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Abstract: The road network is the basic facility for trans-
portation systems in the city. Every day, a large number of
vehicles move on the road and exert different pressure on
the ground, which leads to various problems for the road sur-
face, such as the bump features of the road surface (BFRS).
However, traditional methods, such as detecting BFRS manu-
ally or with professional equipment, require a lot of profes-
sional management and devices. Based on the mobile sensor
and the bidirectional long short-term memory (Bi-LSTM), a
detection method for BFRS is proposed. The BFRS detection
method proposed in this article solves the problem that other
BFRS detection methods cannot detect large area road surface
efficiently and provides an algorithm idea for efficient detec-
tion of large area road surface BFRS. The mobile phone with
multi-sensors is carried on vehicles, and the BFRS information
is logged during the movements. The orientation of the mobile
is computed according to the gyroscope. The actual posture of
the acceleration sensor is adjusted with the reference coordi-
nate system, whose z-axis is vertical to the ground. This article
uses the adjusted acceleration data as the training dataset and
labels it according to time stamps and videos recorded by the
driving recorder. Finally, the Bi-LSTM is constructed and
trained, followed by the BFRS detection. The results show
that it can detect BFRS in different regions. The detection accu-
racy of the campus section and the extended experiment was
92.85 and 87.99%, respectively.

Keywords: bump features of the road surface, Bi-LSTM,
smartphone sensors

1 Introduction

The road is the fundamental infrastructure [1,2]. Well-
maintained roads can promote social and economic devel-
opment [3]. However, due to different reasons, such as
heavy traffic, overloaded vehicles, adverse weather, and
geological impact, the pavement suffered severe damage
before reaching its designed life. The road pavement requires
substantial maintenance [4]. Such a large road area has
brought tremendous pressure on the road department. An
efficient, fast, and low-cost bump feature detection method
is extremely important for road maintenance work.

Traditional bump feature detection methods, such as
the photogrammetry detection method and radar detection
method, mainly detect bump features through professional
equipment like high-definition and resolution cameras,
ground penetrating radar, and light detection and ranging
(lidar) [5,6]. These two methods require professional equip-
ment and skills, and the data acquired by these methods
are limited to a small area. To improve the efficiency of
detecting bump features in a large area, researchers have
proposed new methods to detect bump features, including
images acquired by usual cameras or different kinds of
sensor data to detect bump features [11–22]. The specific
method is described in the related research. However,
these methods require high-definition images or large
amounts of streamed sensor data, which demands huge
storage or a high-performance platform. On the other
hand, the smartphone is usually equipped with various
sensors and has a high sampling rate [7–10]. So, can we
use ubiquitous smartphones to detect bump features and
solve the above problems?

Hence, the method is proposed to detect bump features
based on bidirectional long short-term memory (Bi-LSTM)
to obtain road surface information through the built-in
sensors of smartphones and is trained to detect bump fea-
tures in an efficient, fast, and accurate way. As a type of
recurrent neural network (RNN), Bi-LSTM has gained sig-
nificant attention in recent years due to its effectiveness
in analyzing sequential data. In particular, Bi-LSTM has
been widely used in various applications, such as natural
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language processing, speech recognition, and time series
prediction. Its popularity is mainly attributed to its ability
to capture both forward and backward temporal depen-
dencies in the input sequence, which is achieved by using
two separate LSTMs, one running in the forward direction
and the other running in the backward direction. This
unique architecture allows Bi-LSTM to model long-term
dependencies in the input data, making it well-suited for
time series analysis. However, how to quickly obtain smart-
phone sensor data and how to use deep learning will not be
extensively discussed in this article.

The remainder of this article is structured as follows.
The next section gives an overview of works related to this
article. Section 3 provides a detailed description of the
composition and implementation of the method in this
article. Experiments are conducted. The results are dis-
cussed in Section 4, followed by conclusions in Section 5.

2 Related work

The image-based method refers to detecting bump features
by analyzing the collected road surface images. Since the
situation of the road surface can be intuitively reflected by
images, bump features of the road surface (BFRS) can be
directly recognized. Pavement cracks are a typical type of
bump feature, and a lot of research have been done on
related detection methods. Wang et al. [11] proposed a
detection method based on the AdaBoost algorithm. It
uses OpenCV to train a classifier to identify road features,
and the method can detect most pavement cracks success-
fully. Bump features also include potholes except for pave-
ment cracks. Zhang et al. [12] proposed a pothole detection
method based on stereo vision. The method uses an effi-
cient disparity calculation algorithm to generate the dis-
parity map. Then it successfully detects potholes through
the distance between the fitted quadratic surface and the
road surface. Due to the disadvantage of deep learning
requiring a large number of training datasets, Dong et al.
[13] proposed a multi-target and few-shot pavement dis-
tress detection method based on metric learning. The clas-
sification accuracy of both 5-way 1-shot and 5-way 5-shot is
highly accurate. Guo [14] developed an intelligent robot
based on GPS navigation that combines image recognition
and deep learning to detect and locate pavement features.
This robot can output video frames containing road dis-
eases. Li et al. [15] used the back propagation neural net-
work (BP neural network) to identify pavement cracks
from images. The BP neural network is a multi-layer
feed-forward network, and the neural network model is

trained by the method of error BP [16,17]. This method
divided pavement cracks into three categories: alligator,
transversal, and longitudinal cracks. All three crack detec-
tion results are highly accurate. Although the image-based
methods are accurate and intuitive, they can be affected by
factors such as image illumination, occlusion, and road
surface water, which limit their ability to identify BFRS.
The method proposed in this article can solve this problem
very well.

The sensor-based method can detect bump features
using spatial-temporal sensor data. Giacomin and Woo
[18] proposed a method based on steering wheel vibration
feedback to detect road pavement. This method uses an
accelerometer and vibration sensor to detect the road
pavement, and the results of the experiment can reflect
the situation of the road pavement well. Ren et al. [19]
selected the data collected by the accelerometer to detect
pavement distress. This method is based on the principle of
a support vector machine, combined with the acceler-
ometer and GPS sensor, to detect and locate pavement
distress, with high detection accuracy. To extend the tradi-
tional coverage beyond the automobile vehicle (such as
pedestrian streets, bicycle lanes, etc.), Zang et al. [20]
used bicycles as a bearing platform, combined with an
accelerometer and GPS, to measure the surface roughness.
The result of the experiment shows that the International
Roughness Index values measured by this method were
strongly and positively correlated with those measured
by professional instruments. Rather than using the car as
a carrier platform for the sensor, Tai et al. [21] chose a
motorcycle as a carrier platform. They also combined the
accelerometer and GPS sensors to collect data. The data are
analyzed to detect road anomalies and evaluate road
quality. This method can detect road anomalies success-
fully and has high accuracy. Li et al. [22] proposed a
method to detect road anomalies using continuous wavelet
transform (CWT). The basic idea is that: (i) select a mother
wavelet that satisfies the conditions, (ii) translate and
stretch it to obtain a set of wavelet bases, (iii) use the set
of wavelet bases to represent and approximate the signal,
and (iv) finally, a time–frequency localized analysis of the
signal can be performed. The method proposed by Li et al.
can detect road anomalies with high accuracy and can
evaluate the size of road anomalies. All these aforemen-
tioned methods use sensor data from specially modified or
designed platform. However, the platform that has been
specially modified or designed is not popular. Using a
smartphone as a sensor data acquisition platform can solve
this problem very well.

Among these two methods, the image-based detection
method is susceptible to external factors, such as weather,
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lighting, and road surface water. In contrast, the sensor-
based detection method requires to embed sensors on the
specially modified or designed platform (cars, motorcycles,
bicycles, etc.). All those problems will negatively affect the
efficiency of large-scale detection of bump features. In
order to solve these problems, this article proposes a
bump feature detection method based on Bi-LSTM. This
method uses smartphone sensors to collect road surface
information. Smartphone sensors are more readily avail-
able and in greater numbers than sensors mounted on
specially modified or designed platforms, enabling more
efficient detection of large-scale bump features. At the
same time, the performance of the currently used detection
methods is poor, and the detection efficiency is not high
enough. Bi-LSTM performs well, is suitable for processing
time-series information while considering contextual infor-
mation, and can detect bump features more efficiently and
accurately than traditional methods. The contributions of
this article are summarized as follows:
(1) The correction and coordinate transformation of atti-

tude data from smartphone sensors.
(2) The processing of sensor data using neighborhood

high-dimensional embedding.
(3) The framework of Bi-LSTM-based BFRS detection.

3 Methodology

3.1 Motivation and background

When the vehicle passes through BFRS during the move-
ment, it will vibrate and cause abnormal acceleration
changes (ACA) that are vertical to the road surface, and
the vibration will transmit to the smartphone placed inside
the vehicle. Hence, the BFRS can be detected from the
spatial-temporal recording of sensors assembled in the
smartphone. With this assumption, the BFRS detection
method based on Bi-LSTM is proposed. Due to variations
in driving habits, the vehicle may actively avoid certain
types of BFRS during the driving process. However, this
article focuses only on the actual BFRS experienced by
the vehicle. The detection method employed in this study
primarily utilizes Z-axis acceleration to detect BFRS, while
X-axis and Y-axis accelerations are used as supplementary
measures. Therefore, the steering behavior of the driver
has minimal impact on the test results. To account for
differences in driving habits and other factors, the study
selected urban roads as the experimental area, and the
experimenters endeavored to maintain normal driving

habits. As a result, the experimental findings are consistent
with typical driving conditions. Nonetheless, due to limita-
tions in the experimental conditions, this article mainly
proposes an algorithmic framework, and the effects of var-
ious factors, such as driving habits and vehicle perfor-
mance, on BFRS detection will continue to be explored in
future research. Furthermore, the speed of the vehicle in
this study was limited to <80 km/h.

In this article, the BFRS are defined as a virtual 3D
object on the road surface, with a diameter larger than
20 cm in the horizontal direction and a depression or pro-
trusion larger than 5 cm in the vertical direction. As shown
in Figure 1, it is the object passing by vehicles, such as
speed bumps and potholes, where the horizontal width
of the object is d and the vertical height is h. As denoted
in equation (1), if ≥d 20 cm and ≥h 5cm, it can be judged
as the BFRS in the research. Currently, the most common
tire size is 225 mm. Using this as a reference and drawing
on previous experience, this article proposes a definition of
BFRS. However, due to limited experimental conditions,
this article focuses mainly on proposing an algorithm for
detecting BFRS rather than specifically investigating the
relationship between tire size and BFRS detection. Besides,
due to different driving behaviors, the driver will actively
avoid certain BFRS while driving. In this condition, the
BFRS might not be recorded by the sensors in the smart-
phone. Hence, only the actual BFRS passed by vehicles is
studied in this arcticle.

= ≥ ≥d h d hBFRS , 20cm, 5 cm .{( )| } (1)

d

Avoidable

Unavoidable

BFRS

h

BFRS

Figure 1: Bump features of the road surface.
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The pipeline of the proposed method is illustrated in
Figure 2. The sensor data are obtained through the GPS
sensor and the IMU sensor assembled in the smartphone,
in the form of GPS trajectory, 3D acceleration, and 3D
orientation. Then, the input dataset is processed in three
steps: (1) acceleration transformation based on the 3D
orientation; (2) multi-dimensional neighborhood embedding
using the sliding window; and (3) BFRS detection after the
training of Bi-LSTM and obtaining the ACA. Finally, project
the detected BFRS onto the map using the coherence infor-
mation between the acceleration and GPS trajectories.

3.2 Acceleration decomposition based on
the orientation transformation matrix

There are three coordinate systems involved in the accelera-
tion decomposition process: the object coordinate system, the
inertial coordinate system, and the world coordinate system.
(1) The object coordinate system is set by the sensors

assembled within the smartphone in terms of the
smartphone’s pose, as shown by the green coordinate
system in Figure 3.

(2) The world coordinate system is the absolute coordinate
system of the geographic world [23]. The world coordi-
nate system used in this article is WGS84. When a point is
first defined in the scene, we say its coordinates are spe-
cified in world space, i.e., the coordinates of this point are
described with respect to a global or world Cartesian
coordinate system. The coordinate system has an origin,
called the world origin, and the coordinates of any point
defined in that space are described with respect to that
origin (the point whose coordinates are [0,0,0]).

(3) The inertial coordinate system coincides with the ori-
ginal object coordinate system whose coordinate axes
are parallel to the coordinate axes of the world coordi-
nate system (Figure 3) [24].

Therefore, it is necessary to convert the coordinate
system of the acceleration sensor into an inertial coordi-
nate system through a rotation matrix and into a world
coordinate system through a three-dimensional translation
transformation matrix.

Since the mobile phone is not in a flat state when the
data are collected, there is a certain angle between the
mobile phone and the horizontal plane, which directly
causes the acceleration in the numerical direction to be
decomposed into the three axes of x, y, and z. The original
z-axis acceleration data and vertical acceleration have a
difference. In addition, if the absolute value of acceleration
is used directly, it will be impossible to distinguish between
the horizontal acceleration and the vertical acceleration
change when the vehicle is going straight and turning.

Therefore, it is necessary to transform the coordinate
system of the acceleration to make it consistent with the
inertial coordinate system and, therefore, to analyze the
data of the acceleration sensor to detect BFRS. The steps
are as follows:
1. Transform the object coordinate system to the inertial

coordinate system: To make the acceleration direction of
the sensor the same as the acceleration direction of
gravity, this article converts the acceleration of the

Smartphone
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Figure 2: Flow chart of the method.
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Figure 3: Schematic diagram of coordinate systems.
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sensor in the object coordinate system to the accelera-
tion in the inertial coordinate system. The process uses
the pose angle and quaternion of the smartphone pose
sensor to derive a conversion matrix R, which is then
used to convert the object coordinate system to an iner-
tial coordinate system [25]. The quaternion q is a simple
hypercomplex number that consists of a real part and
three imaginary parts, i, j, and k. The quaternion q can
generally be expressed as + × + × + ×a b i c j d k ,
where a, b, c, and d are scalars [26–28], as denoted in
equation (2). The conversion of the object coordinate
system to the inertial coordinate system is denoted in
equation (3).

=
⎛

⎝
⎜⎜

− − + −
− − − +
+ − − −

⎞

⎠
⎟⎟R

b z ab dc ac db

ab dc a c bc da

ac db bc da a b

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

,

2 2

2 2

2 2

(2)

= ×RAcc , Acc , Acc Acc , Acc , Acc .x y z x y zinertial object( ) ( ) (3)

2. Aligning the inertial and world coordinate systems:
Since the latitude and longitude collected by GPS are
based on the world coordinate system, it is necessary
to align the sensor data based on an inertial coordinate
system to the world coordinate system to obtain the
latitude and longitude of each data point. Due to the
GPS sampling rate, the data must first be linearly inter-
polated so that each data point has a corresponding
latitude and longitude, and then the inertial coordinate
system data must be aligned to the world coordinate
system based on the time stamp. The conversion of
the inertial coordinate system to the world coordinate
system is denoted in equation (4).

=Acc , GPS Align Acc , GPS .world inertial( ) ( ) (4)

3.3 Multi-dimensional acceleration
neighborhood embedding based on the
sliding window

When the vehicle carried with a smartphone is passing by
the BFRS, ACA can be recorded. However, it is not easy to
detect the BFRS directly from the acceleration data since
there can be different sizes of the BFRS and the intensity of
the ACA can vary from each other, even if the vehicle
passing by has the same BFRS at different speeds. To deal
with such kinds of situations, multi-dimensional accelera-
tions are applied, i.e., the acceleration in the vertical direc-
tion of the inertial coordinate system and the other two
accelerations in the horizontal direction of the inertial
coordinate system. The vertical ACA is to represent the

depth of the BFRS, and the horizontal ACA is to represent
the length of the BFRS, as depicted in Figure 1. Therefore,
three dimensions of information were used for detection.

Hence, both vertical and horizontal accelerations are
taken into account, and the multi-dimensional neighbor-
hood embedding process is performed on the acceleration
data. The specific way is implemented by a sliding window.
Suppose the sliding window is constructed by two variables:
(1) the indicator representing the position of the window,
and (2) the length representing the number of acceleration
samplings [29,30]. In this article, the center position of the
sliding window is set to l, and the length of the sliding
window is represented by k data points before and after
the center point. Therefore, these 2k + 1 samplings are taken
into the sliding window, and the sliding window starts from
n − k to n + k. The start and end indexes of the sliding
window go along with the time direction until the end of
the acceleration samplings, as depicted in Figure 4.

In Figure 4, the three dashes represent the acceleration
on the x-, y-, and z-axis, as shown in the data below the
dash. The fourth line of data is the feature label. The red
box represents the sliding window, which slides from left
to right. The final generated training data are a matrix
containing acceleration and feature labels.

The embedding process is shown in equations (5) and (6).

=

Neighbor embedding Acc , Acc , Acc , Window

NE,

x y z sliding( )
(5)

=Labeling NE,GPS NE , lbl .A BFRS BFRS( ) { } (6)

In equation (5), the input of the neighborhood embed-
ding algorithm consists of the acceleration components
Accx , Accy, and Accz, as well as the length of the sliding
window Windowsliding. The output of this algorithm is
denoted as NE. In equation (6), NE and position GPSA are
fed into the geographic labeling algorithm. The outputs of
this algorithm are the geographic labeling lblBFRS and the
acceleration NEBFRS of BFRS in the sensor data.

3.4 BFRS detection based on the Bi-LSTM

Bi-LSTM is a kind of RNN with internal self-connection,
which consists of an input layer, hidden layer, and output
layer. The state of the hidden layer at the previous moment
can be transmitted to the hidden layer at the next moment
through this feedback structure, along with the external
input variable at the current moment [31,32]. It can judge
whether there is BFRS, by focusing on not only the current
time series but also the previous and subsequent time
series. Bi-LSTM improves the standard LSTM network by
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adding another layer of LSTM. The two layers of LSTM are
opposite in direction [33], as shown in Figure 5. RNN is
well-suited for processing time series data. Bi-LSTM, a var-
iant of RNN, offers significant advantages for analyzing
time series data. Detecting a BFRS requires not only ana-
lyzing current time series data but also incorporating the
time series data prior to and following the detection point
to determine whether the point represents a BFRS. This is
because, in accordance with the definition of BFRS, a cur-
rent time series can be defined as a BFRS only if it has

significantly diverged from both the preceding and suc-
ceeding time series. Therefore, this article selects Bi-LSTM
as the analysis technique, as it is capable of simultaneously
analyzing the current, preceding, and succeeding time series.
This characteristic of Bi-LSTM aligns with the requirements for
BFRS detection.

In Figure 5, the bottom layer is the training data of the
Bi-LSTM, the middle is the forward and backward LSTM,
respectively, and the top layer y indicates the output fea-
ture labels. The blue box shows the structure of a single

Acceleration X (m/s2)

Acceleration Y (m/s2)

Acceleration Z (m/s2)

Label

N BFRS N N BFRS … N BFRS N N BFRS N N

9.66 9.96 10.14 9.84 10.03 … 9.99 9.97 9.93 10.22 9.9 10 10.04

1.29 1.41 1.46 1.47 1.13 … 1.4 1.38 1.35 1.21 1.54 1.39 1.32

0.52 0.33 0.16 0.53 0.94 0.44 … 0.2 0.78 0.75 0.33 0.45 0.57

Figure 4: Schematic diagram of the sliding window.
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LSTM unit. The small light green squares in the figure
represent four ordinary neural networks, and the boxes
labeled σ and tanh are their activation functions.

A single LSTM cell contains three parts: a forget gate,
an input gate, and an output gate.

Forget gate: the forget gate selectively forgets the
information in the cellular state from the previous step.
The forget gate is implemented through the sigmoid layer.
Using −ht 1 from the previous step and xt from this step as
input, a value between 0 and 1 is output for each number in

−Ct 1, denoted as f
t
, which indicates how much information

is retained (1 means fully retained and 0 means fully dis-
carded). The process is denoted in equation (7).

= +−f σ W h x b, .
t f t t f1( [ ] ) (7)

Input gate: the input gate is responsible for the selec-
tive recording of new information into the cell state. The
sigmoid layer (input gate layer) determines the value to be
updated, and this probability is denoted as it. The tanh
layer creates a vector of candidate values Ct

͠ that will be
added to the cell states. The old cell state is then updated.
The process is denoted in equations (8)–(10).

= +−i σ W h x b, ,t i t t i1( [ ] ) (8)

= +−C W h x btanh , ,t C t t C1( [ ] )͠ (9)

= × + ×−C f C i C .t t t t t1
͠ (10)

Output gate: the forecast made by the output gate
decision. Firstly, the sigmoid layer (output gate) is utilized
to determine the part of output native cell state Ct. The cell
state is then passed through the tanh layer (so that the
value is between −1 and 1), followed by multiplication
with the output of the sigmoid layer to obtain the final
output ht . The process is denoted in equations (11) and (12).

= +−o σ W h x b, ,t o t t o1( [ ] ) (11)

= ×h o Ctanh .t t t( ) (12)

The training part of the neural network divides the data
into two parts: training data and validation data. After the
training data are input into the neural network for training,
the training results are output, as denoted in equation (13).

= -err,itr,model Bi LSTM NE ,lbl ,GPS .BFRS BFRS train A{ } ({ } ) (13)

3.5 Algorithm of the BFRS detection method

The algorithm of the BFRS method is composed of three
stages:
1. Spatial transformation for acceleration using the orien-

tation. The initial acceleration was transformed into the

inertial coordinate system. Then, GPS and acceleration
were transformed into the world coordinate system.

2. Neighborhood embedding of the multi-dimensional accel-
eration. The multi-dimensional acceleration was neigh-
borhood embedded with the sliding window. Then, these
data were labeled using aligned GPS trajectories.

BFRS training and detection based on the Bi-LSTM. The
training dataset was inputted into the Bi-LSTM to train.
BFRS was detected by the trained Bi-LSTM and projected
back to the geographic space.

The pseudo-code of the proposed method is as follows:
Algorithm 1 The algorithm of BFRS detection based on

Bi-LSTM

BFRS detection based on Bi-LSTM BFRSDect(GPS,
Ori, Acc)
Input: recorded trajectories GPS, orientation of the smart
phone Ori, acceleration of the smart phone Acc
Output: detected BFRS
//stage 1: spatial transformation for acceleration
using the orientation
T = SpatialMatrix(Orix, Oriy, Oriz);//construct the spatial
transformation matrix based on the 3D Orientation
AccT = SpatialTransform(T, Acc);//transform the accel-
eration direction into the inertial coordinate system
{AccA, GPSA} = Alignment(AccT, GPS);//align GPS and
acceleration into the world coordinate system
//stage 2: neighborhood embedding of the multi-
dimensional acceleration
NE = NeighborEmbedding(Accx A, Accy A, Accz A,
Windowsliding);//neighborhood embedding for the multi-
dimensional acceleration
{NEBFRS, lblBFRS} = Labeling(NE, GPSA);//labeling the
embedding using aligned GPS trajectories
//stage 3: BFRS training and detecting based on the
Bi-LSTM
{{NEBFRS, lblBFRS}train, {NEBFRS, lblBFRS}validate} =
Divide({NEBFRS, lblBFRS});//divide training and validating
dataset
IF err <= THRESHOLD OR itr >= ITERATION
{err, itr, model} = Bi-LSTM({NEBFRS, lblBFRS}train,
GPSA);//train the Bi-LSTM model
END
BF = Dectect(model, {NEBFRS, lblBFRS}train, GPSA);//
detect Bump Features using the trained Bi-LSTM model
BFRS = GeoProject(BF, GPSA);//project the BFRS back to
the geographic space
RETURN BFRS
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4 Experiments and discussion

This section focuses on the performance of the BFRS detec-
tion method. The smartphone-based sensor data are col-
lected in the experimental area. The acceleration data are
transformed into the inertial coordinate system, and then
training and validating datasets are constructed using the
sliding window. The Bi-LSTM model to detect BFRS is
trained and validated, and comparisons are conducted
with different methods. In addition, the capability of the
proposed method is further validated in a different area,
along with the related discussion.

4.1 Collected datasets and
experimental area

In this article, the smartphone is arbitrarily placed on the
vehicle to collect sensor data, including 3D acceleration
data, 3D orientation data, and GPS data. The sampling fre-
quency of accelerator sensor and orientation sensor is
100 Hz, while that of the GPS sensor is 1 Hz. The first experi-
mental area is the campus with an area of 0.4958 km2, as
shown in Figure 6. In a training section, the road surface is

flat, with almost no uphill or downhill. Thus, it can be an
ideal location for training neural networks.

In Figure 6, the recorded sensor data are represented
by the GPS trajectories (shown by the black line), with GPS
sampling, 3D orientation, and 3D acceleration information
stored. The related BFRS on the ground is represented by
the blue dot and distributed along the road map. In addi-
tion, three BFRS (BFRS1, BFRS2, and BFRS3) in different
locations are selected and shown in the right part of the
figure, and it is the main reason that caused ACA, which
can be further used to detect BFRS. The sensor data in the
green area is the validation dataset to evaluate the perfor-
mance of the proposed method and make comparisons
with different methods. The total length of the recorded
trajectories is 3,522 m, with 33 BFRS and 64,397 acceler-
ometer sampling points, as illustrated in Table 1.

4.2 Acceleration transformation and multi-
dimensional neighborhood embedding

Since the smartphone is arbitrarily placed, the direction of
recorded 3D acceleration data may not be consistent with

trajectory 

related BFRS object

road

(c)

(b)

(a)

(a) 

validation set

N

ground truth BFRS

(b) 

(c) 

Figure 6: Experimental area of the campus: (a) BFRS1, (b) BFRS2, and (c) BFRS3.
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the inertial coordinate system of the vehicle, which can
lead to a false judgment of the BFRS, as shown in Figure 7.
In the figure, there are three comparisons of acceleration
in the x-, y-, and z-axis made before and after the spatial
transformation, with the original 3D acceleration and the
transformed acceleration changes drawn in gray and blue,
respectively. In Figure 7(a), the original acceleration in the
x-axis keeps steady, while the ACA cannot be directly
detected until the transformation has been applied. In
Figure 7(b), the ACA remains consistent with the actual
cases before and after the transformation. However, in
Figure 7(c), the ACA in the original data becomes weak
after the transformation. In addition, the average accelera-
tion of the z-axis, i.e., the vertical direction of the inertial
coordinate system, is 10.08 m/s2, which is more consistent
with the actual case in the world.

The statistics of the selected sensor data in Figure 7 are
illustrated in Table 2. There are 400 consecutive samplings
in the dataset, and the average acceleration value in the x-,
y-, z-axis is −0.31, −5.05, and 8.97m/s2, respectively. However,

the values in the x-, y-, and z-axis become 1.55, 1.19, and
10.08m/s2, respectively. The ACA can be detected in the hor-
izontal direction of the inertial coordinate system based on
the changes of acceleration in the x- and y-axis, while it
cannot be detected just using the z-axis, since the accelera-
tion changes weakly in the vertical direction. In this condi-
tion, there can be a turn at the road intersection, with only
horizontal ACA detected and no dramatic changes in the
vertical direction. Hence, the spatial transformation of the
acceleration can be meaningful, and it can detect the actual
BFRS using ACA in different acceleration dimensions.

Following data preprocessing, the neural network is
trained using 101-dimensional three-axis acceleration data
as input, with the variable k set to 50 for multi-dimensional
neighborhood embedding. The first column of the data repre-
sents data-id, while the second to the 101st columns contain
acceleration data processed through multi-dimensional
neighborhood embedding. The 102nd column represents the
feature label. Ground object annotation is obtained through
manual marking of the longitude and latitude of BFRS, which
are collected using handheld GPS and marked according to
the frequency spectrum image of the acceleration data. This
process ensures the accuracy of ground object marking.
Initially, the longitude and latitude of high-precision non-sta-
tionary ground objects are collected using handheld GPS on
the experimental road section and then mapped to the accel-
eration data. Next, 150 data points are generated before and
after BFRS to create a spectrum image, from which data points
with significant acceleration changes are extracted. Finally, the
extracted data are aggregated, and high-dimensional embedding

Table 1: Experimental area

Length SpRateacc,ori SpNumacc,ori SpRateGPS SpNumGPS BFRSnum

3,522 m 100 Hz 64,397 1 Hz 644 33

Figure 7: Comparison before and after acceleration transformation: (a) x-axis acceleration, (b) y-axis acceleration, and (c) z-axis acceleration.

Table 2: Comparison of average values before and after acceleration
transformation

Acceleration Before transformation
(m/s2)

After transformation
(m/s2)

x-axis −0.31 1.55
y-axis −5.05 1.19
z-axis 8.97 10.08

Bump feature detection of the road surface based on the Bi-LSTM  9



is performed to generate a training set. Figure 8 displays the
embedding process.

4.3 BFRS detection model training and
comparison with different methods

With the prepared training and validating datasets, the
BFRS detection model based on Bi-LSTM is trained and
evaluated. The hardware for training is the NVIDIA CPU RTX
3060. The training parameters of the model in this article refer
to the trainNetwork function in matlab: {150 epoch, training 92
iterations per epoch, learning rate 0.001}. The layer is config-
ured as follows: it has three features, 100 hidden units, and a
many-to-one output mode with one class. The number of

hidden units was determined through multiple experiments,
while the remaining parameters were determined based on
the dimensions of the input and output data. Finally, the BFRS
detection model is constructed. The training process is shown
in Figure 9, and the related confusion matrix is shown in
Figure 10.

As seen in Figure 9, the loss of the model keeps
decreasing and the precision keeps increasing. Hence, the
model becomes converged after 150 epochs. In the confu-
sion matrix of Figure 10, there are two kinds of output, i.e.,
BFRS and normal surface, and 2,019 BFRS labels are prop-
erly predicted among the 2,053 training datasets, with a
precision of 97.63%, a recall of 98.34%, and an F-score
of 97.98%.

To make an evaluation of the proposed method, the
dataset in the green area of Figure 6 is selected, and the

Acc 0.52 0.33 0.16 0.53 0.94 0.44 ... 0.2 0.78 0.75 0.33 0.45 0.57

Acc 1.29 1.41 1.46 1.47 1.13 1.24 ... 1.4 1.38 1.35 1.21 1.54 1.39

Acc 9.66 9.96 10.14 9.84 10.03 10.06 ... 9.99 9.97 9.93 10.22 9.9 10

label N BFRS N N BFRS N ... N BFRS N N BFRS N

x

y

z

Acc 0.52 0.33 ... 0.2 0.33 0.16 ... 0.78 0.16 0.53 ... 0.75 0.53

Acc 1.29 1.41 ... 1.4 1.41 1.46 ... 1.38 1.46 1.47 ... 1.35 1.47

Acc 9.66 9.96 ... 9.99 9.96 10.14 ... 9.97 10.14 9.84 ... 9.93 9.84

SRFBNNlebal

x

y

z

neighborhood embedding

Figure 8: Neighborhood embedding.

Figure 9: Training process for the BFRS detection model: (a) loss and (b) precision.
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detailed information is shown in Figure 11. A vehicle just
drove through the road (the gray line), with a trajectory
(black line) passing by BFRS and information stored in the
trajectory. Four BFRS objects (BFRS1, BFRS2, BFRS3, BFRS4) are
spatially distributed along the road, and both of them are
typical objects that can cause obvious ACA.

With the trained BFRS detectionmodel, BFRS is detected
in the selected area, as depicted in Figure 12. The detected
GPS samplings are assigned related labels, i.e., “BFRS” or
“normal surface.” If the GPS sampling point is within the
buffer area (the buffer distance of 10.00m) of the ground
truth BFRS (blue dot), it can be taken as “right BFRS,” as
shown by the green dot. However, the red dot is considered
to be the “wrong BFRS,” which is out of the reach of the

buffer area. Figure 12(a) shows the BFRS detection result
based on the proposed method. Three BFRS are successfully
detected with green dots inside the buffer area of ground
truth BFRS, and one BFRS is undetected and labeled in red.
Tomake a comparison, themethods of CWT [22], BP [15], and
ISCHANGE [34] are applied in this article, with related
results depicted in Figure 12(b)–(d). In Figure 12(b), few sam-
plings are properly detected in each BFRS, and even no
result is detected for BFRS1. In Figure 12(c) and (d), there
are some samplings properly detected in BFRS2, BFRS3, and
BFRS4, while BFRS1 is not successfully detected, similar to
that in Figure 12(a). To obtain a specific evaluation, a statis-
tical analysis of BFRS detection results by different methods
is conducted, as depicted in Table 3.

In Table 3, it is the statistical result of the recall, pre-
cision, and F-score for each method. The precision is

target class

confusion matrix
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2.37%

97.15%
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97.80%

2.20%

Figure 10: The confusion matrix of BFRS detection results.
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(a) (b) (c) (d) 

N

trajectory related BFRS objectroad ground truth BFRS

Figure 11: The ground truth of the comparison area. (a) BFRS1, (b) BFRS2, (c) BFRS3, and (d) BFRS4.

(a)

(b)

(c)

(d)

BFRS1
BFRS2 BFRS3

BFRS4

BFRS1
BFRS2

BFRS3
BFRS4

BFRS1
BFRS2

BFRS3
BFRS4

BFRS1 BFRS2
BFRS3

BFRS4

trajectory road

wrong BFRS ground truth BFRSright BFRS

Figure 12: Comparison of BFRS detection results by different methods:
(a) the proposed method, (b) CWT, (c) BP, and (d) ISCHANGE.

Bump feature detection of the road surface based on the Bi-LSTM  11



computed by dividing the number of correct predictions by
the number of all predictions that are true. In contrast, the
recall is computed by dividing the number of predictions
correctly predicted to be true by the number of all predic-
tions that are actually true. The F-score is computed by
multiplying the recall rate by two times the precision
rate and dividing it by the recall rate plus the precision

Table 3: Statistics of BFRS detection results by different methods

Different methods Recall (%) Precision (%) F-score (%)

The proposed method 93.29 92.41 92.85
CWT 7.03 100.00 13.14
BP 22.68 73.96 34.71
ISCHANGE 19.49 85.92 31.78

(a)

(b)

(c)

trajectory 

related BFRS object

road BFRS

(c) 

(b)

(a) N

validation set

Figure 13: The ground truth of the complex area. (a) BFRS1, (b) BFRS2, and (c) BFRS3.
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rate. The results of different methods are shown in Table 3.
Based on the computation standard, the precision of BFRS
for the proposed method is 92.41%, and the precision of
BFRS for CWT, BP, and ISCHAGE is 100.00, 73.96, and
85.92%, respectively. Although the precision of CWT and
ISCHAGE is higher than the proposed method, the recall is
a little low. Hence, the F-score for each of the methods is
92.85, 13.14, 34.71, and 31.78%, respectively, and the proposed
method holds the highest F-score among other methods. In
combination with Figure 12, the proposed method can detect
BFRS and outperform other compared methods.

4.4 BFRS detection and comparison in the
complex area

In order to evaluate the capability of the proposed BFRS
detection method, a complex area with more BFRS and
different ACA intensities is selected, as depicted in Figure 13.
It is a road in a residential area, and the sub-area in the
green rectangle is used for zoomed-in views in comparison.

The BFRS in this area is not as typical as that in Figure 6,
since the road surface is not so flat and the height or depth
of each BFRS is not so apparent (illustrated by BFRS1, BFRS2,
and BFRS3 in Figure 13). Although BFRS1 and BFRS2 are
located in relatively flat areas, it is not easy to catch the
ACA in recorded sensor data compared with BFRS3. The
detailed information is shown in Table 4.

As depicted in Table 4, the total length of the recorded
trajectory is 1,225 m, and the number of stored samplings of
the acceleration and orientation sensor is 22,578 with a
sampling rate of 100 Hz, while that for the GPS samplings
is 226 with a sampling rate of 1 Hz. In addition, there are 49
BFRS in the area. The stretch of road is mostly flat but
includes a downhill section at the beginning due to it des-
cending from an elevated bridge. Therefore, some parts of
the road surface slope downward.

Using the BFRS detection model trained in Section 4.3,
experiments are conducted in the complex area, and the
results are shown in Figure 14. Since the road condition in
this area is quite complicated, it is difficult to manually
label each BFRS sample coherent with the actual case.
Hence, the ground truth BFRS is generated using the video

Table 4: Statistics of the complex area

Length SpRateacc,ori SpNumacc,ori SpRateGPS SpNumGPS BFRSnum

1,225 m 100 Hz 22,587 1 Hz 226 49

(a) (b) (c) (d)

trajectory road

right BFRSwrong BFRS ground truth  BFRS

Figure 14: Comparison of BFRS detection results in the complex area: (a) the proposed method, (b) CWT, (c) BP, and (d) ISCHANGE.
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recording during the driving process, and related BFRS
samplings are constructed based on the buffer of the
ground truth BFRS, i.e., the GPS samplings within 10m of
the ground truth BFRS are taken as the right BFRS. Figure
14(a) shows the BFRS detection result based on the proposed
method. There are 44 BFRS detected out of 49 ground truth
BFRS (blue dots), with five BFRS undetected. The properly
detected GPS samplings are shown by the green dot, and the
wrong BFRS are in red. The results in Figure 14(b) and (d)
seem good compared with those in Figure 14(c), since the
BFRS detection result in Figure 14(c) is extremely poor, as
labeled by the red dot. In Figure 14(b), the CWT method
detected 51 BFRS, of which 40 BFRS were correctly detected
and nine BFRS were wrong. The BFRS detection result based
on ISCHANGE is shown in Figure 14(d). The maximum
number by the ISCHANGE function is set to 800. Finally, 51
BFRS are detected, and 41 are correctly detected. To obtain a
detailed result of the comparison, the recall, precision, and
F-score are computed, as shown in Table 5.

In Table 5, the performance of the proposed BFRS detec-
tion method is compared with CWT, BP, and ISCHAGE. Since
there are too many wrongly detected BFRS in the result of
BP, as shown in Figure 14(c), the recall, precision, and F-
score are not computed. In addition, the BP method seems
only effective in the training dataset, but it cannot effec-
tively detect BFRS when the area is changed. The precision
of the proposed method is 89.79%, which is higher than
CWT, BP, and ISCHANE. The precision of the CWT is higher
than that of the ISCHANGE, while the recall of the CWT is a
little high; hence, the F-score of the CWT is 80.00%, which is
lower than that of the ISCHANGE. The proposed method
holds the highest F-score among the compared methods.

Through these experiments, it can be observed that
most of the BFRS can be properly detected based on the
proposed method, and the proposed method can perform
well in different areas compared with other methods.

5 Conclusions and future work

The detection of BFRS has an important impact on the
maintenance of the road network. Traditional BFRS

detection methods require professional equipment and
skills, which lead to limited efficiency. To solve the pro-
blem, the BFRS detecting method based on Bi-LSTM is pro-
posed, and the road information is collected through the
built-in sensors of smartphones. The 3D acceleration, 3D
orientation, and GPS sampling are recorded in the arbitra-
rily placed smartphone during the movement of vehicles.
Then, the spatial transformation matrix is constructed using
the 3D orientation information, and the 3D acceleration is
transformed into the inertial coordinate system. To detect
the true BFRS through the acceleration information, a multi-
dimensional training dataset is generated using the sliding
window. The dataset is divided into the training dataset and
the validating dataset. After the preparation process, the Bi-
LSTM is trained and validated to detect the bump features
based on the ACA information, and the detected features are
further aligned with GPS samplings. The BFRS is projected
onto the world coordinate system and represented in the
road map. Using the proposed method, BFRS in different
areas is experimented, and the results are compared with
different methods. The recall, precision, and F-score are
analyzed and computed, and the F-score of the proposed
method is higher than 87%, which holds the best perfor-
mance among the compared results.

Due to the limitations of experimental conditions, the
experimental area in this article was located within the
city, and only one car and one driver were used for data
collection. The speed of the car is limited to under 80 km/h.
The main purpose of this article is to propose an algo-
rithmic approach for detecting non-smooth road surfaces.
In future research, crowd-sourced data will be used as a
data collection method for this approach, which will elim-
inate the effects of driver behavior and vehicle perfor-
mance on detection results through a large amount of
data. Future research will focus on the refinement and
extension of the proposed method with the crowd-sourced
sensor data from different kinds of smartphones, where an
end-to-end BFRS detection model is required. Besides, dif-
ferent kinds of BFRS also require to be categorized and
detected separately. Hence, more training and validating
datasets are demanded, and the capacity of the proposed
method also needs to be improved.
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