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Abstract: This research presents a new approach which
addresses the conversion of earthquake magnitude as a
supervised machine-learning problem through a multi-
stage approach. First, the moment magnitude (M,,) cal-
culations were extended to lower magnitude earthquakes
using the spectral P-wave analyses of the vertical com-
ponent seismograms to improve the scaling relation of
M,, and the local magnitude (M;) of 138 earthquakes in
northeastern Egypt. Second, using unsupervised clus-
tering and regression analysis, we applied the k-means
clustering technique to subdivide the mapped area into
multiple seismic activity zones. This clustering phase cre-
ated five spatially close seismic areas for training regres-
sion algorithms. Supervised regression analysis of each
seismic area was simpler and more accurate. Conversion
relations between M,, and M; were calculated by linear
regression, general orthogonal regression (GOR), and
random sample consensus (RANSAC) regression techni-
ques. RANSAC and GOR produced better results than linear
regression, which provides evidence for the effects of out-
liers on regression accuracy. Moreover, the overall multi-
stage hybrid approach produced substantial improvements
in the measured-predicted dataset residuals when indivi-
dual seismic zones rather than all datasets were considered.
In 90% of the analyzed cases, M,, values could be regarded
as My values within 0.2 magnitude units. Moreover, pre-
dicted magnitude conversion relations in the current study
corresponded well to magnitude conversion relations in
other seismogenic areas of Egypt.
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1 Introduction

Earthquakes are natural disasters that significantly impact
culture, politics, and health in the regions affected by them
[1]. The magnitude of an earthquake, which is the energy
that an earthquake releases [2], is a crucial variable for
assessing the human impact of an earthquake [3]. Large-
magnitude earthquakes can cause considerable damage [1].

Located in the northeastern region of the African
continent, Egypt is bound by three major tectonic ele-
ments (see panel (a) in Figure 1): the African-Eurasian
plate margin, Red Sea plate margin, and Levant trans-
forming fault. Tectonic distortion is related to contact
and relative movement of the Egypt’s crust below Egypt’s
territories and its remote effects [4,5]. Egypt’s seismicity
is low to moderate relative to that of North-West Africa,
and much more so relative to the extreme seismicity of
neighboring Hellenic and Cyprus subduction arcs and the
Dead Sea transformation zone (Figure 1). Local moderate
earthquakes, however, pose a major threat to the popula-
tion, as demonstrated by the 1992 case in Cairo that
caused 561 fatalities and by the historical 1847 event
[5]. Regarding the transtensional stress regime triggered
by the expanding Red Sea margin, most earthquakes are
characterized by a normal fault with variable strike-slip
components, which increases towards the edge of the
Sinai subplate. A few cases, which are mainly inland,
have reverse focal mechanisms [4].

Earthquake catalogs contain data on the time of
occurrence, hypocentric coordinates, magnitude of the
event, and other related information about the earth-
quake [6]. These details are extracted from observations
of various types of seismic waves, usually from heteroge-
neous seismological networks in the space-time domain.
The data obtained from seismic catalogs provide valuable
information for the study of seismotectonics and seismic
hazard distribution in space and time [6]. However, accurate
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Figure 1: (a) Regional tectonic setting of Egypt. (b) Historical seismicity of Egypt based on the compiled earthquake catalog of ref. [53]. (c)
Significant historical and instrumental events affecting the area (adopted from ref. [27]). (d) Instrumental seismicity of Egypt based on the

compiled ENSN catalog.

results require the use of a homogenized seismicity catalog.
A crucial point in the process of homogenization is the iden-
tification of all possible earthquake occurrences by using a
single target magnitude scale [7].

Due to the occurrence of the catastrophic earthquake,
in Cairo in October 1992, the Egyptian National Seismological
Network (ENSN) project was implemented with the aim to
cover and report the entire Egyptian territory (Figure 1)
seismic activities. The ENSN started operating in August
1997, and since then, accurate parameters of relevant seismic

activity have been determined. Despite the establishment of
ENSN, rapid changes in the method used for estimating the
magnitude of seismic incidents, such as seismometers, and
data reduction procedures have caused variances in the
reported magnitude; thus, a consistent magnitude scale is
not always available [8]. There have been several scales of
magnitude utilized, and each is specified in terms of ampli-
tudes measured with a specific type of seismometer over
a very narrow spectral band; thus, variable measurement
errors are manifested. For this reason, different types of



1086 —— Sayed S. R. Moustafa et al.

magnitudes have been reported for the same earthquake,
such as local magnitude [9], surface-wave magnitude [10],
body-wave magnitude [11], and moment magnitude [12]. This
will have tremendous effects on the precision and homo-
geneity of seismic hazard, as well as on the calculation of
seismic deformation [13,14]. Various empirical relations
have been utilized to overcome that problem. Different
types of magnitudes are transferred and unified to the
same scale, prior to inclusion in the catalog for seismicity
and seismic hazard studies. The majority of researchers
prefer to utilize the moment magnitude (M,,), as it is no
suffer saturation for earthquakes of higher magnitude, as
opposed to other types of magnitude. This is because the
size of an earthquake is related to the ruptured field,
average slip volume, and force necessary to overcome fric-
tion, which hold the rock together from offset by failures
that are directly derived from the seismic moment (M) [12].

Traditionally, magnitude conversation relationships
are utilized to produce homogenized earthquake catalogs
that implement several regression procedures, including
simple linear regression (SLR), inverted standard regres-
sion (ISR), orthogonal regression (OR), and general ortho-
gonal regression (GOR), to produce various magnitude
conversion relations [15-21]. SLR assumes that either the
independent variable is error-free, or its error order is sig-
nificantly small in comparison with the dependent vari-
able measurement error. In this regression type, vertical
residues are minimized. By comparison, as the locations
of dependent and independent variables are reversed, ISR
is accomplished by reducing horizontal offsets to the best-
fit rows [22]. A comparison among regression methods
applied to earthquake magnitude conversions is given in
refs [23,24].

Empirical conversions between different types of
magnitude are typically utilized in Egyptian catalogs
to homogenize the data for statistical analysis and hazard
assessment. The standard least-square linear regression
method is the most common method used to determine
the relationship between different magnitude scales [25-27].
These empirical relationships may be improved if we
understand the spatial clustering of earthquakes, as earth-
quakes are known to cluster in space and time due to
stress redistribution in the Earth’s crust [28]. Hence, cur-
rent research presents a new clustered linear regression
approach, which is utilized to overcome the shortages of
multiple regression. The methodology we describe in this
paper uses a multistage machine-learning approach to
deal with traditional magnitude conversions methods’
limitations. Typical multistage learners combine two
or more inferential approaches so that more complex
learning problems can be solved. Our approach is a
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hybrid combination of unsupervised and supervised
machine-learning methods. The three cluster algorithms
involved in most studies are the partitional algorithm, hier-
archical algorithm, and density-based algorithm [29,30].
Because of its applicability and reliability, the partitional
algorithm is most commonly used. As with most common
cluster techniques, k-means (hard clustering) and Fuzzy
C-means (soft clustering) are categorized in terms of the
partitional algorithm. k-means vary from Fuzzy C-means
in that a point belongs only to one cluster in k-means,
whereas the point belongs to a cluster to some extent
depending on its Fuzzy Membership, in Fuzzy C-means.

In this research, k-means was utilized as a conveni-
ence to prevent the additional computational costs that
are incurred by fuzzy inclusion in fuzzy C-means. k-means
clustering is used before the application of a multiple
regression method which is a supervised analysis proce-
dure that can be described as a model of relationships
between a target continuous variable and a collection of
other input variables. This multistage approach has been
adopted with the objective to improve the accuracy of
learned models.

2 Methods and data

This section explains the proposed multistage seismolo-
gical and machine-learning approaches that are used to
predict the conversion relation between reported local
magnitude M; and estimated moment magnitude M,
with the intention of enhancing our learned models and
predictive accuracy. In the first phase of our strategy, we
acquired the frequency-independent, long-period spec-
tral level Qg below the corner frequency of a displace-
ment spectrum [31,32]. The long-period spectral ampli-
tude of the source spectrum can be related to seismic
moment M [31] from which moment magnitude M,, can
be computed [12].

For seismic moment estimation, the earthquake
signals from the three component seismometers were
inverted by assuming a Brune’s model for the source and
connecting it to a rupture area with a slip value. According
to Brune’s model [31,32], the displacement spectrum spe-
cifies that the frequency response of the seismic signal is
considered to be flat until it reaches the corner frequency
w; then, the amplitude of the displacement spectrum
drops to w2 By fitting such a model to the displacement
spectrum, the low-frequency plateau W can be estimated
and used directly in the calculation of the seismic moment
because it relates to the area of seismic slip on the fracture
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plane by adapting the model to the displacement spec-
trum. Geometric spreading R, seismic wave velocity c,
rock density p, and a radiation pattern imposed by the
seismic source moment tensor F, were included in the
calculation to estimate the seismic moment as given in
the following equation:

_ 4npcPWR

M
° F

udA 1)
where p is the rock’s shear modulus, d is the average fault
displacement, and A is the fault area.

For P-waves W, = W,,. According to ref. [33], F = 0.52
for P-waves could be adopted as an approximate value
for F. if the radiation pattern of the moment tensor is not
known. With seismic moment, measured in Nm, the
moment magnitude is estimated following the ref. [12]
formula as:

2
M, = EIOgloMo - 6.0 )

In the second step of our strategy, unsupervised
machine-learning data clustering utilizing k-means algo-
rithm is carried out to find a data partition such that
points in the same subgroup are close to the similar
Euclidean distance (d(x, y) = ||x — y|,) between two earth-
quakes x and y [34]. The k-means algorithm is a heuristic
technique that often produces effective clustering out-
comes. In that algorithm, the global minimizing partition
S* is usually intractable because the group of partitions is
very large. The algorithm specifies an initial cluster mean
u® for each i = 1,..., N. Then, given a set of cluster means (&),
the k-means algorithm searches for a partition S(f) of the
earthquake epicenters such that [34]:

SO=1{x: I - pOIF <l -pu®I% 1 =1.,N} (3

The algorithm then updates the group of epicenters
for eachi =1, N and continues to iterate until the partition
ceases shifts [35]. The within-cluster sum of squares
(WCSS) is used as an indicator of the performance of
clustering efficiency (lower value for WCSS is better).

For the final phase of our strategy, linear regressions
between the local magnitude and moment magnitude
ranges will be performed. Using the most consistent
linear relationship, we convert the local magnitude My,
into moment magnitude M,,, for each available pair of
magnitudes. In this approach, the relationship between
the predictor variable and the response variable with SLR
can be described as a one-to-one relationship, while mul-
tiple linear regression is a many-to-one relationship. For
multiple linear regression, the relationship between X
and Y is expressed as:
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Y::BO+B1*)(1+ﬁ2*X2+"'+ ﬁk*Xk (4)

Similar to SLR, the regression coefficients are estimated
using the least-square approach so that fo, B, ..., Bp is
selected to minimize the residual sum of squares (RSS).
The residual is the difference between the expected magni-
tude value and the true magnitude value; y — y". y~ can be
replaced with Sy + Bix and the residual sum of the squares
can then be defined as:

RSS = (y; - (Bo + B1X1))2 +(h - (Bo + BlXZ))Z
+ot (- (ﬁo + ﬁan))2

We used earthquake data collected from the ENSN to
test the efficiency of our proposed method and to estab-
lish a reliable relation between the reported local magni-
tude (M) and the moment magnitude (M,,). To estimate
M,, for the region between 27-31°N and 31-36°E (see
panel (a) in Figure 2), displacement spectra of 138 earth-
quakes that occurred from 1998 and 2020 were used.
Such events occurred in various seismic areas of Egypt,
including the Red Sea, the Aqgaba, and Suez Gulfs, and
localized seismicity in the northern part of the Eastern
Desert. In addition, only stations with epicentral dis-
tances greater than 10 km were considered in order to
eliminate near-field effects and obtain a point-source
approximation [36]. The earthquake’s hypocentral para-
meters were taken from the annual ENSN bulletin.
Selected waveforms were captured by broadband stations
with good events-stations azimuth coverage and display a
higher signal-to-noise ratio and clear P-wave phase. Low-
pass filters with corner frequencies of 35 Hz were used to
prevent an aliasing effect. The analyzed seismograms were
corrected using an instrumental response for all stations.
In addition, the local site effect was ignored since all sta-
tions were in hard rock. The source parameters were esti-
mated by utilizing the Fourier spectra of the pure P-phase
displacement spectra of the integrated velocity data and
after applying instrumental and baseline corrections. Before
marking the corner frequency and long-period spectral
level, attenuation correction was applied, assuming the
well-accepted Q-value for region as suggested by ref. [37].

Next, the source term of displacement was processed
based on the refs [31,32] model, which utilizes circular
faults for small seismic events. Rock densities and P-
wave velocities were taken from the ref. [38] velocity
model. Following ref. [39] correction of the radiation pat-
tern for P-waves, a 0.52 value was utilized. Following the
procedure of ref. [40], the corner frequency (f.) and spec-
tral level (Q,) were determined for each P-wave source
spectra and used to calculate the seismic moment (M)
by fitting each P-wave displacement spectrum to the

®)
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Figure 2: (a) Selected events utilized to estimate M,,. (b—f) Examples of earthquake spectra for some ENSN stations.

theoretical displacement spectra model as expressed by from the theoretical to the observed range of displace-
equation (1). The nonlinear Levenberg—Marquard fitting ment spectra. The approach will match the spectra effec-

algorithm [41] was used to minimize the discrepancy

tively without having to compensate for the loss of the
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Figure 3: (a—f) Another examples of earthquake spectra for some ENSN stations. (a) KOT spectrum, (b) NAT spectrum, (c) RYAN spectrum, (d)
TAMR spectrum, (e) ZAF spectrum, and (f) ZNM spectrum.

frequency of the corner due to the flat component. In displacement spectra to the theoretical spectra at a
Figures 2 and 3, the best matches for the observed number of stations are plotted. Following the definition
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Table 1: Descriptive statistics of all machine-learning attributes

Variables Count min 25% 50% 75% max
Year 138 1998 2002.25 2013.5 2018 2020
Latitude °N 138 27.0 27.51188 27.91885 28.77 31.0
Longitude °E 138 31.0 32.86065 34.1091 36.0 35.34
Depth (km) 138 2.0 8.14 14.675 19.7225 30.35
M, 138 2.81 3.1725 3.9 4.2 6.12
M,, 138 1.94 2.5985 2.851 3.17 4.86

given in equation (6), the average seismic moment <My>
was calculated from the average logarithmic values
obtained at different stations as proposed by ref. [42].
1 ¥
<My> = antilogﬁz log My, (6)
i=1

where N is the number of stations used, and M, is the
seismic moment determined from equation (1) for the ith
event record. Then, the average moment of magnitude (M,,)
is calculated using equation (2) for that event. Table 1 shows
all variables in the description of the analysis.

Most studies developed scaling relationships between
various magnitudes (see for example, refs [25,26]), but did
not consider the spatial distribution of the events that were
utilized in the analysis. This sometimes causes large fitting
errors. Therefore, we need to cluster these earthquake data
into active seismic regions as outlined in the second step of
our proposed approach before establishing the scaling
relationships. In this step, every earthquake epicenter,
with coordinates being their latitude and longitude, is con-
sidered to be a point source in R%. However, since the Earth
is not flat, that assumption is not accurate. It is important
to view the latitude and longitude values in R as a mod-
ification of spherical coordinates.

Based on the Euclidean distance of our k-means algo-
rithm, we need to transform our database into a 3D
Euclidean coordinate. A convenient way to achieve this
transformation is to convert latitude and longitude values
into spherical coordinates, then into Euclidean coordi-
nates. Recall that a spherical coordinate in R is a triple
(r, 8, @), where r is the distance from the origin, 6 is the
radial angle in the xy-plane from the x-axis, and ¢ is the
angle from the z-axis. In our earthquake data, the long-
itude is already the appropriate 8 value and the ¢ value
(in degrees) is simply 90° minus the latitude.

Based on the data shown in Figure 2(a) and Table 1,
the spatial distribution of the data utilized to estimate M,,
is sparse and does not have enough events to obtain good
clustering results. To solve the problem, we incorporated
the data published in refs [17,18,43,44] in our database

for utilization in the second and third phases of our
hybrid clustered-regression approach. Spatial distribu-
tion of our collected data and incorporated data is given
in Figure 4. A manual check for duplicates was per-
formed. Table 2 provides descriptive statistics for our
final database attributes.

The application of the k-means algorithm requires
the number of clusters k to be known. Since our seismic
data are an unlabeled dataset, finding the optimal value
of kis a challenge. In this case, it is not certain how many
clusters are required. Therefore, we used a heuristic
approach called the Elbow method [18] to identify the
optimal k value from the relation between the number
of clusters k and the WCSS. For the elbow method, the
distance from each earthquake data point and the cluster
centroid to which it was assigned is determined by
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Figure 4: Final spatial distribution of seismic events utilized for
machine-learning clustering and regression analyses. M,, data are
incorporated from the current study and the data published in refs
[4,26,44,45].
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Table 2: Descriptive statistics of the final machine-learning attributes

Production of a homogeneous seismic catalog based on machine learning

— 1091

Variables Count Mean min 25% 50% 75% max
Year 390 2005.428 1998 2001 2003 2010.75 2020
Month 390 7.210256 1 4 8 1 12
Day 390 16.66923 1 10 17 24 31
Hour 390 10.61539 0 5 10 16 23
Minute 390 28.98205 0 13.25 29 43.75 59
Second 362 28.9863 0 13.125 29.055 45.4 59.7
Latitude °N 390 28.62951 27.01 27.81 28.59 29.2 30.98
Longitude °E 390 34.13487 31.08 33.8325 34.55 34.8 35.8
Depth (km) 379 10.40557 2 5 9 15.2 35
M, 390 2.969592 1.45 2.4375 2.89 3.285 6.12
M, 390 2.984205 1.07 2.7 3 3.3 5.5
the within-cluster sum-of-squares (inertia) using the WECSS =Y Y (x - p)? e

following equation:

The Elbow Method (WCSS Vs Number of Clusters)
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Figure 5: Comparison between WCSS (a) and Silhouette score
(b) methods for finding the optimal number of clusters k-value for
k-means algorithm.

k XiECk

where Cy represents cluster k, x; is a data point, py is the
centroid for cluster k.

A plot of k vs the sum of squares reveals an elbow
point in which the inertia starts descending much
more slowly and can be selected as the best value for k.
Figure 5(a) displays the approximate value of the sum of
the k-means squared distance for different values of k. In
the plot we can see a strong elbow at k = 5, which is the
best value for k. However, the elbow method is limited,
since the solution is heuristic, so we used the Silhouette
method [18]. That method measures how well each data-
point x; “fits” into its assigned cluster and how poorly it fits
into other clusters. This is a different way of looking at the
same objective. Denote a,; as the average distance from x;
to all other points within its own cluster k; the lower the
value, the better. On the other hand, b,; is the minimum
average distance from x; to points in a different cluster,
which has been minimized for all clusters. That is, com-
pute separately for each cluster the average distance from
x; to the points within that cluster, and then take the
minimum. The silhouette s(x;) is defined as ref. [18]:

by, — ay
s = max(ay, - by,) ®)

Figure 5b shows the average silhouette score com-
pared with results obtained by the elbow method for
k-means clustering of the sample data, while Figure 6a
and b show the results of the silhouette analysis with
the corresponding scores computed for every earthquake
data point in every cluster. The obtained silhouette scores
depicted in Figure 6(a—d) and (e-h) confirmed the number
of clusters that were obtained from the elbow method.
Accordingly, we chose five as the optimal value of k to
feed into the k-means clustering algorithm.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clusters. - The visualization of the data.
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In earthquake catalogs, M,, is not commonly consid-
ered the main magnitude, so understanding how certain
magnitudes respond to M,, in each area is a matter of
considerable concern due to seismic hazard estimation.
Usually regression analysis is utilized for that purpose.
However, Linear Regression Analysis consists of more
than just fitting a linear line through a cloud of data points
[18]. Before we begin supervised machine-learning regres-
sion analysis and modeling, it is recommended that we
perform an exploratory data analysis and plot the esti-
mated and collected magnitude data, as shown in Figure 7.

By examining these initial plots, we can quickly
determine that the data have a strong linear relationship
as shown in Figure 7(a). From the histogram plots shown
in Figure 7(b), we can clearly observe that both local
and moment magnitudes are normally distributed. An
example of this pattern is that the data are unimodal,
or the data have a single mode, which is marked by the
curve’s peak. On the other hand, the local magnitude
values are skewed to the right, as the histogram has a
middle peak that steadily tapers toward the right side of
the graph. This dataset is unimodal, as the mode closest
to the left of the graph is smaller than the mean or the
median. The mean for the local magnitude data is located
on the right side of the diagram and is higher than the
median or the norm. This graph shows that there are few
data points that are larger than the mode, which may be
representative of outliers in our database. Finally, box-
plots are used to test the presence of outliers in our data.
Box-plots (Figure 7c) are used to show the overall response
patterns for each magnitude type. They provide a useful
way to visualize the magnitude value ranges.

Figure 7(c) shows a variety of different box plot
shapes and positions were obtained for each magnitude
type. It is clear that both M; and M, suffer from the
existence of outliers. The observed outliers exerted a
large influence on the overall outcome of the regression
model parameter’s estimate.

3 Results and discussions

Through an analysis of earthquake source parameters,
local tectonics and basic earthquake mechanics can be
understood. To improve scaling between moment magni-
tude and local magnitude for earthquakes in the north-
eastern Egypt, the moment magnitude (M,,) estimates
were extended to lower magnitudes by using the spectral
analysis of P-waves from vertical component seismo-
grams. This dataset has been processed, analyzed, and
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interpreted to study the source parameters of local earth-
quakes occurring around northeastern Egypt. Only events
from at least three ENSN stations at different distances
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with reliable trace amplitude readings were selected. In
this way, a total of 138 events with reliable M; values
(Figure 2a) were chosen for M,, determination. The long-
period spectral amplitude of the source spectrum, which
could be related to the seismic moment, was utilized to
compute M,, following the definition of ref. [16]. Figures 2
and 3 display examples of P-wave Fast Fourier Transform
spectra fitted by the smoothed spectral [17] model at sev-
eral ENSN stations.

Displacement of the P-wave portion is considered to
be an approximate source time function and could be
integrated to obtain scalar moments at each station.
Multiple records are combined to give a good estimation
of the moment magnitude without correcting for the
source mechanism [18]. Table 1 summarizes the average
value of the obtained source parameters for small earth-
quakes in northeast Egypt.

Values of the M,, calculated using the method described
in this paper were compared with those obtained from
automatic moment tensor solutions and published in refs
[43-45]. The average deviation between the determined
M,, and that of the aforementioned studies is +0.085,
meaning that, on average, our moment magnitude was
slightly overestimated.

After finalizing the first phase and estimating the
moment magnitude M, the datasets were utilized to com-
pare the partitions with the distribution of recognized
active sources and were applied to areas that may not
be adequately captured by existing source models. In
addition, k-means cluster analysis was applied to the
hypocentral distribution of observed earthquakes in the
mapped region. Since the moment magnitudes of the uti-
lized events were lower than six (M,, < 6.0), we can con-
sider them to be point-source attributes. The obtained
clusters comprise sets of earthquake data that are similar
to other data in the same group, but dissimilar from data
in other groups, according to the Euclidean distance.
Based on results of the Elbow and Silhouette methods
shown in Figures 5 and 6, we picked five (k = 5) to be
the final number of clusters, as it was considered to be
the optimum number of clusters for which the highest
average silhouette score was taken from the value of
the silhouette of each cluster.

Our implementation of the k-means algorithm began
by assigning each seismic occurrence randomly to a
cluster, and then the mean center of each cluster was
determined. At this point, the Euclidean distance between
each occurrence and the initial clusters was determined
and reassigned to a new cluster centered on the closest
mean center. Then, the mean centers were recalculated,
which proceeds until the cluster elements stop changing.

Production of a homogeneous seismic catalog based on machine learning = 1095

Using the optimal number (k) as suggested by the Elbow
and Silhouette score methods (Figures 5 and 6), we were
able to group the earthquakes from the dataset into
five different clusters. We grouped the seismic activities
according to their geographic location. The latitude and
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Table 3: Descriptive statistics of database attributes with respect to number of clusters
Clusters Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4
Latitude Count 112 41 136 51 50
Min 27.95 27.01 27.03 27.76 27.33
Max 30.50 28.80 30.31 30.33 30.98
Longitude Min 32.14 31.97 32.34 31.08 32.64
Max 35.43 34.96 35.80 35.00 35.49
Year Min 1999 1999 1998 1998 1999
Max 2019 2019 2019 2020 2019
Month Min 1 1 1 1 1
Max 12 12 12 12 12
Day Min 1 1 1 2 1
Max 31 31 31 30 31
Depth Min 2.00 3.00 2.00 2.00 2.00
Max 25.00 35.00 29.90 28.40 20.00
M, Min 1.79 2.43 1.45 2.42 2.32
Max 5.40 4.44 4.59 5.00 4.00
M, Min 2.10 2.25 1.07 1.94 2.00
Max 5.50 4.28 4.60 4.40 3.90

longitude values were converted into Universal Transverse
Mercator coordinates for correct estimation of the Eucli-
dean distance and cluster centers or cluster centroid iden-
tification. Distribution of delineated clusters is shown in
Figure 8(a) and the frequency of each cluster is given in
Figure 8(b).

The Davies-Bouldin index [46] was used to test the
clustering performance and to evaluate the k-means model,
where a lower Davies-Bouldin (DB) index was correlated to
a model with a better separation between the clusters. This
index signifies the average “similarity” between clusters,
where the similarity is a measure that compares the dis-
tance between clusters with the size of the clusters. As
shown in Figure 8(c), the lowest (DB) index obtained
corresponded to the five clusters, which confirmed
the appropriateness of the utilized value of number of
clusters for the k-means model and indicated a better par-
tition of seismic activity zones affecting the mapped area.

The obtained clusters are in accord with various
seismotectonic studies of Egypt (see for example, refs
[27,38,47,48]). The clusters that were found may be linked
to three main seismotectonic areas. The first region is the
Gulf Suez, which comprises the second (cluster;) and fourth
(clusters) clusters. The area is the location of the March 31,
1969, Shadwan Island event with a surface-wave magni-
tude Ms = 6.8 in the mouth of the Gulf of Suez. The
majority of the focal mechanism solutions of reported
events indicate that the current tectonic activity had a
normal fault mechanism in this region. Events of this
region represent 23% of our database. The second region,

which is known as the Gulf Agaba, is an area of extreme
activity situated along the main boundaries of the tectonic
plate. Its major earthquakes were triggered by the dis-
placement of this transform boundary. In this area, the
largest recorded earthquake (M,, = 7.2) occurred on
November 22, 1995. This area’s events represent 42% of the
data in our database, and they were part of the first
(cluster,) and fifth clusters (cluster,). The last area contains
the largest percentage of events in our database and is
known as the Northern Red Sea source region. The fault
plane solutions have a normal fault mechanism with a
minor strike-slip component that is compatible with the
Gulf’s extensional rhomb-shaped grabens system. The
number of seismic activities available in each region
varies considerably. The minimum number is observed
in the second clustered zone with 41 delineated events,
while the maximum number of 136 delineated events was
obtained for the fourth zone. Table 3 provides concise
statistics for each cluster.

The last stage of our multistrategy approach consists
of a supervised learning process following previous clus-
tering-based partitioning of the magnitude data. The M,,
versus M; relationships for the delineated five cluster
zones were determined.

The most common approach to perform homogeniza-
tion of different magnitude scales into a single magnitude
scale and to compare various measures of magnitude is
through a regression analysis that utilizes the least-squares
method [49]. However, its basic assumptions are rarely
satisfied in practice [15]. Hence, refs [15,22] recommend
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that if the absolute variance of the data values is not
understood, which is always the case in magnitude esti-
mates, various regression forms should be performed and
compared. Therefore, the M; magnitude scale can be con-
verted into an M,, magnitude scale by building empirical
relationships between the correlated earthquake events.

Uncertainties related to various forms of magnitude
play a critical role during transformation of magnitudes
into a single magnitude scale. The utilized dataset also
suffers from the presence of outliers (see box-plots in
Figure 7c). Possible causes of observed outliers in mag-
nitude values were not fully identified. The estimated
local magnitude values that were extracted from the
ENSN bulletin essentially depend on amplitude pickings,
which occur over a long period of time at varying levels
of seismic noise at a given station, with different levels
of noise occurring at different stations. Moreover, the
moment magnitude estimate also relies upon the impulse
response of the medium, which was never perfectly eval-
uated and may be highly sparse from one seismic event to
another, depending on the event’s location versus the
seismic stations and earthquake source depth.

Although there is no clear description or definition of
the outlier, outliers are often considered as observations
that do not fit the trend of the other observations. It is not
usually a concern if the outlier is merely an unusual
finding made from the tail of a regular distribution; how-
ever, if the outlier comes from a non-usual calculation
error or any other breach of typical ordinary least-square
rules, then it undermines the integrity of the regression if
a non-robust regression method is used [50].

Table 4: Regression parameters for the M,,—M, relationship

Production of a homogeneous seismic catalog based on machine learning =— 1099

To study the effect of the observed outliers and to
develop a robust regression method, the RANdom SAmple
Consensust (RANSAC) method [51] was applied to our
study. RANSAC is a non-deterministic algorithm that par-
titions the whole input sample data into a collection of
noise-prone inliers and outliers, e.g., due to incorrect mea-
surements or invalid data hypotheses. Therefore, the resulting
model is derived from established inliers only. The algorithm
creates and validates a linear model based on the Minimum
Least-Square (LMS) approach by extracting noisy samples
(i.e., outliers), choosing the appropriate features (i.e., descrip-
tors), deriving an LMS model from the training set samples,
and finally, predicting the behavior of the test set samples
while using the principle of applicability domain [51].

To develop the M,, versus M; empirical relation, the
RANSAC algorithm is utilized to estimate regression coef-
ficients of the linear model by randomly sampling the
observed earthquake magnitude data in each cluster to
find the optimal fit result and implementing a voting
scheme [51]. The implementation of this voting scheme
is based on two assumptions: the noisy features will not
vote consistently for any single model (few outliers), and
there are enough features to agree on a good model (few
missing data). Regression fitting is performed in two step-
wise manners that are iteratively repeated. In the first
step, a subset containing minimal magnitude data is ran-
domly selected from the input earthquake dataset. A
linear LMS fitting model and the corresponding model
coefficient parameters are computed using only the ele-
ments of this magnitude subset. In the second step, the
algorithm checks which elements of the entire magnitude

Regression Zone Slope Intercept R? rms error
Linear 1 1.0043(+0.063) -0.27026(+0.028) 0.78 0.26
RANSAC 1 1.1379(+0.047) —-0.70964(+0.020) 0.99 0.07
GOR 1 1.0618(+0.063) —-0.46231(+0.003) 0.97 0.11
Linear 2 1.0820(+0.034) -0.53715(+0.096) 0.60 0.26
RANSAC 2 1.0592(+0.094) —-0.42787(+0.076) 0.97 0.07
GOR 2 1.1354(+0.037) —0.71943(+0.014) 0.97 0.08
Linear 3 0.9283(+0.053) 0.02777(+0.013) 0.90 0.20
RANSAC 3 1.0368(+0.092) —0.32325(+0.089) 0.96 0.12
GOR 3 0.9880(+0.013) —-0.15752(+0.018) 0.95 0.10
Linear 4 0.8811(+0.095) —-0.16015(+0.088) 0.80 0.24
RANSAC 4 0.8399(+0.012) —0.31575(+0.058) 0.91 0.14
GOR 4 0.9594(+0.066) —0.09798(+0.093) 0.92 0.17
Linear 5 1.0554(+0.620) -0.40013(+0.321) 0.66 0.24
RANSAC 5 1.0776(+0.039) —0.45901(+0.022) 0.98 0.06
GOR 5 1.0722(+0.075) —-0.44981(+0.091) 0.96 0.05
Linear NE-Egypt 0.9559(+0.903) —0.08721(+0.162) 0.84 0.23
RANSAC NE-Egypt 1.0854(+0.039) —-0.51351(+0.082) 0.98 0.08
GOR NE-Egypt 1.0122(+0.0930) -0.26823(+0.163) 0.97 0.10
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Residuals vs Fitted for RANSAC Regression of (c/ustay)
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Figure 10: (a) Residuals for each M,, M relationship for northeastern Egypt cluster zones derived from SLR, GOR, and RANSAC regression
algorithms for all clusters and first zone. (b) Same Residuals for each M,, M relationship for second and third cluster zones. (c¢) Same
Residuals for each M,, M, relationship for fourth and fifth cluster zones.

dataset are consistent with the model instantiated by the
estimated model parameters that were obtained from the
first step. A data element will be considered an outlier if it
does not fit the fitting model instantiated by the set of
estimated model parameters within some error threshold
that defines the maximum deviation attributable to the
effect of noise [52].

The RANSAC regression relationships established
between M, and M; for the various cluster zones are
shown as blue regression lines in Figure 9a—f and Table 4.
To check the rationality of the derived conversion relations
between magnitude types, we applied ordinary least squares
(OLS) and the GOR (see the red and green regression
lines in Figure 9a-f). We assumed that the ratio
between the variable variance (1), which was not
known for our dataset, was equal to one, based on the
regulations described in ref. [22], assuming that the
error variances of different magnitudes were approxi-
mately equal.

When comparing the different regression metrics, we
can see that the RANSAC algorithm can boost our model
scores when the dataset includes a significant number of
outliers. In this specific case, all the regression metrics
scores improved significantly. The difference is particu-
larly observable in the R? score, which is a statistical
indicator reflecting the percentage of deviation for a
dependent variable described by an independent vari-
able. It reached almost 99% with the RANSAC regression
model. The good agreement between the observed and
estimated magnitudes provides greater confirmation of
the results and could be easily used to validate the
accuracy of the proposed relations for the earthquake
early warning system in the northeastern portion of
Egypt. It was also observed that the relations derived

from this RANSAC technique had significantly lower
errors in their regression parameters than those of the
corresponding relations established from other techni-
ques, as shown in Table 4, for all of the computed
regressions.

However, the R? score is not always enough to deter-
mine which model is a better fit for the results. Additional
error analyses are required, given the distribution of the
residuals along the fitted line. We added more measure-
ments, including the scattering residual analysis, to com-
plete the predictive analysis on the goodness-of-fit of our
regression models. Residuals will show a random scatter,
as was already mentioned. Prediction error analysis for
the three regression models is illustrated in Figure 10a—c.

It is very clear that most of the points in the residual
plot are distributed randomly along the horizontal axis
(shown with a red line) for RANSAC and GOR; hence,
those two regression models are suitable for predicting the
conversion relations between the two types of earthquake
magnitude. This also suggests that for any possible regres-
sion analysis, grouping the used collection by considering
the spatial distribution of earthquakes will vastly enhance
the creation of a suitable scaling relationship that can be
applied to homogenize the magnitude of the earthquake.

Finally, the proposed relationships were compared
to those provided by other authors in order to analyze
the validity of the established relations. The results of
this study are generally consistent with the observations
reported by other authors, although some differences in
value were revealed. Meanwhile, there were some differ-
ences in the values among the relationships. As geo-
graphic classification of seismic events was not discussed
by other researchers, this could preclude the direct use of
existing scaling relationships by other writers in a similar
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area such as the Gulf of Agaba. This should be used to
highlight the fact that the scaling relationships in region
cannot be used explicitly with that of other regions and
need to be investigated further.

4 Conclusion

The purpose behind the conversion of different magni-
tude scales into a single moment magnitude M,, lies in
the fact that it remains unsaturated throughout the entire
magnitude scale and achieves an accuracy that is two to
three times higher than that of other magnitude types.
Linear regression models are heavily impacted by the
presence of outliers, which can come from extreme values
of noise or erroneous measurements. The RANSAC algo-
rithm can be used to remove sets of points that do not
follow the dominant pattern of the data in the models,
and as a robust machine-learning algorithm, RANSAC
improves the model’s performance by estimating the para-
meters with a high degree of accuracy, even when a sig-
nificant number of outliers are present in the dataset.
RANSAC usually performs poorly when the number of
inliers in the dataset is less than 50%. In addition, when
the noise threshold is too small, the estimated parameters
tend to be unstable. Finally, this algorithm removes data
from the model, but loss of data should be avoided when
developing models.
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