion and inclined to the
northwest.

(3) The third stage was synchronous with the second
stage. Affected by the uplift and denudation of the hanging
wall of the thrust fault, the top of the inclined volcanic rock
mass is denuded, and some Permian strata are missing
(Figure 6¢). As a result, the Carboniferous strata and the
overlying strata of the Permian Lower Urho Formation
(P,w) obliquely intersect and are in unconformable contact.

(4) In the fourth stage, the Triassic strata inherited the
structural form of the late Permian strata and were further
compressed, but the structural strength weakened. Based on
the previous deformation, the high-angle thrust was super-
imposed. The Triassic strata in the whole structural area were
cut off at a high angle, resulting in a lack of Triassic strata in
the study area. The subsequent Jurassic—Cretaceous tectonics
further weakened, the formation thickness was stable, faults
and folds were rarely developed, and minor unconformities
appeared in some areas. During the Cenozoic, thick Neogene
strata were deposited and finally formed their present shape
(Figure 6d).

Figure 5: Through CH487-CH476 well seismic profile (C-C").
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Igneous rock

Figure 6: Evolution pattern of Carboniferous volcanic rock mass in the study area. (a) Primitive volcanic apparatus; (b) uplift of thrust nappe strata;

(c) the top is eroded by weathering; and (d) present stage.

5.2 Comparative analysis of the vertical
distribution of volcanic reservoirs

Based on clarifying the tectonic evolution of the Carboniferous
volcanic rock mass, the vertical distribution pattern map of the
reservoir in the study area is drawn, and the comparison of
the well-connected oil layers verifies the distribution pattern of
the reservoir. This study compares the east-west section and the
north-south section of the study area and discusses the differ-
ences between the southern and northern parts of the study area.

5.2.1 Comparative analysis of the north-south reservoir

The vertical distribution of the north-south volcanic reser-
voir shows that (Figure 7) there is no large deformation in
the north-south direction of the volcanic rock mass. The
southern section is close to the eruption center, and a thick
volcanic breccia accumulation body is developed. The
lithology is singular and does not have stratification. Due
to the strong internal heterogeneity of the volcanic breccia
accumulation body, reservoir development is less con-
strained by lithology and is more affected by fault (frac-
ture) development and weathering crust control [48-52].
The reservoir is mainly developed and distributed within
the range of control of the top weathering crust. The

northern section is located at the edge of the eruption
center and is mainly composed of volcanic breccia, ande-
site, and tuff. It has the characteristics of good stratifica-
tion, rapid lithological change, and strong heterogeneity,
and the distribution of the rock mass has a certain regu-
larity. Lithological changes have a certain degree of con-
straint on the reservoir, and they control the development
of the reservoir along the dominant lithology.

The comparison of the north-south wells (Figure 8)
shows that the volcanic oil layers in the southern section
are mainly distributed in the range of control of the weath-
ering crust within 400 m from the top boundary of the
Carboniferous system and are constrained by the fault dis-
tribution to a certain extent. In addition to the influence of
the weathering crust and fault (fracture) control, the vol-
canic oil layer in the northern section is also affected by the
distribution of the rock mass, and the oil layer is inclined
along the rock mass. The above characteristics are consis-
tent with the reservoir distribution model.

5.2.2 Comparative analysis of east-west reservoirs
(northern part of the study area)

The map showing the longitudinal distribution of the east-
west volcanic reservoir in the northern part of the study
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area shows that the volcanic rock strata in the northern
section tilt from east to west (20-50°) and rapidly pinch out
from west to east, and the distribution of the rock mass
shows certain regularity (Figure 9). Although the volcanic
rock mass has strong heterogeneity and the physical prop-
erties of different parts are different due to the influence of
fracture development and weathering, the difference in the
rock mass strength and wind resistance of different litholo-
gies is greater. Under the premise of strong stratification
and regularity of the volcanic rock mass, the lithology has
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certain constraints on the reservoir distribution; thus, the
reservoir is affected by the inclination of the volcanic rock
mass and distributed along the inclination direction of the
rock mass, with certain extensibility.

The comparison of east-west wells in the northern part
of the study area shows that (Figure 10) the distribution of
oil layers is affected by the inclination of the rock mass,
and the oil layers are inclined along the distribution direc-
tion of volcanic rock strata, which is consistent with the
distribution mode of volcanic reservoirs.
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5.2.3 Comparative analysis of the east-west reservoir
(southern study area)

The vertical distribution of the east-west volcanic reservoir
in the southern part of the study area shows that (Figure 11)
the southern section contains a large set of thick volcanic
breccia accumulation bodies, which do not have stratifica-
tion and cannot be used to assess the occurrence and shape
of the rock mass. Due to the strong heterogeneity inside the
accumulation body of the volcanic breccia, the fracture
development degree and the degree of weathering and
denudation in different structural parts are different, which
leads to great differences in the physical properties and a
lack of constraint of lithology on the reservoir distribution.
Therefore, the distribution of volcanic reservoirs in the
south is not affected by lithological factors and is mainly
controlled by the development of faults (fractures) and
weathering denudation [53-57], distributed within approxi-
mately 400 m from the top of the weathering crust.

The comparison of east-west wells in the southern part
of the study area shows that the oil layer is not affected by
the lithology distribution and is more inclined because of
the oil-bearing blocks (Figure 12). This result is consistent
with the reservoir distribution model.

5.3 Relationship between tectonic evolution
and volcanic reservoir distribution

The formation of volcanic reservoirs is more dependent on
post-transformation. Although the strength and weath-
ering resistance of different lithologies are different, as
long as the degree of post-transformation is high enough,
volcanic rocks may form effective reservoirs. Structure
plays a dominant role in the later transformation of volcanic
reservoirs. Structural activities control the development of
faults (fractures), promote the generation of weathering,
affect the distribution of lithology to a certain extent, and
affect the formation of reservoirs, making them an impor-
tant basis for forming volcanic reservoirs [58-61]. The
formation and distribution of Carboniferous volcanic reser-
voirs in this study area are closely related to the tectonic
activity and evolution of the Hongche fault zone in the
northwestern margin of the Junggar Basin, mainly shown
by the following points.

First, the formation and distribution are accompanied by
tectonic movement, which produces many fractures. After the
formation of Carboniferous volcanic rocks, affected by the
activity of the Hongche fault zone, tensile fractures began to
occur based on the tensile background of the early Permian. At
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the end of the early Permian, the stress field was transformed
into compression, forming a thrust nappe structure. The
internal shear fractures began to develop in large numbers,
and tensile fractures developed at the transitional end of the
volcanic nappe. The Triassic period was further strengthened
based on the previous structural pattern, which expanded the
scale of the fractures that formed in the early stage and
produced new structural fractures. The development of frac-
tures effectively improved the permeability of volcanic reser-
voirs, increased the reservoir space, and provided infiltration
channels for surface water in the later weathering process,
further improving the physical properties of volcanic rocks,
thus laying the foundation for forming volcanic reservoirs.

Second, tectonic uplift promoted weathering and
leaching. The Carboniferous volcanic rocks in the study
area were uplifted and eroded under the control of the
Hongche fault thrust nappe structure, and the weathering
crust formed at the top. In the process of weathering and
leaching, the soluble minerals in volcanic rocks were dis-
solved to form various dissolution pores, and some struc-
tural fractures were expanded by fluid dissolution to form
dissolution fractures. Thus, the physical properties of vol-
canic rocks within the range of control of the weathering
crust were effectively improved, providing conditions for
reservoir formation.

Finally, the structural form has a certain influence on
the distribution of the rock mass. The Carboniferous vol-
canic rock mass was subjected to a thrust nappe structure,
forming a high-angle tilt, and some reservoirs developed
along the dominant lithology, resulting in the reservoir
distribution also tilting with the rock mass.

6 Conclusion

Through the interpretation and analysis of seismic data,
well correlation, and reservoir distribution data, we have
reached the following conclusions:

(1) In the early stage of thrust nappe formation, the
strata began to be affected by extrusion, the volcanic rock
mass was slightly deformed, and shear fractures were gener-
ated internally. In the middle stage of the thrust nappe, thrust
faults were formed, high-angle deformation occurred in the
volcanic rock mass, internal cracks were further developed,
and tensile cracks began to develop at the transitional end.
They were uplifted to accept weathering and leaching, and
the weathering crust was formed at the top. In the late thrust
nappe stage, the strata began to decline and accept deposi-
tion. The Carboniferous volcanic rocks were finalized, and
there was no large-scale transformation in the later stage.
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(2) There are differences in volcanic reservoirs in the
northern and southern parts of the study area. The northern
part is located at the edge of the eruption center, the rock
mass is stratified, and the inclination of the volcanic rock
mass constrains the reservoir. To a certain extent, the reser-
voir develops along the distribution of volcanic rock mass
and belongs to the “reformed” reservoir, mainly controlled
by fractures and lithology. The south is located in the center
of the volcanic eruption, and the rock mass has poor strati-
fication and is not controlled by the lithology distribution.
The southern reservoir is mainly controlled by weathering
leaching and belongs to the weathered crust-type volcanic
rock reservoir.

(3) The formation of high-quality reservoirs in volcanic
rocks is more dependent on post-transformation, and tec-
tonic evolution controls the whole process of post-transfor-
mation. The tectonic movement caused a large number of
cracks in the volcanic rock mass, thus improving the lack
of connectivity of the primary pores in the volcanic rock
reservoir. Tectonic uplift caused the volcanic rock mass to
be reformed by weathering and leaching for a long time to
form a weathering crust, which further improved the
reservoir’s physical properties. The distribution of the
reservoir-dominant lithology is affected by tectonic evolu-
tion to a certain extent, thus restricting the range of dis-
tribution of reservoirs. The evolution model of volcanic
reservoirs under the background of thrust nappe structure
has a good reference significance for developing volcanic
reservoir in the Hongche fault zone. At the same time, it
can provide a reference for exploring similar areas.
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