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Abstract: Visual features play a key role in indoor posi-
tioning and navigation services as the main semantic
information to help people understand the environment.
However, insufficient semantic constraint information and
mismatching localization without building map have hin-
dered the ubiquitous application services. To address the
problem, we propose a smartphone indoor scene features
recognition localizationmethod with buildingmap semantic
constraints. First, based on Geographic Information System
and Building Information Modeling techniques, a geocoded
entity library of building Map Location Anchor (MLA) is
constructed, which is able to provide users with “immersive”
meta-building-map and semantic anchor constraints for
mobile phone positioning when map matching. Second,
using the MYOLOv5s deep learning model improved on
indoor location scenario, the nine types of ubiquitous
anchor features in building scenes are recognized in real
time by acquiring video frames from the smartphone
camera. Lastly, the spatial locations of the ubiquitous
indoor facilities obtained using smartphone video recogni-
tion are matched with the MLA P3P algorithm to achieve

real-time positioning and navigation. The experimental
results show that the MLA recognition accuracy of the
improved MYOLOv5s is 97.2%, and the maximum localiza-
tion error is within the range of 0.775m and confined to the
interval of 0.5m after applying the Building Information
Modeling based Positioning and Navigation road network
step node constraint, which can effectively achieve high
positioning accuracy in the building indoor scenarios with
adequate MLA and road network constraint.

Keywords: mobile phone indoor positioning, scene recog-
nition, building map, map location anchor, geocoding
matching

1 Introduction

Buildings, such as office buildings, libraries, shopping
centres, hospitals, train stations, and airports, are the
main space for human activities. Humans spend about
87% of their time in indoor spaces [1]. However, the
widely used Global Navigation Satellite System (GNSS)
cannot be used indoors or in urban environments where
GNSS signals are blocked by buildings, trees, or other
obstructions [2]. Compared with outdoor positioning,
indoor positioning is more challenging. Because indoor
spaces are more complex than outdoor environments in
terms of layout, topology, and spatial constraints [3],
indoor positioning requires higher accuracy [4]. In recent
years, many indoor positioning systems have been pro-
posed by researchers, who use different techniques, such
as infrared [5], Wi-Fi [6], Bluetooth [7], optical [8], and
inertial sensors [9]. However, each of these techniques
has its limited application scenarios when considering
accuracy, cost, coverage, complexity, and applicability.
A certain number of signal Access Points need to be
deployed in advance. On the other hand, the complex
indoor space blocks the effective transmission of some
signals, which makes pervasive indoor localization
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services more challenging. The current visual localization
technology incorporating multisource sensors provides a
new way to solve these problems, and it is quickly
becoming one of the important directions in the research
field of mobile phone indoor localization.

With the development of deep learning technology,
many scholars currently have incorporated deep learning
into the technical solutions for indoor positioning and
navigation in the research fields of indoor positioning
technology. Recognition algorithms are used to effec-
tively process the semantic information contained in
image data in order to extract image features and deter-
mine the effectiveness of obtaining valid information
about the category to which the scene image belongs
[10–13]. At present, the image quality, pixel resolution,
sensor, and aperture performance of the video frames
obtained by the smartphone camera have been signifi-
cantly improved. And with the rapid development of arti-
ficial intelligence, smartphone camera sensors have gra-
dually added intelligent ant vibration, super night scene,
backlighting, and other auxiliary functions to make the
video image clearer. A research direction with greater
potential is the use of more efficient and suitable for ubi-
quitous indoor facilities recognition and geocoding of the
semantic constraints of the building map information to
assist and then achieve smartphone camera scene recog-
nition and localization.

Building map is an effective type of information repre-
sentation of interior spatial features, in which semantic
information can better represent the user’s scene [14].
Landmark anchors and contextual information in building
maps can better understand user movement rules, per-
ceive user scenarios, correct indoor positioning errors,
and plan indoor navigation paths [15]. With the develop-
ment of Building Information Modeling (BIM) building
operation system, the information of indoor subsidiary
features is getting richer and richer to meet the universal
scene element recognition method, but the research on the
genealogical semantic features of building map models
still has much room for development, among which how
to effectively organize the semantic information of building
entity features, and construct and improve building map
models for mobile phone indoor positioning and navigation
with universal applications, is a key problem that needs to
be solved urgently [16].

Aiming at City Information Modeling (CIM) and meta-
phase application scenarios, the indoor positioning land-
mark recognition algorithm still has the problem of an
incomplete category system which hinder the steps. In
this article, from the perspective of a building map hybrid
model, we integrate Geographic Information System and

BIM to propose a building map indoor location anchors
classification system and combine State-of-the-Art (SOTA)
indoor scene recognition algorithm for mobile phone indoor
positioning.

The main contributions of this paper can be summar-
ized as follows:
(1) Inspired by the geometric and semantic constraint

information of building map, the building Map Location
Anchor (MLA) for indoor scene element identification is
constructed through the attribute association relationship
of each geocoding element in the building indoor space.
By constructing MLA, the pervasive scene element recog-
nition method can be satisfied from the perspective of
building map element classification.

(2) Based on the SOTA YOLOv5s model, our improved
MYOLOv5s MLA recognition model for mobile phone
indoor scene element recognition is proposed for different
indoor scenarios. Since the pre-trained MYOLOv5s based
on the ubiquitous indoor facilities sample library is rela-
tively stable, it can be used as a powerful spatial features
extractor in all kinds of geocoding building MLA
recognition.

(3) We propose a mobile phone localization method with
ubiquitous recognition of the representative nine types
of features in indoor scenes for semantic constraints
of building maps. In MLA-rich building scenarios,
the geocoding anchor coordinate information in MLA
is obtained through MYOLOv5s model identification
and position solved by MLA P3P algorithm, then it is
matched to the Building Information Modeling based
Positioning and Navigation (BIMPN) road network
Step Node (SN); in MLA-sparse building scenarios,
the user position also can be spatially constrained in
the road network SN by BIMPN.

The organization of this study is as follows. Section 2
provides a brief overview of related work. Section 3
details the specific implementation of indoor scene recog-
nition for building map mobile phones and its applica-
tion for indoor localization and navigation. Section 4 pre-
sents the experiment and results. Section 5 discusses the
usability and advantage. Lastly, Section 6 concludes this
study.

2 Related work

In order to provide ubiquitous location-based service from
smartphone, the work in this article covers a number
of areas such as map anchor-assisted localization
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based on road networks, visual pose estimation, and scene
recognition.

Map anchor-assisted indoor localization algorithms
use the geometric and semantic information of the map
as a constraint to correct the resultant errors in the solu-
tion of trajectory and location coordinates of pedestrians
walking in buildings and to improve the accuracy of
indoor positioning of pedestrians in buildings [17]. Ban-
dyopadhyay et al. improved the accuracy of the system
location navigation solution by mapping inertial trajec-
tories with magnetometer or compass data to user-gener-
ated location estimates, combined with information such
as road signs and floors of building maps; however, the
method cannot determine the initial user heading infor-
mation [18]. Zhou et al. proposed ALIMC, an indoor
mapping system based on active landmarks, which can
automatically construct indoor maps for buildings without
any a priori knowledge [19]. Shang et al. proposed
APFiLoc, a low-cost, smartphone-based framework for
indoor localization. It detects organic landmarks in the
environment in an unsupervisedmanner and uses enhanced
particle filters to fuse them with measurements from
smartphone sensors and map information for indoor
localization [20]. Li et al. present a new holistic vision-
based mobile assistive navigation system that develops
an indoor map editor to parse the geometric information
of building models and generate a semantic map con-
sisting of a global 2D traversable grid map layer and a
context-aware layer [21]. Gu et al. proposed LGLoc, a land-
mark map-based indoor positioning method for mobile
phones, which constructs an initial landmark map con-
sisting of landmarks such as stairs, lifts, corners, and turns
in the offline phase, and the latest collected data from the
user’s smartphone sensors for location initialization, loca-
tion estimation and location calibration in the online
phase [22]. However, the performance of these systems is
highly dependent on the integrity of the landmark anchor
points, which will be badly affected by desertions of land-
marks and usually mismatches in landmark anchor points
can lead to large positioning errors.

Existing visual localization systems are usually divided
into three main steps: image matching, pose solving, and
coordinate solving, of which pose solving is themost critical
step. A 2DTriPnP algorithm for querying camera poses using
the Google Street View image database for localization was
first proposed by Sadeghi et al., and the method uses
Perspective n-Point (PnP) geometry to solve the feature
matching problem in visual localization [23]. On this basis,
numerous researchers have proposed improvements for sol-
ving the problem of P3P pose. Lepetit et al. have both suc-
cessively proposed a noniterative method for efficiently

solving PnP, the EPnP algorithm, and the method repre-
sents n coordinate points by a weighted sum of four coor-
dinate points, which can reduce the complexity and achieve
high accuracy [24]. Based on the EPnP algorithm, Kneip
et al. proposed an UPnP algorithm that does not require
the acquisition of smart sensor parameters in advance,
which eliminates the need for extensive manual annotation
in the early stage [25]. In the current research fields of
computing the bit pose of video image sensors, numerous
scholars have incorporated algebraic methods into visual
localization coordinate-solving schemes [26], which can
reduce the error between solving the PnP problem. The
PnP algorithm typically requires at least four known coor-
dinate position points for a unique positive solution, but
usually, the view of the average user’s mobile phone is
limited. Therefore, the demand for rich, numerous, and
more evenly distributed landmark anchor points in the
application scenario is also a challenge to the coverage
properties of the localization algorithm.

Scene recognition not only obtains semantic infor-
mation about the building features but also helps to
understand contextual information in other related vision
tasks such as object detection or behavior recognition.
Deep neural networks have shown significant advantages
in feature extraction and scene recognition, making it
possible for users to provide low-cost, high-precision
location navigation applications [27,28]. Liu et al. pro-
posed a method for constrained mobile localization of
indoor scenes in buildings, by which users can upload
the pictures of the scene taken by the mobile phone to the
server for identification, and use the particle filter algo-
rithm to fuse other sensor data of the mobile phone for
positioning [29]. Obviously, with the increasing picture
dataflow of the mobile localization tools available to the
huge mobile Internet users, it is hard to afford the compu-
tation cost for the server to answer immediately. Shuang
et al. proposed a method to fuse scene recognition results
and PnP algorithm for indoor localization of buildings,
and the method is a highly accurate and stable solution
for indoor localization by solving the coordinate informa-
tion of camera sensors with multiple reference points
in the indoor space of a building [30]. Liu et al. combined
the YOLOv3 model for natural scene recognition, which
is effective in detecting small targets and reduces the
training time and speed significantly [31]. The model style
of YOLO takes the benefits of miniature and lightweight,
compact size, which utterly meets the requirements to
deploy it on smartphone to cut the battery energy con-
sumption and server dataflow efficiently. In our MLA P3P
algorithm, we calculate the current geocoding anchor
position from MLA recognition by the modified model
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MYOLOv5s, which will adapt the P3P algorithm to dynamic
video frames.

In summary, address to the problems of insufficient
semantic constraint information of building map and
matching positioning of geocoding anchors for building
maps, this study proposes a method for mobile phone
indoor scene recognition and localization with the semantic
constraint of building maps. The geocoding anchors of
building indoor map are constructed through the associa-
tion relationship of the attributes of each element of
building indoor space [22]. MLA with road network SNs
[32] are distributed in the indoor environment of buildings,
and deep learningmodel MYOLOv5s is used to obtainmore
accurate scene features during user movement to achieve
semantic recognition of building scenes, match the recogni-
tion results with MLA, and at the same time use the scene
element matching results to logical reasoning to achieve
deep integration of the information of each part of percep-
tion, semantics, localization, and element management
[33,34]. Furthermore accurate location coordinate informa-
tion of instantiated scene features is obtained to achieve
semantically constrained indoor scene recognition and
localization for smartphones with building maps.

3 Methods

In this section, we will illustrate the implementation of
mobile phone indoor scene recognition and localization,
under the semantic constraints of building maps [32].
First, the effective information is extracted from the BIM
model from the perspective of CIM, and the building map
and MLA are constructed, respectively. The building map
model part consists of a solid model and a network
model, which are mainly used for the visualization of
building information and the abstract expression of topo-
logical relationships. The MLA consists of two parts: the
geometric information location anchors MLA (S) that
senses each sensor’s signal in the fused multi-source sen-
sors, and the sematic location anchors MLA (C) that is
regarded as having recognizable features of geocoding
elements in the scene recognition procedure. Next, we
propose the identification method of MLA features in
building maps. Lastly, the semantic constraint informa-
tion of the MLA in the building map is geocoded to match
the recognition results of indoor scene features, to implement
real-time positioning and navigation at the smartphone term-
inal (Figure 1).

Figure 1: Technical procedure of indoor scene recognition localization method for mobile phone with semantic constraints of MLA
building maps.
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3.1 Semantic constraint information
construction of building maps

3.1.1 Construction method of building map model

Building map model is the prerequisite for building map
semantic constraint recognition scene construction. First,
a 3D building component solid model is proposed, which is
combined with the texture information collected by UAV tilt
photography technology and smartphone. Considering the
spatial representation in the geometric boundary model, we
select building components that share boundary relation-
ships to constitute a specific space. Second, based on the
abstract structure of the “edge-node” relationship in net-
work model, the building features are classified and orga-
nized in the spatial network topology relationship. Lastly,
according to the difference in spatial expression between
the networkmodel and the solid model, the spatial relation-
ship and semantic association of features in the network
model and the solid model are merged to produce the
hybrid building map model BIMPN [32]. The spatial linkage
relationships of features among the solid model and net-
work model are formed by a combination of direct and
indirect links to create the digital twin of the building

map at the level of refined space and instantiated objects.
The construction procedure of building map model BIMPN
is shown in Figure 2 [32].

3.1.2 Constructing MLA in building map

Indoor localization can enhance location estimation by
building maps and indoor features. Furthermore, it can
also leverage the potential value of indoor landmarks, to
provide semantic localization capabilities with spatial
constraints. This article constructs MLA for semantic
and geometric information representation in each scene
of the buildingmap, including geometric information loca-
tion anchors MLA (S) where the smartphone cooperates
with multi-source sensors to sense each inner sensors’
signal, and geometric location anchors MLA (C) which
are considered as having identifiable features in scene
recognition. First, we selectively construct the semantic
information of pervasive accessory facilities (doors, door
signs, fire cabinets, fire alarms, safety exits, cameras,
WLAN, electrical boxes, elevators, etc.)within the building
map and then obtain the starting position of fused multi-
source sensors (such as Bluetooth) for cooperative

Figure 2: The construction procedure of building map model BIMPN [32].
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positioning through the software interface API, and associate
and record it with the geometric position of scene recognition
features MLA (C) for subsequent user positioning and naviga-
tionmovement process. Deep learningmodel MYOLOv5s is
used to identify and match the features of MLA in the
scene video frames taken by smartphone cameras. We
define the MLA as shown in functions (equations (1)
and (2)):

( ) ( ) }= {  |  ∈S x y z C x y z x y z RMLA , , , , , , , , (1)

( ) { ( ) ( ) | }∑=       ∈C x y z P x y z R x y z x y z R, , , , , , , , , .
i

n

i (2)

In equation (1), the MLA consists of two parts, S and
C. ( )S x y z, , represent the geocoded information part of
the coordinate position (set) corresponding to the built-in
sensor signal feature pattern of the mobile phone that can
be used for matching localization in the building map.

( )C x y z, , represents the geocoded information part of the
coordinate position corresponding to the identifiable per-
vasive features in the scene that can be used for matching
localization in the building map. In equation (2), ( )P x y z, ,
denotes the position coordinates of the pervasive element
location anchors in the building map that can be used for
smartphone video image recognition. ( )∑ R x y z, ,i

n
i denotes

the sequence of coordinates of the features acquired by
recognition used in the scene for the matching localization
calculation, where ( )R x y z, ,i denotes the position coordi-
nates of the ith element acquired by recognition in the
scene. n is the number of features acquired by recognition,
and R denotes the real number field. The acquisition
of coordinates ( )P x y z, , of a current location needs to

be solved using the aid of one or more identification
features ( ) R x y z, ,i . The construction of the MLA is to pro-
vide a service interface to the building map engine for the
implementation of indoor location navigation and loca-
tion-based services for mobilephone under semantic con-
straints (Figure 3).

3.2 Recognition of indoor scene MLA
features in building map

Researchers have widely deployed and applied deep
learning recognition models on mobile devices [35,36],
and YOLO [37,38] is one of the SOTA deep convolutional
neural models in the field of target detection. This article
uses the deep learning opensource framework PyTorch to
model, train, test, validate, and deploy the modified
YOLOv5 algorithm on smartphone to achieve the recogni-
tion of location anchor features in indoor scenes. The
SOTA YOLOv5 network architecture contains four net-
work models, YOLOv5s [38], YOLOv5m [38], YOLOv5l
[38], and YOLOv5x [38]. The main difference between
them is the different number of feature extraction mod-
ules and convolution kernels at specific locations for each
network model, and the sequential increase in the size
and number of parameters for each network model. There
are nine types of MLA features to be recognized for the
experiments, and there need high requirements for the
real-time and lightweight nature of this recognition model.
This paper comprehensively considers the accuracy, effi-
ciency, and size of the recognition model, and ultimately

Figure 3: Outline of MLA construction procedure based on the building map model.
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improves the recognition network of building MLA fea-
tures in indoor scenes based on the modified YOLOv5s
[38] architecture.

As shown in Figure 4, the MYOLO v5s [38] architec-
ture mainly consists of four parts: input side, backbone
network, neck network, and prediction network. Mosaic
data enhancement, adaptive anchor frame calculation,
and adaptive image scaling are used on the input side
to optimize the input image and cut the computation cost
to improve the target detection speed. The backbone net-
work is a convolutional neural network that aggregates
and forms image features at different image granularity,
aiming to accelerate the training speed. First, using the
slice operation, the input three-channel image (3 × 640 ×
640) is segmented into four slices, each of size (3 × 320 ×
320). Second, the four sections are connected in depth
using the Concat operation, and the output feature map
is of size (12 × 320 × 320). Third, a convolutional layer
consisting of 32 convolutional kernels is used to generate
a (32 × 320 × 320) output feature map. Lastly, the result is
output to the next layer through the BN (batch normal-
ization) layer and the Hardswish activation function. The
neck network is a series of feature aggregation layers that
mix and combine image features. It is mainly used to gen-
erate Feature Pyramid Network (FPN) and then transmit
the output feature maps to the detection network (Predic-
tion Network). Since the feature extractor of this network
adopts a new Pixel Aggregation Network (PAN) structure
with enhanced bottom-up paths, improved transmission
of low-level features, and enhanced detection of targets
at different scales. As a result, the same target object of
different sizes and scales can be accurately identified. The
prediction network is mainly used for the final prediction

of the model, which applies the anchor frame to the fea-
ture map from the previous layer and outputs a vector with
the class probability of the target object, the target score,
and the location of the bounding box around the target.
The prediction network of YOLOv5s [38] architecture con-
sists of three prediction layers and its input is a feature
map of dimensions 80 × 80, 40 × 40, and 20 × 20 for
detecting image objects of different sizes.

Considering factors such as computational cost (related
to battery energy consumption) and acceptable MLA recog-
nition model size (related to limited storage space and
internal CPU) for deployment on smartphones, multiple
arrays are used to store the candidate frame parameters in
the post-processing process. Meanwhile, we remove the
original multi-label layers and only add the best class
part, and then generate the predicted bounding boxes and
target classes in the original image. Finally, we label them
to fit the task of recognizing architectural MLA element
targets in indoor scene images, and we define the improved
model as MYOLOv5.

3.3 Mobile phone indoor localization under
semantic constraints of building
map MLA

As shown in Figure 5, the mobile phone indoor scene recog-
nition localization procedure under the semantic constraints
of building maps MLA features mainly includes steps of
model quantification, element identification, mapmatching,
and visualization of localization results.

Figure 4: Adaptation of MYOLOv5 network structure for scene location anchor element recognition.
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3.3.1 Quantification

In the proposed mobile indoor positioning and naviga-
tion system MIPNS 2.0 [39], the YOLOv5.pt model is first
converted into a Tflite model, and the Flatbuffer serial-
ized model file format is used to make it more suitable for
mobile piggybacking. At the same time, in order to reduce
the computational cost on the mobile terminal, the model
is compressed by quantization, and the weight para-
meters stored in the model file are converted from Float32
to FP16. The quantization formula is shown below.

= ÷ +X X X X ,quantized float scale zeropint (3)

=

−

−

X X X
X X

,scale
float
max

float
min

quantized
max

quantized
min (4)

= − ÷X X X X ,zeropint quantized
max

float
max

scale (5)

( )= × −X X X X .float scale quantized zeropoint (6)

Equation (3) is the quantization of the floating-point
value to the fixed-point value, and equation (6) is the inverse
quantization of the fixed point value to the floating-point
value, where Xfloat denotes the true floating-point value,
Xquantized denotes the quantized fixed-point value, Xscale
denotes the compression ratio of the quantization interval,

Xfloat
max denotes the maximum floating-point value, Xfloat

min

denotes the minimum floating-point value, Xquantized
max

denotes the maximum fixed-point value, Xquantized
min denotes

the minimum fixed-point value, and Xzeropint denotes the
quantized fixed-point value corresponding to the zero
floating-point value.

3.3.2 Identification

The quantified model file is deployed to the smartphone
APP MIPNS2.0 [39], and the user shoots the scene video
through the built-in optical camera of the smartphone,
and each frame of the video is used as the input image for
scene element recognition. As shown in Figure 6(a)–(i)
for nine types of features: door, door sign, fire cabinet,
fire alarm, security exit, camera, WLAN, electric box, and
elevator. The text and values in the top left corner are the
probability that the element belongs to that category. The
recognition of the features is carried out on the APP
MIPNS2.0 [39], and the 3D coordinates of the anchor
points of the map positioning features in the scene are
quickly solved in real time, as shown in Figure 7.

Figure 5: Mobile phone indoor scene recognition localization procedure under the semantic constraints of building map.
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3.3.3 Matching

The mobile APP MIPNS2.0 [39] matches the recognized fea-
tures by using the building MLA locally stored in SQLite
which is downloaded from Server. Then, the mobile APP
MIPNS2.0 performs the initial positioning result on the
mobile phone to match the SN in the building map road
network. The initial positioning result and the building
MLA are in the same user coordinate system. The distance
between the MLA and the initial positioning point is calcu-
lated using the P3P algorithm [40]. Next, the nearest SN [32]
to the positioning result point is determined by the calcula-
tion as the positioning matching result in the road network.
Ultimately, the position is displayed in the user’s mobile

phone, thus realizing the instantaneous localization of the
smartphone camera. The algorithm flow is shown in Figure 7.

The process of the matching location algorithm is
described as follows:

Algorithm 1. Matching localization pseudo code for
scene element recognition and buildingMLA geocoding

Input: Initial Bluetooth location point p0(x0, y0, z0);
MLA obtained from scene element recognition; road
network SN data set
Output: Positioning point matching position pt(xt, yt, zt);
distance error De

Steps:

Figure 6: The recognition results of MLA features in different scenes of the building.
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1) Calculate the distances from the MLA (the user’s
cell phone shall interactively operate to determine
that there must be and not less than 4 in the scene)
obtained from the indoor scene element recognition
to the initial Bluetooth positioning point p0(x0,
y0, z0). Generally, multiple sets of distance solu-
tions SMi are obtained until all positioning anchor
nodes have been processed and then stop

2) After obtaining the MLA distance set, the P3P
algorithm is used to determine a unique set of
solutions, to obtain the distance SMi of the user
camera, and to obtain the coordinates pc(xc, yc, zc)
corresponding to the current SN SNc corresponding
to SMt

3) Create a buffer centred on the current SN pc(xc, yc,
zc) coordinates, the radius of this buffer is the
maximum error range Emax plus the step size Sl. Use
equations (2)–(7) to obtain the SN SNn in the buffer

( )= pSN Buffer 0 , radiusn (7)
In the equation, radius is the buffer radius, radius =
Emax +Sl
4) Calculate the location pt(xt, yt, zt) of the matching

locus: the distance from each SMn to the coordi-
nates, pc of the SN in the current road network will
be calculated, and then the minimum value Dmin

will be obtained from it, and the SN pt(xt, yt, zt)
corresponding to Dmin will be obtained

5) Save Dmin as distance error De, count the distance
error De obtained from each calculation and obtain
the maximum error range Emax after adaptive cor-
rection, and output De and pt(xt, yt, zt)

4 Experiment

4.1 Data

4.1.1 Building map data

The building spatial geometric model is the expression of
3D data to the real world and also the basis for indoor
location-oriented service applications. In this study, the
building F (longitude 116.29606E, latitude 39.751892 N) of
the School of Geomatics and Urban Spatial Informatics,
Beijing University of Civil Engineering and Architecture,
is used as the experimental area, with an area of about
2,800 square metres. The object of the experimental study
is a composite solid building, consisting of six floors,
five above ground, and one underground. The outdoor

Figure 7: Matching positioning method based on geocoding Building MLA features.
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structure consists mainly of side and top elevations. The
interior space distribution includes rich geometric structures
such as lobbies, atriums, corridors, elevators, stairs, and
rooms, as well as universal signs such as doors, door signs,
fire cabinets, fire alarms, safety exits, cameras, WLAN, elec-
trical boxes, and elevators. Figure 8(a) shows the construction
process and results of the network model, including the con-
struction of the single-level horizontal network and the con-
nection between the horizontal network and the vertical

transportation mode. Figure 8(b) shows the construction pro-
cess and results of the networkmodel, including the construc-
tion of a single-level horizontal network and the connection
between the horizontal network and vertical traffic patterns.
The construction result of the data of the buildingmap hybrid
model BIMPN [32] example and the local situation of the
visualization of the building map feature is shown in Figure
8(c). The visualization of building maps and other related
data in this article can be accessed via the Internet [41].

Figure 8: Building map of the School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture.

Figure 9: Extraction of coordinate information of MLA (semantic) in the building map.
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4.1.2 MLA data

The extraction of MLA (semantic) coordinate information
required in the building map is processed by Blender
software [42], which is an open-source cross-platform
3D production software toolkit that supports a series of
operations such as modeling, animation, materials, ren-
dering, node capture, as shown in Figure 9. At present,
Blender does not support the IFC format, so it needs to
export the BIM model built by Revit to the universal 3D
format FBX and import it into Blender V2.78 for capturing
the MLA. The MLA to be captured in this article mainly
include the geometric centres of universal building com-
ponents such as doors, door signs, fire cabinets, fire
alarms, security exits, cameras, WLANs, electrical boxes,
and elevators. The capture is processed automatically by
the Python script developed in this study.

4.1.3 Element sample data set

For the current study, a data set of building indoor scene
features for MYOLOV5s model training is needed. We con-
sider geometric location points with certain identifiable
features in scene recognition as MLA [41]. However, the
publicly available sample database found did not match

the objectives of this study. Therefore, it is necessary to
customize and build pervasive accessory facility data sets
within the building map to continue this research. We have
selected nine types of building indoor scene pervasive fea-
tures as the identification targets for this project. The
building MLA features are doors, door signs, fire cabinets,
fire alarms, security exits, cameras, WLAN, electrical boxes,
and elevators. Pictures with universal features in the
building scenes need to be taken and collected, with dif-
ferent angles and distances according to the actual user’s
pose requirements during recognition, in order to build the
element information required by the recognition algo-
rithm. The data set has a total of 2,832 images and 7,610
element target samples, as shown in Table 1.

4.2 Experimental results

4.2.1 Building map and MLA construction results

In this study, the semantic information of MLA required
in the building map is extracted based on the FBX format
data of the target building (the F building of the School of
Geomatics and Urban Spatial Informatics, Beijing University
of Civil Engineering and Architecture), which is obtained by
using Python scripting tool in Blender [42] software envir-
onment, stored as CSV format data and the data statistics
are shown in Table 2, with a total of 586 element semantic
constraints for building MLA [41].

To facilitate the subsequent management of the data,
we imported the constructed building MLA data into a
PostgreSQL database, which is an object-relational data-
base management system (ORDBMS)with a wide range of
features, and Figure 10 shows the result of the MLA
(semantic) construction in the building map.

4.2.2 Recognition results of indoor scene features

The improved MYOLOv5s model is used for the video
frame recognition of building indoor features. In this

Table 1: Sample subset of building interior scene features

Categories Number of elemental
samples

Percentage (%)

Doors 2,460 32.33
Door signs 1,200 15.77
Fire cabinets 450 5.91
Fire alarms 540 7.10
Exits 1,380 18.14
Cameras 320 4.20
WLANs 440 5.78
Electrical boxes 660 8.67
Elevators 160 2.10
Total 7,610 100

Table 2: Statistics of MLA for semantic constraints of building maps

F-building Doors Door signs Fire cabinets Fire alarms Exits Cameras WLANs Electrical boxes Elevators Total

B1 39 11 6 4 14 5 1 8 1 89
F1 36 11 4 4 14 5 4 3 1 82
F2 37 11 3 5 16 4 6 3 1 86
F3 46 1 4 4 14 4 7 4 1 85
F4 50 19 4 5 15 4 7 5 1 110
F5 47 33 4 7 18 6 7 11 1 134
Total 255 86 25 29 91 28 32 34 6 586
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study, Huawei Mate 40 Pro, Xiaomi Mix 2, and Huawei P9
are selected as mobile terminal devices, and their hard-
ware parameters are shown in Table 3. All experiments
are implemented in the framework of Torch 1.7.0, driven
by CUDA, running on a single NVIDIA GeForce RTX 3070
GPU, with the specific hyperparameter information shown
in Table 4.

The experiments use 2,256 images (video frames)
from a sample set of 2,832 images for training and 288
images for validation and testing in the field. Experiment
1 uses the original YOLOv5s model for training and takes
63 h 3min and 20 s to complete 1,000 epochs. Experiment
2 uses the improved MYOLOv5s model for training and
takes 64 h and 10min to complete 1,000 epochs. The
quantitative comparison of the models in terms of preci-
sion, recall, mAP@0.5, and mAP@0.5:0.95 is shown in
Figure 11. The blue curve corresponds to the YOLOv5s
model, and the orange curve corresponds to the improved
MYOLOv5s model.

In terms of the speed of recognition performed by the
scene video, the total duration of a 758 frames video is
around 25 s, the recognition time of the YOLOv5s model is
23.793 s (31.858 frames/s), and the recognition time of the
improved MYOLOv5s model is 22.818 s (33.219 frames/s).
The results show that in terms of recognition speed the
improved model can achieve the effect of real-time avail-
ability. As shown in Figure 11(a) and (b), in terms of

Figure 10: Results of MLA (semantic) construction in the building map.

Table 3: Mobile client hardware parameters

Phone Model Parts Specifications

Huawei Mate
40 Pro

CPU Mali-G78 MP24
Memory 8GB RAM + 128ROM
Grid view 5 G network system
Home screen
resolution

FHD + 2,772 × 1,344 pixel

Camera pixel 50million pixel super
sensing camera

Operating system HarmonyOS 2.0
Xiaomi MIX 2 CPU Qualcomm Snapdragon

835 (MSM8998)
Memory 8GB RAM + 128ROM
Grid view 4 G network system
Home screen
resolution

FHD + 2,160 × 1,080 pixel

Camera pixel 12million pixel HD camera
Operating system MIUI 12.0.1

Huawei P 9 CPU HiSilicon Kirin 955
Memory 4GB RAM + 64ROM
Grid view 4 G network system
Home screen
resolution

FHD + 1,920 × 1,080 pixel

Camera pixel 12 million pixel HD camera
Operating system Android 8.0.0

Table 4: Hyperparameters information

Hyperparameters Values

GPU_COUNT 1
Unm-Classes 9
Epochs 1,000
Batch Size 32
Img Size 640 * 640
Evolve True
Cache images True
Single cls False
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accuracy, the improved MYOLOv5s model is slightly better
than the original model overall, and it is apparent that the
improved model is better than the original model in
500–720 epochs. The analysis concluded that the
improved model recognition effect is more suitable for
the application of such scenes mainly due to the influence
of the type (single door, double door, glass door, fire door,
etc.) and complexity of the door. As shown in Figure 11(c)
and (d), the learning performance of the model gradually
improves with iterations, and the convergence speed is
very fast, and the curve has stabilized by 1,000 epochs.
The experiments in this paper use the training results of
1,000 epochs to demonstrate, and the actual production

and engineering applications can be adjusted and opti-
mized based on the actual situation.

The loss function describes the performance of a
given predictor in classifying the input data points in a
data set. The smaller the loss, the better the classifier is at
modeling the representation of the relationship between
the input data and the output target. Figures 12 and 13
plot the effect of two different types of losses, which
represent losses related to the predicted bounding box
and losses associated with a given cell containing objects
during training. The Box and Objectness plots represent
the scores of the YOLOv5s model as shown in Figure 12(a)
and (b), and the val-Box and val-Objectness plots

Figure 11: Comparison of performance metrics between YOLOv5s and modified MYOLOv5s during training: (a) model precision comparison,
(b) model recall comparison, (c) model mAP@0.5 comparison, and (d) model mAP@0.5:0.95 comparison.
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represent the validation scores of the YOLOv5s model as
shown in Figure 12(c) and (d). The Box and Objectness
plots represent the scores of the improved MYOLOv5s
model as shown in Figure 13(a) and (b), and the val-
Box and val-Objectness plots represent the validation
scores of the improved MYOLOv5s model as shown in
Figure 13(c) and (d). The training loss is measured during
each stage, while the validation loss is measured after
each stage. The results show that the improved MYO-
LOv5s model loss function is smoother and converges
faster than the original model loss function; therefore,
the MYOLOv5s model is more suitable for the application
in the scenario of this article.

Figure 14 plots the accuracy and confidence of the
improved MYOLOv5s model against the nine categories
of MLA recognition models with generalizability in
the building scenario defined in this study. Lifts are the
most accurately identified category despite having the
smallest number of samples due to their simple texture
features. The seven categories of door signs, fire cabinets,
fire alarms, security exits, cameras, WLANs, and elec-
trical boxes also fall within the confidence interval of
(0.1–0.2), with recognition accuracy tending to be stable.
Only doors had a lower accuracy rate and a significant
jump in the confidence interval of (0.4–0.7). This is
because there are many different types of doors, such

Figure 12: Loss effect of YOLOv5s during training. (a) Box, (b) objectness, (c) val Box, and (d) val objectness.
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as single, double, security and glass doors, and that the
geometric area of the doors is somewhat influenced by
the large size of the doors compared to the other features
in the sample labelling. Overall, the accuracy of the
model in identifying various types of features in building
scenes meets the requirements of the scene identification
and localization method.

Figure 15 shows some results of the recognition of the
features of the indoor scene of the building under dif-
ferent time, light intensity, and angle experimental con-
ditions. The proposed model is not only applicable to
detecting the features of interest captured in each frame
of the scene video when the line of sight is in frontal view
but also to localize the anchor features captured under

the condition that the line of sight is shifted by a certain
angle during walking. In addition, the proposed MYO-
LOv5s model is able to identify the nine types of features
of the proposed MLA under different conditions such as
sunny day, dusk, night, and indoor lighting. Especially at
night when the lighting conditions are not particularly
adequate, it can be seen that these features are still iden-
tified very accurately. This is a basic application for users
walking indoors in buildings with less favourable light
conditions. Experiments show that the accuracy of the
improved MYOLOv5s model achieves the requirements
of scene features recognition and localization method
for the recognition of indoor scene features of buildings
under different time, lighting, and angles.

Figure 13: Loss effect of MYOLOv5s during training. (a) Box, (b) objectness, (c) val Box, and (d) val objectness.
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4.2.3 Localization results of indoor scene recognition

The goal of the experiment in this subsection is to verify
that this method has good localization results under the
constraints of MLA information and in buildings with
rich spatial structure semantic information. The system
focuses on indoor scene localization under the condition
of the known motion starting point. The starting position
of the user is obtained by Bluetooth and fused multi-
source sensor localization, and through the fusion of
multi-source sensor positioning to obtain the user’s floor
location, we can use the barometer to obtain the air pres-
sure of the user’s location for threshold calculation, while
the floor’s Bluetooth ibeacon can provide us with the
user’s current floor, which is input to this method as a
prerequisite condition. Figure 16 shows the visualization
effect of real-time positioning starting from a certain
starting position in the building area. Yellow line shows
the trajectory of the user walking along the corridor path,
and blue line shows the trajectory depicted after the
video scene element identification location anchor and
the building map road network node (corridor centre
line) for map matching. When the input video data can
be solved in real-time to output accurate positioning
coordinates, it will be matched with the road network
SN to obtain the fusion results of positioning points,
and then draw the segment trajectory map. The experi-
mental results show that the richer the semantic con-
straint information in the building map scene and the
richer the element information obtained from the element

recognition in the field video frames, the more informa-
tion that can be matched between the identifiable fea-
tures of the building space scene and the building MLA,
and the higher the accuracy of the completed positioning
in the scene walking will be.

In order to analyse the effectiveness of this method
quantitatively, a total of 103 coordinate points were col-
lected during the experimental matching positioning pro-
cess, and the deviations from the x and y directions of the
matching coordinates of the road network are shown in
Figure 17. The deviation points are mainly concentrated
in the x-negative half-axis. Since the user will face the
camera towards the semantic information-rich wall in the
corridor scene during the recognition process through
the smart phone camera, thus will be closer to the oppo-
site semantic information-less wall, resulting in the x
direction deviation being mostly negative. Because the
corner direction is the direction where the y-axis is
located and the user will temporarily miss the semantic
information constraint points in the building during
the cornering process, the y-direction deviation is larger
than the x-direction deviation. The experiments do not
measure the deviations in the z-direction. The z value of
the final positioning point coordinates is the z value
of the matching SN, and the coordinates of the 10 pairs
of points with the largest deviation in the x and y direc-
tions of the path coordinates are selected from 103 pairs
of coordinate points for typicality analysis.

As shown in Table 5, the quantified analysis of the x
and y coordinate deviations of the coordinate point pairs
shows that the maximum interval of deviation variation is

[ ]∈ −xΔ 0.231, 0.644 , [ ]∈ −yΔ 0.415, 0.775 . The analysis
shows that the large deviation is a result of less informa-
tion on identifiable features within the field of view of
pedestrians at the corner. Since the span of accuracy
unit scale (m VS cm) between the arbitrary oscillation
of pedestrians during walking (metre-level) and the devia-
tion of the recognition algorithm (centimetre-level) is large,
the deviation of this method is controlled in the maximum
range which is acceptable in practice. In addition, for scene
element identification and localization under sparse indoor
scene element conditions, the system adopts geometric
constraints of road network nodes and multi-source sensor
MLA (S) cooperative localization, which can generally
ensure the continuity of the localization and navigation
process within a certain range. Therefore, the visualization
of the guidance information in the form of matching scene
recognition location anchors with road network nodes
does not cause any disturbance to the user’s positioning
and navigation process. The method is feasible in engi-
neering applications.

Figure 14: Comparison between accuracy and confidence relation-
ships for each category of the improved MYOLOv5s model.
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Figure 15: Results of the recognition of building interior features in different time series using the improved MYOLOv5s network. (a) Daytime,
(b) dusk, (c) night, and (d) light.
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Figure 16: Localization results of indoor scene recognition for mobile phones with semantic constraints of building maps.

Figure 17: Coordinate deviation statistics of pedestrian walking trajectory and map matching trajectory.
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5 Discussion

In this study, we use the improved YOLOv5 model to
identify the elements in the building scene in real time
through the mobile phone camera, match them with the
geographic coordinates of the map positioning anchor
points for spatial resolution, and determine the unique
solution through the P3P algorithm, finally matching to
the nearest road network node to the positioning result.
This article constructs MLA with universal scene features
in building interiors, so the scene element recognition
model does not need to manually deal with a lot of ele-
ment information of other building interior scenes. And
the model does not need to maintain or update the scene
element recognition information for a long time; there-
fore, this method is less dependent and more universal in
multi-application scenes.

Our results are significantly better than the YOLOv5s
model in terms of robustness due to the multi-scale and
multi-granularity features of the identified elements. The
recall rate in the test set is consistently above 97.2%,
indicating that the method is suitable for architectural
interior scenes with rich information on scene elements.
The results of the positioning experiments show that
the maximum localization error is within the range of
0.775 m, and it is confined to about 0.5 m after applying
the BIMPN road network SN constraint, which is within
the acceptable range of the arbitrary oscillation (metre
level) error during the pedestrian walking process, and
the real-time matching process of this method can elim-
inate the error in the early pedestrian movement without
cumulative error generation, which significantly enhances
the robustness of the method calculation process.

Moreover, owing to the data sample collection scheme
and the building map-based location matching process,

our method has massive potential to extend to a crowd-
sourcing-based method. Integration of interior scene data
from different buildings into a shared library of sample
building maps. In engineering applications, the building
indoor scene recognition model on the mobile phone not
only provides input video data but also can quickly retrieve
the building map data source locally on the mobile side,
which is a significant advantage of offline recognition and
quickly map matching on the mobile side. This method not
only allows real-time browsing of realistic holographic
maps of buildings on the mobile phone but also facilitates
the further enhancement of related applications utilizing
AR-enhanced semantic element information in building
maps, etc.

6 Conclusions

In this article, we propose an indoor scene features recog-
nition and localization method for mobile phones with
semantic constraints of building MLA. This article pro-
vides semantic constraint information for indoor posi-
tioning by constructing a geocoded entity library for
building MLA, then identifies the semantic constraint ele-
ment information in the scene based on the improved
MYOLOv5s model, matches the identified element infor-
mation with the database MLA, and finally, constrains
the location of the user in the road network corresponding
to the location information from the scene element feature
points, thereby achieving real-time positioning and navigation.

The method proposed in this article is a solution that
particularly requires indoor environmental data from CIM
perspective. The video for building interior scene element
recognition is obtained through smartphone camera

Table 5: Statistics of coordinate deviation between pedestrian walking trajectory and map-matched trajectory (partial)

Track point number Coordinates of pedestrian walking track
points

Map matching track point
coordinates

Deviation values ( xΔ , yΔ )

Starting point (−12.145, 21.343) (−12.0, 21.2, 17.550) (−0.145, 0.143)
1 (−3.231, 21.975) (−3.0, 21.2, 17.550) (−0.231, 0.775)
2 (29.401, 21.474) (29.5, 20.7, 17.550) (−0.099, 0.774)
3 (7.950, 18.903) (8.0, 18.2, 17.550) (−0.050, 0.703)
4 (39.931, 21.868) (40.0, 21.2, 17.550) (−0.069, 0.668)
5 (31.915, 21.867) (32.0, 21.2, 17.550) (−0.085, 0.667)
6 (38.941, 21.860) (39.0, 21.2, 17.550) (−0.059, 0.660)
7 (−0.858, 21.681) (-1.5, 21.2, 17.550) (0.642, 0.481)
8 (4.077, 19.333) (3.5, 19.7, 17.550) (0.577, −0.367)
9 (21.017, 17.828) (20.5, 18.2, 17.550) (0.517, −0.372)
10 (0.144, 20.785) (−0.5, 21.2, 17.550) (0.644, −0.415)
End point (41.661, 21.507) (41.5, 21.2, 17.550) (0.161, 0.307)
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shooting, and the key to mobile phone scene element
recognition is an efficient lightweight network model. In
the future, it is necessary to consider a more efficient
and robust generalized training element anchor model
and apply it to more complex and large-scale CIM and
metaphase environments. The final goal is to merge
building maps with augmented reality and to visually
represent the semantic information in building maps,
thereby providing more accurate and richer services to
users for real-time location-based services.
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