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Abstract: The geochemical sampling work in the difficult
and dangerous areas is very hard; hence, it can be greatly
improved by combining with the remotely sensed data.
Thus, a retrieval model is proposed by Kernel Principal
Component Analysis and Artificial Bee Colony (ABC) opti-
mized Support Vector Machine (SVM) models based on
Landsat 8 remotely sensed data and the geochemical data
in the study area. The analysis results show that the geo-
chemical data delineate the areas with relatively enriched
elements, but indicate the low-abnormal ore (chemical)
points, and the anomalies delineated by the inversion data
are better for this purpose, for better indication. At the same
time, the distribution and intensity of the corresponding
abnormal areas found that the abnormal areas delineated
by the inversion data basically contain the abnormal areas
delineated by the original data, and the anomalies located at
the ore spots are obviously enhanced; it shows that the SVM
model of ABC Optimization can establish the relation between
geochemistry data and remote sensing data, can supply the
original data effectively, and can also provide the direction
for the next prospecting work.

Keywords: Landsat 8, geochemistry, kernel principal compo-
nent analysis, artificial bee colony, support vector machine

1 Introduction

The collection of geochemical data is very labor-intensive
and material-intensive, especially in some areas where the
natural environment is harsh. In response to this problem,
remote sensing geochemistry [1] combines the advantages

of geochemistry with remote sensing technology, in terms
of both the spatial and the temporal advantages of remote
sensing data acquisition and in terms of the chemical ele-
ment distribution [2]. Previous studies have shown that
features in the remote sensing spectrum, such as absorp-
tion valleys, are related to specific units in the corre-
sponding substances, such as hydroxyl and manganese
ions [3], but are also affected by the element contents [4].
Therefore, it is theoretically possible to retrieve the geo-
chemistry data from the remote sensing data.

For example, Aronoff and Goodfellow [5] and Eliason
et al. [6] added the image factor to their geochemical study
as early as the 1980s and take the Lake Kuayat region in
Canada as an example combining remote sensing image
and stream sediment data in this area; the prospecting
work is carried out using the integrated information, and
the result is better than the single method. Zhang [7] stu-
died the remote sensing information, the geochemical
information, and the buffer area information of the study
area to get comprehensive information and used it to guide
the prospecting work and got better results than the single
information. Zhao [8] used the least squares method to
extract the features of ETM+ remote sensing data, consid-
ered the spatial attributes of geochemical data, and estab-
lished the point-to-point spatial relationship between remote
sensing data and geochemical data; finally, a retrieval model
is established between the extracted features and the geo-
chemical data by using the limit learning machine model.
Pan Cencen used the local correlation maximum approach
for spectral data preprocessing and conducted the compara-
tive studies in a series of models, including Partial Least
Squares (PLS), Support Vector Machine (SVM), Least Absolute
Shrinkage and Selection Operator, Elastic Network, Regular-
ization Random Forest and Ridge Regression Coefficient
Screening models, and the results show that the Regulariza-
tion Random Forest has the best result [9]. Ren et al. used the
geochemical data to identify the geologic background of
lithological formation; because of the uniqueness of the
data, they used genetic algorithms to optimize the neural
network, and the experimental results show that the discri-
minant ability is superior [10]. Li et al. studied lunar surface
minerals using PLSR and BP neural networks [11]. Bachri
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et al. used SVM for automatic lithology mapping based on
remote sensing data [12]. Yunkai et al. chose four methods to
preprocess hyperspectral remote sensing data and found
that the first-order differential transformation is the
best, and the characteristics of data nonlinearity are
taken into account; the PLS kernel functions are used
to obtain the kernel PLSs, which is better than the tradi-
tional multiple regression in the process of geochemical
element retrieval [13]. Chengzhao et al. combined Prin-
cipal Component Analysis with SVM to perform the pre-
dictive analysis [14].

Based on the previous studies, there are two main pro-
blems in constructing the retrieval model: (1) The strong cor-
relation and non-linear characteristics between the remote
sensing bands are usually ignored; (2) the retrieval model is
not always efficient. Therefore, Kernel Principal Component
Analysis (KPCA) is chosen to extract the remote sensing fea-
tures, and then, the remote sensing data are located according
to the geochemical data coordinates. Finally, the parameters
of SVM are optimized by Artificial Bee Colony (ABC) model,
and the accuracy is verified according to the actual geochem-
ical data in the study area. The whole flow chart is shown in
Figure 1.

2 Geological setting

2.1 Geographic settings

The study area is located between Min County and Li
County; there are Zhang County and Wushan County in
the middle; roads and national roads are connected, and
the transportation is convenient (Figure 2). The study area
belongs to the central mountainous area, with a slow inner
ridge, interwoven ravines, and a general slope of between
15° and 30°. Vegetation does not develop, but the coverage
rate of turf and sand is as high as 80%, the surface coverage
is thick, and the bedrock is less exposed, only in the steep
and valley floor. This area belongs to a temperate conti-
nental climate, with a large temperature difference between
the four seasons. The water system is relatively developed,
perennial and seasonal rivers crisscross, the central and
northern water system into the Tao River, belonging to
the Yellow River basin, the southern tributary water system
into the Bailong River, belonging to the Jialing River system
of the Yangtze River basin.

2.2 Geological settings

The Zhaishang-Mawu exploration area exhibits a distinc-
tive geological structure, with a wide geographical distribu-
tion and diverse range of minerals. The identified minerals
include iron, copper, lead, zinc, gold, antimony, tungsten,
tin, mercury, and other metallic elements. The overall pat-
tern of mineralization can be described as follows: The
mineral (chemical) sites are distributed in the NWW direc-
tion, and the genesis of mineral distribution transitions
from high temperature to medium temperature, and then
to low temperature as one moves farther away from the
rock body. The formation and distribution of endogenous
minerals are strictly controlled by medium acidic intrusive
rocks and tectonics from the Indochina and Yanshan per-
iods. These deposits are genetically related to deep-formed
granitic magma sources. Different tectonic systems play a
significant role in spatially controlling mineralization. The
mineralization of lead, zinc, copper, and similar elements
occurs at a slight distance from the rock body and is primarily
controlled by secondary fractures and fissures. Tungsten and
tin ores are mainly found in the contact zone within the rock
body, with secondary fractures predominantly oriented along
the northeast direction. Molybdenum ores are associated
with acidic porphyry bodies and are controlled by secondary
fractures oriented north–south. Gold ores predominately
occur in the contact zone outside the rock body and are
influenced by secondary folds and secondary fractures.
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Figure 1: Flowchart of the retrieval model.
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3 Materials and methods

3.1 Data

3.1.1 Remote sensing data

Some of the parameters of the Landsat 8 OLI remote sen-
sing image, obtained on the USGS website, are shown in
Table 1. LC08 indicates the image source satellite Landsat-8,
L1TP (Level 1 Precision Terrain) indicates the data Level is
L1, and tP indicates that the data have been topographically
and geometrically corrected, and 130036 indicates that the
area code in the WRS-2 reference system is 130 and the line
number is 36, which is Gansu Province; 20160215 represents
data acquisition on February 15, 2016, and 20170329 repre-
sents data processing on March 2, 2017. The resolution
is 30m.

The files downloaded are in traditional TIFF format,
including 11 single-band files, one metadata file, and one BSQ
file for quality assessment, which are mainly environmental

operating parameters of the sensor, and it can be used to build
some spectral analysis files. The metadata files include infor-
mation such as shot time, solar altitude angle, latitude, and
longitude.

The acquired remote sensing images are pre-processed,
and since the acquired data have been geometrically cor-
rected and topographically corrected, they are directly radio-
metrically calibrated with atmospheric correction. This step
first changes the DN values into radiometric brightness
values and then removes atmospheric effects as much as
possible by FLASSH atmospheric correction.

3.1.2 Geochemical data

Data were obtained from 1:50,000 aqueous sediment mea-
surements from eight 1:50,000 plots in the Zhaishang–Mawu
gold mining area: Meichuan, Puma, Xinshi, Tango, Minxian,
Shendu, Locklong, and Mawu, and ten elements were ana-
lyzed for Au, Ag, As, Sb, Hg, Cu, Pb, Zn, Mo, and Sn (Table 2).
The method of iterative culling is used to cull the distortion
points that affect the background and anomaly by pressing
x ± 3 δ, the sample number (N), average value (X¯ ), standard
deviation (δ), variation coefficient (Cv), anomaly area (S),
global concentration coefficient (Kk), and superposition
strength (D) of the whole area, and each geological unit
are calculated, respectively. There are AU, Hg, PB, AG, As,
W, and SB in the highly differentiated elements (Cv% ≥ 75)
in the stream sediments, which indicates that they are
highly unevenly distributed in the strata and have a high

Figure 2: Geological map of the study area.

Table 1: Landsat 8 OLI remote sensing image characteristics

Central latitude 33.17727
Central longitude 105.32528
Solar azimuth angle 149.64078944
Solar elevation 36.03919797
Data acquisition time 2016-02-15
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ore-forming potential. The elements with strong differentia-
tion (Cv% = 50–75) are Mo and Cu, which are distributed
unevenly in the strata and have some ore-forming potential.
The concentration degree of each element can be divided into
impoverishment and enrichment according to the values of
concentration coefficient (KK) and superposition strength (D).

The Concentration Coefficient K & GT; 1.1 indicates that
the elements are enriched in different degrees; the element
superposition value D ≥ 2.0 indicates that the elements
have strong epigenetic superposition and the ore-forming
possibility is high, while d = 1.2–2.0 indicates that the ele-
ments have strong superposition; it has a certain ore-
forming ability. Enrichment elements: Au, Hg, Pb, Zn, Ag,
Mo, As, Sb, and W, are obviously enriched in the area, and
there is some mineralization, which is basically consistent
with the metallogenetic elements in this area. Dilution ele-
ment: Cu is a dilution element in the area, and the miner-
alization is relatively weak.

3.2 Feature extraction based on KPCA

In order to reduce the complexity of the retrieval model
and improve the accuracy of the model, 10,756 geochemical
data points were obtained from 1:50,000 river sediment mea-
surements at known coordinates, and the corresponding geo-
chemical data were located in the ESRI ArcGIS software; the
resolution of all bands in the input remote sensing data is
30m, and the image pixel value is the central one of the
sampled pixels. Thus, there are 1,573 × 3,678 pixels in the
preprocessed Landsat 8 OLI remote sensing image, and

each pixel corresponds to 7 bands. Then, band ratio was
used to enhance hydroxyl and iron corrosion information
to suppress interference [15]. Finally, the KPCA model is
used to reduce the dimension and correlation of the remote
sensing data [16]. The steps of KPCA were implemented in
Python as follows:
(1) By data = pd.read_excel(data) read the table data, X =

data[data.columns[10:]] take a partial column in the
table as an argument to X, y = data[‘Au’] dependent
variable to y, Data Standardization X = StandardScaler
().fit_transform(X);

(2) Calculating the Kernel Matrix with gauss kernel func-
tion, k(i,j) = exp(−norm(x – y)^2/(2*sigma^2));

(3) Centralization Kernel Matrix, zero_k = k-zero_m*k-
k*zero_m + zero_m*k*zero_m;

(4) Calculating eigenvalues and eigenvectors, data_v is
eigenvector, data_e is eigenvalues, which is a diagonal,
[data_v,data_e] = eig(zero_k); data_e = diag(data_e);

(5) The eigenvector matrix is sorted according to the
eigenvalues, v = fliplr(data_v);

(6) Divide each row of v by the value of data for the cor-
responding row, v = v/sqrt(data_e());

(7) By zero_k*v, to get the principal component，data_all
= zero_k*v.

3.3 Retrieval model based on ABC–SVM

In the research of remote sensing geochemistry inversion,
scholars at home and abroad have used many methods to
construct remote sensing geochemistry inversion model,

Table 2: Characteristics of element contents in stream sediments (10−9 for AU and Hg and 10−6 for other elements)

Element Stream deposit West Qin mountains Superposition value

Before culling After elimination Mean value Background value

X Cv S Kk X 0 Cv0 S0 Kk0

Au 3.19 7.30 23.28 2.02 1.22 0.55 0.67 0.77 1.632 1.58 90.897
Hg 120.44 3.87 465.62 3.66 32.37 0.59 18.96 0.98 75.396 32.91 91.373
Cu 22.83 0.72 16.34 1.03 22.59 6.24 5.23 1.02 22.16 22.24 3.157
Pb 27.81 0.91 25.33 1.22 26.72 0.3 8.01 1.17 33.67 22.88 3.291
Zn 83.91 0.44 36.73 1.27 83.2 0.32 26.43 1.26 78.691 66.13 1.402
Ag 0.11 3.11 0.33 1.25 0.08 0.49 0.04 0.91 0.092 0.088 11.344
Mo 0.97 0.52 0.51 1.24 0.95 0.56 0.34 1.22 1.137 0.78 1.533
As 17.39 2.08 36.14 2.24 13.15 0.64 8.41 1.70 11.091 7.75 5.683
W 4.26 4.93 21.03 2.73 2.76 0.45 1.24 1.77 1.64 1.56 26.18
Sb 1.33 6.62 8.82 2.25 0.92 0.6 0.55 1.56 1.176 0.59 23.182

Kk = Global Average element content/background value of West Qin Mountains area (Kk to eliminate before, Kk0 for Elimination).

D: Superposed value = ·

X

X

S

S
0 0

.
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but there are still two problems. First, in the process of
feature extraction from remote sensing data, the tradi-
tional methods ignore the strong correlation and non-lin-
earity among the bands of remote sensing data. The second
is the limitation of the inversion model, because of the
discontinuity of the abnormal distribution of the geochem-
istry and the nonlinear characteristics of the remote sen-
sing data bands, the selection of the machine learning
method is crucial, and the selected model should be able
to fit this feature of the data well.

Both KPCA and ABC–SVM are used to establish the retrieval
model, and it can be summarized as the following steps:
(1) Unify the coordinates of the geochemical data and the

remote sensing data, and project the processed geo-
chemical data with the coordinates to the remote sen-
sing imagemap to obtain the element information; then,
the feature values are extracted to reduce the dimension
and remove the redundancy of the remote sensing data.

(2) Divide the dimension-reduced remote sensing data and
geochemical data into training data and test data according
to the 7:3 ratio.

(3) Using the ABC algorithm to obtain the optimal kernel
parameters and penalty factors of SVM.

(4) Train the ABC-optimized SVM, and obtain the retrieval
model based on the ABC–SVM.

4 Results and discussion

4.1 Feature extraction results

As shown in Table 3, the contribution rate of component 1
is over 99.5%, which indicates that the parameters are no

Table 3: Contribution to variance

Component
weight1

Component
weight2

Component
weight3

Component
weight4

Component
weight5

Component
weight6

Explained_variance_ratio 0.9950000 0.0032500 0.0014100 0.0002580 0.0000370 0.0000195

Table 4: KPCA result matrix

X Y KPCA

104.8163479 34.68140427 0.563806984
104.622753 34.68015221 −0.383180087
104.9526398 34.68056282 −0.110681454
104.6216672 34.68003971 0.704978135
... ... ...
104.137078 34.34724924 −0.285454099
104.1764595 34.34732905 −0.366864367
104.2008568 34.34799774 0.143561125
104.2356612 34.34822817 0.727217185

Table 5: Evaluation results for gold element

Regression model EVS MAE MSE R2

Bayesian ridge 0.000000077 1.100819 156.030888 0.000000077
Linear regression 0.000119319 1.099570 156.012282 0.000119319
Elastic net 0.000000000 1.100830 156.030900 0.000000000
SVM 0.920879000 0.778839 12.3453180 0.920879000
ABC–SVM 0.991588953 0.504223 1.31238344 0.991588952

Table 6: Evaluation results for Ag element

Regression model EVS MAE MSE R2

Bayesian ridge 0.000001 0.796079 160.791724 0.000001
Linear regression 0.000457 0.827213 160.718487 0.000457
Elastic net 0.000000 0.796101 160.791908 0.000000
SVM 0.933765 0.659389 22.4849270 0.933765
ABC–SVM 0.983862 0.436333 2.59486900 0.983862

Table 7: Evaluation results for Hg element

Regression model EVS MAE MSE R2

Bayesian ridge 0.009504 0.248174 0.142842 0.009504
Linear regression 0.009560 0.248248 0.142834 0.009560
Elastic net 0.000000 0.248797 0.244213 0.000000
SVM 0.868976 0.242790 0.145406 0.868976
ABC–SVM 0.937697 0.234674 0.122348 0.937697
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Figure 3: Distribution of gold anomalies based on the original geochemistry data.

Figure 5: Distribution of gold anomalies based on the ABC–SVM-retrieved geochemistry data.

Figure 4: Distribution of gold anomalies based on the SVM-retrieved geochemistry data.
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Figure 8: Distribution of silver anomalies based on the ABC–SVM-retrieved geochemistry data.

Figure 7: Distribution of silver anomalies based on the SVM-retrieved geochemistry data.

Figure 6: Distribution of silver anomalies based on the original geochemistry data.
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longer adjusted since they are best in the parameters. The
first principal component is shown in Table 4, and X and Y
represent the corresponding coordinates.

4.2 Retrieval results

The study area is the Zhaishang–Mawu area in Gansu Province,
and themainmineral in the area is gold. Therefore, based on the
collected geochemistry data, the gold elements with known ore
spots were selected for experimental verification, and at the
same time, the silver and mercury data were used to delineate
the anomalies. The specific steps are as follows: First, the area of
Remote Sensing Data Grid Division choose 300 × 300m division,
Grid Center data as the block of data, access to data 37,500. The
dimensionality is reduced by KPCA, and the reduced data are
input as an independent variable into the established model.

In order to verify the validity of the model, Bayesian
Ridge Regression Model, Linear Regression Model, Elastic

Network Regression Model, and SVM and ABC–SVM are
established, respectively. The effects of different models
are evaluated by gold, silver, and mercury, and the results
of the comparison are shown in Tables 5–7 (Variance Score
(EVS), between 0 and 1, and the larger is the better for fit;
The Mean Absolute Error (MAE), the approximation of the
calculated model results to the actual results, and the
smaller is the better; Mean Square Error (MSE), and the
smaller is better; R2: Judging Coefficient, between 0 and 1,
and the larger behalf of the better). As can be shown from
the tables, the ABC–SVM has better results than other
models.

4.2.1 Results of Aurum

Furthermore, in order to examine the results of SVM and
ABC–SVM models with the gold anomalies circled by the
original geochemistry data, 20 known mineralization sites

Figure 9: Distribution of mercury anomalies based on the original geochemistry data.

Figure 10: Distribution of mercury anomalies based on the SVM-retrieved geochemistry data.
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are compared. Figures 3–5 show respectively the distribu-
tion of the golden anomalies delineated by the original geo-
chemistry data, the anomalies delineated by the results of the
SVM retrieval model, and the anomalies delineated by the
results of the ABC–SVM retrieval model. The abnormity lower
limit is calculated according to T = +2δ, the iso-content line is
drawn according to the 1, 2, and 4 times of the abnormity
lower limit value, and the three concentration zones are
divided into the outer, middle, and inner bands of the anoma-
lies with blue, yellow, and red, respectively. It is obvious that
the anomaly distribution retrieved from the ABC–SVMmodel
is more consistent with the original geochemistry data than
that delineated by the SVM model.

4.2.2 Results of Argentum

Figures 6–8 show the distributions of the silver anomalies
delineated from the original geochemistry data, the anoma-
lies delineated from the results of the SVM retrieval model,
and from ABC–SVM retrieval model, respectively. The abnor-
mity lower limit is calculated according to T = +2δ, the iso-
content line is drawn according to the 1.7, 3.4 and 6.8 times of
the abnormity lower limit value, and the three concentration
zones are divided into the outer, middle, and inner bands of
the anomalies with blue, yellow, and red, respectively. It is
obvious that the anomaly distribution retrieved from the
ABC–SVM model is more consistent with the original geo-
chemistry data than that delineated by the SVM model.

4.2.3 Results of hydrargyrum

Figures 9–11 are the distributions of the mercury anoma-
lies delineated from the original geochemistry data, the

anomalies delineated from the SVMmodel, and the anoma-
lies delineated from the ABC–SVM model, respectively. The
abnormity lower limit is calculated according to T = +2δ, the
iso-content line is drawn according to the 2, 4, and 7 times of
the abnormity lower limit value, and the three concentration
zones are divided into the outer, middle, and inner bands of
the anomalies with blue, yellow, and red, respectively. It is
obvious that the anomaly distribution retrieved from the
ABC–SVM model is more consistent with the original geo-
chemistry data than that delineated by the SVM model.

5 Concluding remarks

The main conclusions and innovations of this research
work are reflected in the following two points: (1) The
KPCA method can solve the problem of remote sensing
data presenting strong correlation and nonlinear charac-
teristics due to the large amount of data and excessive
redundant data. (2) SVM uses inner product kernel func-
tions to map to high-dimensional space, with good general-
ization ability and robustness, but the choice of parameters
can have a large impact on its performance. The ABC,
through the simulation of bee colony honey harvesting
activities, solves high-dimensional problems and multi-objec-
tive optimization problems; the algorithm is an efficient and
good solution, combining ABC with SVM; the inverse model
performance is better. However, this retrieval model does not
take into account more geologic information of the study
area; it should be considered in future research work.
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