
Research Article

Wang Wenhua, Wang Zhuwen*, Han Ruiyi, Xu Fanghui, Qi Xinghua, and Cui Yitong

Lithology classification of volcanic rocks based
on conventional logging data of machine
learning: A case study of the eastern depression
of Liaohe oil field

https://doi.org/10.1515/geo-2020-0300
received March 05, 2021; accepted September 14, 2021

Abstract: The reservoirs in the eastern depression of
Liaohe basin are formed by multistage igneous eruption.
The lithofacies and lithology are complex, and the lithology
is mainly intermediate and basic igneous rocks. Based on
the integration of debris data of igneous rocks and logging
data, this article selected 6,462 continuous logging data
with complete cuttings data and five conventional logging
curves (RLLD, AC, DEN, GR, and CNL) from four wells in the
eastern depression of Liaohe basin as the training set. A
variety of lithologic identification schemes based on support
vector machine and random forest are established to clas-
sify the pure igneous strata and actual strata. By comparing
the classification results with the identification data of core
slice and debris slice, a practical lithologic classification
scheme for igneous rocks in the eastern depression of
Liaohe basin is obtained, and the classification accuracy
reaches 97.46%.

Keywords: igneous rock, machine learning, lithology
classification

1 Introduction

From Mesozoic to Cenozoic, the eastern depression has
been regarded as the magmatic activity center of Liaohe
Depression, where igneous rocks are widely developed
[1]. The main lithologies in the eastern depression are
trachyte, basalt, and diabase [2]. The igneous rock explora-
tion with trachyte as the main reservoir in this area has
realized the continuous oil and gas bearing situation in
many areas. The practice of igneous oil and gas exploration
shows that the diagenetic mode of igneous rocks has a
direct impact on its reservoir properties [3,4]. The different
chemical compositions of igneous rocks with similar diage-
netic patterns lead to great differences in pore types and
spatial distribution after diagenesis. Therefore, it is of prac-
tical significance to distinguish igneous rocks according to
their chemical composition [5].

The types of igneous rocks are complex. Different
eruption modes and periods and different regions and
horizons have different lithologies. Not only are the
mineral compositions of rocks in the same region or hor-
izon different, but the mineral compositions of the same
lithology are also very different [6]. Due to the limitation
of quantity, the classification of igneous rocks cannot be
evaluated systematically according to the actual core data.
The conventional logging data are relatively easy to
obtain, rich, and comprehensive, and can reflect the for-
mation characteristics in the vertical direction. It is worth
noting that different types of igneous rocks have great
differences in conventional logging data, especially nat-
ural gamma, acoustic, compensated neutron, and resis-
tivity curves logging data, which provide a basis for us
to use conventional logging data for igneous rock lithology
identification. There are many methods to identify igneous
rocks by using logging data, such as cross-plot method,
imaging logging method, and formation element logging
method. Among them, the cross-plot method is the simplest.
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First, select the standard igneous rock data and cross-plot
the conventional logging curves in pairs. Different types of
igneous rocks will generally fall in different areas in the
cross-plot, which can effectively distinguish the types of
igneous rocks. However, the cross-plot method needs a large
number of accurate standard lithologic data, and is limited
by the geological region. At the same time, due to the com-
plexity and particularity of the igneous rock, different types
of igneous rock data may overlap in the cross-plot, so the
cross-plot method cannot be used as a separate lithology
identification method, but needs to be combined with other
identification methods. Imaging logging method and forma-
tion element logging method can identify the lithology of
volcanic rocks from the structure and chemical composition,
respectively, but these two methods are expensive, and the
cost of large-scale application is too high.

Machine learning is one of the most advanced
research fields in artificial intelligence. As a way to realize
artificial intelligence [7–10], machine learning has aroused
wide interest in the field of artificial intelligence. Machine
learning is not only applied in knowledge-based systems,
but also widely used in natural language processing
[11,12], machine vision, pattern recognition, and many
other fields [13,14]. Support vector machine (SVM) is a
widely used kernel machine learning algorithm [15,16],
which has excellent network generalization performance
in solving small sample learning and high-dimensional
pattern recognition [17,18]. Random forest (RF) is a kind
of statistical learning theory [19]. It uses bootstrap resam-
pling method to extract multiple samples from the original
samples, models the decision tree for each bootstrap
sample and then combines the prediction of multiple deci-
sion trees to get the final prediction result by voting.

According to the conventional logging data of igneous
rock area in Liaohe east depression, this article uses SVM
and RFmethods to classify the lithology under the condition
of pure igneous rock and then designs different schemes to
classify the lithology under the stratum condition, and
divides the lithology of actual well section [20–22]. Finally,
the correctness of identification results is verified by com-
bining with actual core data and lithology section.

2 Method, classifiers, and
data sets

2.1 Method

Methodology of this work is divided into three steps:

Step 1: Suppose a stratum has six kinds of igneous
rock lithology under the condition of pure igneous rock,
design two schemes for classification, and determine the
better scheme.

Step 2: Sedimentary rock and coal are added to the
formation to construct the formation under actual condi-
tions. Based on the previous optimization scheme, four
classification schemes are designed to determine an optimal
scheme suitable for the actual formation conditions.

Step 3: The optimal scheme is applied to four wells
for lithologic identification, and compared with lithologic
section and thin section, so as to verify the accuracy of
the scheme.

2.2 Classifiers

2.2.1 SVM

SVM is a common discriminant method. It is a supervised
learning model in the field of machine learning, which is
usually used for pattern recognition, classification, and
regression analysis [23,24]. The SVM method maps the
sample space to a high-dimensional or even infinite dimen-
sional feature space (Hilbert space) through a nonlinear
mapping P, so that the nonlinear separable problem in
the original sample space can be transformed into a linear
separable problem in the feature space. In the classification
problem, for the sample set that may not be linearly pro-
cessed in the low dimensional sample space, SVM first com-
pletes the calculation in the low dimensional space, then
maps the input space to the high dimensional feature space
through the kernel function, and finally constructs the
optimal separation hyperplane in the high dimensional fea-
ture space, so as to separate the nonlinear data which is not
easy to separate on the plane [25–27]. The process of finding
hyperplane can be transformed into solving a quadratic
programming problem [28–30].

SVM classifier is implemented by SVM module in
scikit-learn library of Python programming language.
SVM in scikit-learn library has four kernel functions:
linear kernel function, polynomial kernel function, radial
basis function (RBF), and sigmoid kernel function. In this
article, the radial basis kernel function is used for the
following reasons:
(1) There are many parameters of polynomial kernel

function, and the process of parameter optimization
is complex.

(2) Linear kernel function can only be used to deal with
linear problems.
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(3) The sigmoid kernel function and the kernel function
of RBF are similar under some conditions and can
replace each other.

(4) The five conventional logging data sets used in this
article are not high-dimensional data sets, so it is
more appropriate to use radial basis kernel function.
There are two important parameters of RBF kernel
function, which are penalty factor C and kernel para-
meter gamma.

In this article, 30% of the training set is taken as ten
times cross-validation of the back-judgment test set, and
the penalty factor C and the parameter gamma are opti-
mized as the optimal values. The Z-score normalization of
all the training set and test set data of SVM is carried out.

2.2.2 RF

RF is a machine learning algorithm based on decision
tree, which combines the decision tree into a RF, that
is, randomize the use of variables and data, generate
many decision trees and then summarize the classifica-
tion results. Like other classification methods, RF can
explain the effect of several independent variables on
the dependent variable y. If the dependent variable y
has n observations and its k features are always related,
the RF will put back n observations in the data set when
constructing the decision tree, which is called bootstrap
resampling method. At the same time, RF selects a part of
k features randomly to construct the decision tree nodes,
which can ensure that the decision tree generated each
time is inconsistent. In general, a RF will generate several
decision trees randomly for classification and then sum-
marize the classification results of each tree and decide
the classification results by voting.

RF classifier is implemented by RF classifier module
in scikit-learn library of Python programming language. It
needs to set three main parameters: the number of deci-
sion trees (n_estimators), the maximum depth of decision
trees (max_depth), and the maximum number of features
of decision trees (max_features). The optimization process
of the three main parameters is divided into two parts:
(1) Using the out-of-bag data generated by bootstrap resam-

pling to estimate the internal error, and the out-of-bag
error must be controlled to be low enough and stable.

(2) Taking 30% of the training set as ten times of cross-
validation to ensure that the cross-validation results
are high enough.

RF classifier does not need to preprocess the data.

2.3 Selection of data sets

This article mainly studies the eastern depression of
Liaohe basin, where the igneous rocks are mainly inter-
mediate basic rocks [31,32]. According to the lithologic
classification scheme of deep igneous rocks in Song
Liao basin, combined with the feasibility of logging litho-
logic identification and the actual production demand,
the igneous rocks in the study area are divided into six
kinds of lithology: compact trachyte, non-compact tra-
chyte, compact basalt, non-compact basalt, diabase, and
gabbro. There are many kinds of mineral compositions in
igneous reservoir rocks, and the pore and reservoir types
are complex. The logging response characteristics are
more complex. It is difficult to identify the lithology of
igneous rocks effectively by using conventional logging
interpretation methods.

Igneous rocks, coal, and sedimentary rocks coexist in
the eastern depression of Liaohe basin. There are obvious
differences among the three kinds of lithology in the
characteristics of Genesis, structure, and mineral compo-
sition, which are difficult to be accurately distinguished
by conventional logging interpretation. According to the
actual needs of producers, igneous reservoirs in this
area are mainly concentrated in non-compact trachyte
and non-compact basalt, so the key to lithology classifi-
cation is to accurately select non-compact trachyte and
non-compact basalt. To identify the above two kinds of
lithology as accurately as possible, this article divides the
lithology classification of the area into two stages, first for
the pure igneous strata and second for the actual strata.

In the conventional logging methods, RLLD, AC,
CNL, DEN, and GR curves reflect the petrological charac-
teristics of conductivity, sound velocity, porosity, den-
sity, and radioactivity, respectively, (Table 1). In this
article, 6,462 continuous logging data of complete cut-
tings data from four wells in the eastern depression of
Liaohe basin are selected as the training set, including
2,202 sedimentary rock data and 4,162 igneous rock data
as well as continuous rock data of six lithology, compact
trachyte, non-compact trachyte, compact basalt, non-
compact basalt, diabase, and gabbro, and 98 coal seam
data. It should be noted that because the actual selection
of data is difficult, the data quantity of different litholo-
gies in the training set varies greatly, that is, the training
set used in this article is a typical unbalanced data set.

In addition, since the focus of this article is to classify
the igneous rocks in the target area, all types of sedimen-
tary rocks in this area are collected as sedimentary rock
data set. It includes mudstone, carbonaceous mudstone,
basaltic mudstone, silty mudstone, glutenite, argillaceous
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glutenite, argillaceous siltstone, gravelly sandstone, fine
sandstone, and other common sedimentary rock data in
the eastern depression area of Liaohe basin.

In this article, 5,070 continuous logging data from
seven wells in the eastern depression of Liaohe basin,
which are different from the training set, are selected
as the test set, including 801 sedimentary rock data
as well as common sedimentary rock types of the same
type as the training set. There are 4,158 igneous rock
data, including continuous strata data of six kinds of
lithology, compact trachyte, non-compact trachyte, com-
pact basalt, non-compact basalt, diabase, and gabbro,
and 111 coal seam logging data.

3 Experimental verification

3.1 Lithologic classification of pure igneous
strata

In this stage, it is assumed that there is an ideal pure
igneous rock stratum, that is, it is assumed that sedimen-
tary rock and coal in the stratum have been screened

by other means, and only igneous rock exists. To get
more accurate classification results, two sets of litho-
logic classification schemes are designed as follows
(Figure 1):

Scheme A: Direct use of SVM classifier and RF clas-
sifier to classify six lithologies of compact trachyte, non-
compact trachyte, compact basalt, non-compact basalt,
diabase, and gabbro.

Scheme B: Four lithologies of trachyte, basalt, dia-
base, and gabbro in igneous formation are classified by
SVM classifier and RF classifier and then the compactness
of basalt and trachyte is classified by the same classifier
(Figure 2).

Lithological classification of pure igneous formation
is carried out according to the above two schemes (Table 2).
It can be found that out of the four classification results
of the two schemes mentioned above, the RF method
used in scheme A, which directly classifies the six lithol-
ogies, has only 10.25% correct classification rate for
non-compact trachyte and 25.6% correct comprehensive
classification rate, which is obviously not competent for
classification requirements. The classification accuracy
of scheme A is 97.14%, but the classification accuracy
of compact trachyte and non-compact basalt is 58.33

Table 1: Logging response of igneous rock in eastern depression, Liaohe oil field [33]

Lithology CNL (%) DEN (g cm−3) GR (API) AC (μs m−1) RLLD (Ωm)

Non-compact trachyte 16–24 2.1–2.3 152–160 223–263 42–80
Compact trachyte 4–8 2.3–2.6 140–155 171–197 44–2,000
Non-compact basalt 24–36 2.3–2.6 40–56 197–263 10–20
Compact basalt 24–29 2.6–2.8 28–40 184–236 8–12
Diabase 12–18 2.6–2.7 30–45 171–210 128–800
Gabbro 13–16 2.6–2.7 60–80 158–171 698–8,000

Figure 1: Flow chart of lithology classification of pure igneous strata.
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and 58.17%, respectively, which cannot meet the actual
production needs.

Two classification methods are used in scheme B. The
SVM method has a higher accuracy for non-compact tra-
chyte and gabbro. For compact trachyte, non-compact

basalt, compact basalt, and diabase, the classification
accuracy is lower than that of RF method and the total
classification accuracy is slightly lower than that of RF
method. The RF classification method used in scheme B is
more accurate for each lithology classification.

Figure 2: Results of lithology classification of pure igneous strata.

Table 2: Statistics of lithological classification results of pure igneous formation

Lithology Data and results Scheme A SVM Scheme A RF Scheme B SVM Scheme B RF

Non-compact trachyte Return correct rate (%) 97.88 100 97.99 99.59
Number of test samples 3,179 3,179 3,179 3,179
Number of correct 3,179 326 3,179 3,166
Correctness (%) 100 10.25 100 99.59

Compact trachyte Return correct rate (%) 97.88 100 97.99 99.59
Number of test samples 48 48 48 48
Number of correct 28 48 48 48
Correctness (%) 58.33 100 100 100

Non-compact basalt Return correct rate (%) 97.88 100 97.99 99.59
Number of test samples 153 153 153 153
Number of correct 89 147 123 153
Correctness (%) 58.17 96.08 80.39 100

Compact basalt Return correct rate (%) 97.88 100 97.99 99.59
Number of test samples 178 178 178 178
Number of correct 178 177 170 178
Correctness (%) 100 99.44 95.51 100

Diabase Return correct rate (%) 97.88 100 99.64 99.59
Number of test samples 300 300 300 300
Number of correct 265 300 264 294
Correctness (%) 88.33 100 88 98

Gabbro Return correct rate (%) 97.88 100 99.64 99.59
Number of test samples 300 300 300 300
Number of correct 300 300 288 278
Correctness (%) 100 100 96 92.67

Total Return correct rate (%) 97.88 100 — —
Number of test samples 4,158 4,158 4,158 4,158
Number of correct 4,039 1,298 4,072 4,117
Correctness (%) 97.14 25.60 97.93 99.01
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3.2 Lithological classification under actual
stratigraphic conditions

This stage is lithological classification under actual formation
conditions, i.e., formation is divided into sedimentary, coal,
and igneous rocks according to the feasibility of logging
lithological identification and actual production require-
ments. Because the conventional logging curves of some
sedimentary rocks and igneous rocks are similar in charac-
teristics, it is difficult to distinguish lithology effectively by
one multi-classification, so four lithology classification
schemes are designed in this stage, as follows (Figure 3):

Scheme C: Sedimentary rocks, coal seams, dense tra-
chyte, non-dense trachyte, dense basalt, non-dense basalt,
diabase, gabbro, and other eight lithologies are directly
classified by SVM and RF classifier.

Scheme D: By SVM and RF classifier, the strata are
first divided into sedimentary rocks, igneous rocks, and

coal and then the igneous rocks are classified by Scheme
B using the same classifier.

Scheme E: Strata are divided into sedimentary rocks,
igneous rocks, and coal by SVM classifier and then litholo-
gical classification is carried out by RF classifier of scheme B.

Scheme F: Strata are divided into sedimentary rocks,
igneous rocks, and coal by RF classifier and then litholo-
gical classification is carried out by SVM classifier of
scheme B (Figure 4).

Lithological classification of actual strata is carried
out according to the above four schemes (Table 3). It can
be found that scheme C, which directly uses the classifier
for one-off multi-classification, has poor classification
results for both classifiers and cannot reach the classifi-
cation accuracy required in actual production.

Schemes D and F for classification of coal and igneous
rocks using RFs have low accuracy in overall classification
of igneous rocks, which indicates that RFs cannot effectively

Figure 3: Flow chart of lithology classification under actual stratigraphic conditions.
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Figure 4: Results of lithology classification of actual strata.

Table 3: Statistics of lithological classification results of actual strata

Lithology Data and results Scheme C SVM Scheme C RF Scheme D SVM Scheme D RF Scheme E Scheme F

Non-compact
trachyte

Return correct rate (%) 93.74 95.19 95.65 93.55 97.21 92.05
Number of test samples 3,179 3,179 3,179 3,179 3,179 3,179
Number of correct 1,906 287 3,083 1,665 3,083 1,665
Correctness (%) 59.96 9.03 96.98 52.37 96.98 52.37

Compact trachyte Return correct rate (%) 93.74 95.19 95.65 93.55 97.21 92.05
Number of test samples 48 48 48 48 48 48
Number of correct 0 47 48 48 48 48
Correctness (%) 0 97.92 100 100 100 100

Non-compact basalt Return correct rate (%) 93.74 95.19 95.65 93.55 97.21 92.05
Number of test samples 153 153 153 153 153 153
Number of correct 90 153 113 134 149 103
Correctness (%) 58.82 100 73.86 87.58 97.39 67.32

Compact basalt Return correct rate (%) 93.74 95.19 95.65 100 97.21 92.05
Number of test samples 178 178 178 178 178 178
Number of correct 176 178 178 175 178 175
Correctness (%) 98.88 100 100 98.31 100 98.31

Diabase Return correct rate (%) 93.74 95.19 95.65 100 97.21 93.60
Number of test samples 300 300 300 300 300 300
Number of correct 287 300 264 294 294 264
Correctness (%) 95.67 100 88.00 98.00 98.00 88.00

Gabbro Return correct rate (%) 93.74 95.19 95.65 93.55 97.21 93.60
Number of test samples 300 300 300 300 300 300
Number of correct 272 300 288 278 278 288
Correctness (%) 90.67 100 96.00 92.67 92.67 96.00

Sedimentary rocks Return correct rate (%) 93.74 95.19 97.61 93.94 97.61 93.94
Number of test samples 801 801 801 801 801 801
Number of correct 801 801 801 801 801 801
Correctness (%) 100 100 100 100 100 100

Coal Return correct rate (%) 93.74 95.19 97.61 93.94 97.61 93.94
Number of test samples 111 111 111 111 111 111
Number of correct 109 110 110 108 110 108
Correctness (%) 98.20 99.10 99.10 97.30 99.10 97.30

Total Return correct rate (%) 93.74 95.19 — —
Number of test samples 5,070 5,070 5,070 5,070 5,070 5,070
Number of correct 3,641 2,176 4,885 3,503 4,941 3,552
Correctness (%) 71.81 42.92 96.35 69.09 97.46 70.06
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distinguish sedimentary rocks from igneous rocks. Compared
with scheme E, which uses SVM to classify sedimentary
rocks, coal, and igneous rocks, and scheme E, which uses
RF to classify igneous rocks, the classification accuracy of
scheme E for gabbro is slightly lower than that of scheme D,
92.67%, and the classification accuracy of other lithologies is
not lower than that of scheme D, and the comprehensive
classification accuracy reaches 97.46%.

4 Results and discussion

To validate the accuracy of the method described in
scheme E, four wells in the east depression of Liaohe

oil field are taken as examples to illustrate the igneous
lithological characteristics and logging lithological iden-
tification results.

Figure 5 is the result map of lithological identification
of Well X from 2,145 to 2,220m. It can be seen from the
figure that the classification method described in Scheme E
can distinguish the formation boundary between sedimen-
tary rock and trachyte in Well X according to the difference
in logging responses. Based on the lithological profile, tra-
chyte in target formation can be identified as non-compact
trachyte and the thickness of the formation can be
determined.

The depth of well section is 2,158–2,220m, in which
2,200m cuttings specimen is described as trachyte, of
which 70% of the cuttings are trachyte (Figure 6a) with

Figure 5: Lithology identification results of 2,145–2,220m in well X.
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porphyry structure, block structure, and local polymorphic
structure, mainly alkaline feldspar; and a few plagioclase
phenocrysts are also observed. The matrix is of trachytic
texture, alkaline feldspar microcrystal and glassy are
found in the matrix. Feldspar clay mineralization is devel-
oping generally. 20% of them are trachyte igneous breccia
(Figure 6c). Igneous breccia structure is a massive struc-
ture. 50% of the breccia content is trachyte and basalt
clasts are also found. Igneous breccia is poorly sorted
and rounded-subprismatic; another 10% is mudstone.

Core specimens at a depth of 2133.3 m are described:
Lithology is trachyte, phenocryst is potassium feldspar,

strongly dissolved, reaction edge is visible at the edge,
matrix is directed by feldspar microcrystals of potassium
feldspar, trachytic in texture, and a small amount of pyr-
oxene is visible. The fracture is self-breaking seam and
unfilled (Figure 7). The results show that the lithologic
classification results of scheme E are consistent with the
core cuttings data.

Figure 8 shows the lithologic identification results of
well O 3,320–3,380m. It can be seen from the figure that
scheme E can distinguish the boundary between basalt
and trachyte in Well O according to the difference in the
logging response. Based on the lithologic profile, the

Figure 6:Well X, 2,200m, cuttings slice. (a) Trachyte (monopolar), (b) trachyte (orthogonally polarized), (c) trachyte igneous breccia (single
polarized light), and (d) trachyte igneous breccia (orthogonal polarized light).

Figure 7: Well X, 2193.3 m, trachyte. (a) Core slice (single polarization) and (b) core slice (orthogonal polarization).

Lithology classification of volcanic rocks  1253



trachyte in the target formation is identified as non-com-
pact trachyte and basalt is non-compact basalt, and the
thickness of the formation is determined.

The depth is 3,320–3,352m, in which 3316.5m cuttings
are described as follows: The lithology is comprehensively

named trachyte, in which 80% of the cuttings are trachyte
(Figure 9), with porphyry structure, massive structure, and
local porphyry structure. The phenocrysts are mainly alka-
line feldspar (5%). A small amount of plagioclase pheno-
crysts can also be seen, and the matrix is of coarse texture.

Figure 8: Lithology identification results of Well O 3,320–3,380m.

Figure 9: Well O, 3316.5 m, trachyte. (a) Trachyte (monopolar) and (b) trachyte (orthogonally polarized).
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Alkali feldspar microcrystalline and glassy can be seen in
the matrix, and feldspar clay mineralization is generally
developed. Another 20% is mudstone.

Description of core specimen at depth of 3,360m: The
lithology is basalt (Figure 10), porphyritic texture, phe-
nocryst is augite, and matrix is intergranular cryptic

texture, and the plagioclase microcrystals are direction-
ally distributed in the brown black igneous glass. The
whole rock has developed dissolution pores, unfilled,
and moderately altered. The results show that the litho-
logic classification results of scheme E are consistent with
the core cuttings data.

Figure 10: Well O, 3,360m, basalt. (a) Basalt (single polarization) and (b) basalt (orthogonal polarization).

Figure 11: Lithological identification results of Well J from 2,020 to 2,080m.
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Figure 11 shows the lithologic identification results of J
Well from 2,020 to 2,080m. It can be seen from the figure
that scheme E can distinguish the boundary between the
sedimentary rock and gabbro in Well J according to the
difference in logging response and determine the thickness
of the formation at the same time.

Depth of well section 2,041–2,080m, including 2,050m
cuttings specimen description: the lithology is comprehen-
sively named gabbro, 90% of which is gabbro structure
(Figure 12). The main mineral compositions are basic plagi-
oclase (50%), clinopyroxene (30%) and olivine (20%). Par-
ticle diameter is 1–2mm with high degree of crystallization.

Figure 12: Well J, 2,050m gabbro. (a) gabbro (single polarized) and (b) gabbro (orthogonal polarized).

Figure 13: Lithological identification results of Well L from 2,020 to 2,080m.
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Another 10% is mudstone. The result shows that the litho-
logical classification result of scheme E is consistent with
the data of core and cuttings.

Figure 13 shows the lithological identification results
of Well L from 2,020 to 2,080m. As can be seen from the
figure, Scheme E can distinguish the boundary between
the sedimentary rocks and diabase in Well L and deter-
mine the thickness of the formation according to the dif-
ference in logging responses.

The depth of the well section is 2,056–2,080m, of
which 2,058m cuttings are described as follows: The
lithology is comprehensively named amphibolite-diabase,
80% of which is amphibolite-diabase structure (Figure 14).
The minerals are mainly pyroxene and plagioclase with a
few biotite and amphibole and another 20% is mudstone.
The result shows that the lithological classification result
of scheme E is consistent with the data of core and
cuttings.

5 Conclusion

In this article, the igneous rock types are summarized
from the geological coring and mineral identification
data, and the logging response combination characteris-
tics of logging curves are analyzed from the logging data.
Six igneous lithologies of basalt, non-compact basalt, tra-
chyte, non-compact trachyte, diabase, and gabbro were
effectively identified by SVM and RF methods. Finally,
mutual proof between geological data and logging data is
achieved, and the purpose of igneous lithology identifica-
tion is achieved, and the following conclusions are drawn:
(1) A classification scheme of igneous rocks is deter-

mined, which can be used in actual stratigraphic
conditions, and the highest classification accuracy
is 97.46%.

(2) For lithological classification of pure igneous forma-
tion, the method of RF sectional classification used in
scheme B has the highest classification accuracy,
reaching 99.01%.

(3) When the training set is unbalanced data, the RF
classifier cannot effectively distinguish sedimentary
rocks from igneous rocks, i.e., under unbalanced
classification, the effect of RF classifier is significantly
lower than that of SVM.
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