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Abstract: Applications of unmanned aerial vehicles (UAVs)
have proliferated in the last decade due to the technological
advancements on various fronts such as structure-from-
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motion (SfM), machine learning, and robotics. An impor-
tant preliminary step with regard to forest inventory and
management is individual tree detection (ITD), which is
required to calculate forest attributes such as stem volume,
forest uniformity, and biomass estimation. However, users
may find adopting the UAVs and algorithms for their spe-
cific projects challenging due to the plethora of information
available. Herein, we provide a step-by-step tutorial for
performing ITD using (i) low-cost UAV-derived imagery
and (ii) UAV-based high-density lidar (light detection
and ranging). Functions from open-source R packages
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were implemented to develop a canopy height model
(CHM) and perform ITD utilizing the local maxima (LM)
algorithm. ITD accuracy assessment statistics and valida-
tion were derived through manual visual interpretation
from high-resolution imagery and field-data-based accu-
racy assessment. As the intended audience are beginners
in remote sensing, we have adopted a very simple metho-
dology and chosen study plots that have relatively open
canopies to demonstrate our proposed approach; the
respective R codes and sample plot data are available
as supplementary materials.

Keywords: single tree detection, CHM, LM, drones, UAV
tutorials, forestry data analysis, forest remote sensing

1 Introduction

Monitoring and quantifying the canopy growth, chances
of plant diseases, and changes happening within forest
structures — especially at tree levels —on a timely basis
are crucial for optimizing yields and for determining the
response of forests to climate anomalies. Although tradi-
tional field-based methodologies provide us with detailed
data, these tasks can be expensive, time-consuming, and
labor-intensive, specifically for monitoring and measur-
ing large areas of forested landscapes [1-6]. As a conse-
quence, there exists a need to tap into state-of-the-art
remote sensing methodologies, in particular unmanned
aerial vehicles (UAVs).

The past decade has witnessed the proliferation of
UAV applications using both optical and lidar (light
detection and ranging) in the forestry sector due to the
advancements in sensors, platforms, and software [7]. In
this regard, individual tree detection (ITD) can be con-
sidered as one of the most important applications using
UAVs as it can provide information on numerous forest
structural attributes — such as tree height, crown width,
diameter at breast height (dbh), aboveground biomass,
forest uniformity, and wood quality [2-5,8]. For ITD,
algorithms such as local maxima (LM), marker-controlled
watershed (MCWS) algorithm, template matching (TM),
valley following (VF), scale-space (SS) theory, and Markov
random fields (MRFs) have been employed previously and
found to be applicable in different studies [9-18]. Simi-
larly, ITD has been applied using various spatial, spectral,
and temporal resolutions [19-22].

The wide array of algorithms and approaches for
UAV-based ITD can be challenging for users of UAV
data without a strong background in remote sensing
and/or programming. Here, we intend to provide a step-
by-step easy-to-implement tutorial on ITD applied to
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canopy height models (CHM) derived through (i) a low-
cost UAV (with RGB bands) and (ii) high-density lidar.
For grasping the ongoing advanced applications of UAV-
based ITD and for state-of-the-art ITD algorithms, please
refer to [10,19,23-27]. For the purpose of this study, we
made use of the lidR and rLiDAR packages in R Studio,
built on the LM algorithm [9,28-30]; the open-source
codes are included as a supplementary file, though each
function used is listed in detail within the Section 3. R
programming was chosen as the medium since it is one of
the most simple and widespreadly used programming
languages — which is also open source. For getting started
with R programming, please refer to refs. [31,32].

Since it is uneconomical to acquire frequent field
inventory data for small-scale studies, we have presented
an option to perform tree detection accuracy assessment
statistics based on manual visual interpretation from
high-resolution imagery, which has proved to be an effi-
cient strategy for open canopy forests [2,5]. In addition,
for the high-density lidar data, we have performed an
accuracy assessment using field data. In a similar theme,
given that the objective of the study is to help more early-
stage researchers and forest managers without technical
remote sensing experience understand the benefits and
implementation of ITD, a very simple-to-implement meth-
odology is presented here with the study plots having
relatively open canopies. Nevertheless, it should be noted
that for denser canopy forests with high levels of crown
overlap, the proposed approach might need to be modified
and we recommend referring to [5,33] for advanced users.

2 Data acquisition, processing, and
download

2.1 UAV-SfM data

For this tutorial, we considered two study sites where
point clouds were obtained using different techniques
(see Figure 1). In the first study site, point clouds were
built from a UAV carrying a RGB sensor through the
stereo matching of multiple overlapping aerial images.
This method is referred to as the SfM technique, and it
helps solve issues associated with the geometry, camera
positions, and orientations [23-26]. For this study site,
trees were not georeferenced in the field. This is shown
as a low-cost alternative that is useful for multiple appli-
cations and for regions where resources for purchasing
sensors or extensive field data collection are not feasible,
although limitations related to accuracy should be
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Figure 1: The study sites and respective point clouds from the UAV surveys. (a) United States; (b) Texas; (c) Florida; UAV surveyed area of
(d) study site 1 and (e) study site 2; example of theSfM point cloud for the (f) study site 1 in Texas and the (g) study site 2 in Florida.

considered [25,34]. The site is approximately 700 ha
located at the E.O. Siecke State Forest, East Texas, and
is managed by the Texas A&M Forest Service.

At this site, we selected an area of 11.95 ha for this
study, which was dominated by the oldest slash pine
(Pinus elliottii Engelm.) plantations. The aerial imagery
was acquired in August 2020 using a DJI Mavic Pro
quadcopter. The RGB imagery was collected using the
Pix4Dcapture flight planning app (https://pix4d.com/)
with the specifications described below (see Table 1).
Pix4D Mapper was used for initial image processing,
point cloud generation, and orthomosaic creation. For

Table 1: UAV-SfM parameters and related specifications

Parameters Specifications
Ground spatial resolution 3.47 cm/px
Sensor type 1/2.3” (CMOS)
Sensor resolution 12.71 MP
Camera Angle 60°

Flying altitude 91.4m

Front overlap 80%

Side overlap 75%

the point cloud densification, an image scale of ¥4 and
an optimal point density were used. The output point
cloud was generated in the LAS format. The raster digital
surface model (DSM) was created using inverse distance
weighting method.

2.2 UAV-lidar data

The second study site was surveyed by a UAV-lidar
system and had trees precisely mapped in the field, repre-
senting a best-case scenario regarding point cloud genera-
tion and field validation. The site is the Ordway Swisher
Forest Dynamics Plot (OSFDP) at the Ordway-Swisher
Biological Station in Florida. The station is operated as
a long-term research facility by the University of Florida
and is part of the Global Earth Observation Network
(ForestGEO) (https://forestgeo.si.edu/). The plot has an
area of 23.04 ha established and mapped from March
2019 to February 2020. All the trees (dbh > 1cm) were
tagged and had their species, dbh, height, status (living
or dead), crown light exposure, and position recorded.


https://pix4d.com/
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Tree mapping was done by first locating each one into a
40 by 40 m quadrat and measuring the azimuth (Suunto
K-14 sighting compass) and distance with a metal tape to
the georeferenced quadrat center point. The quadrat
center point geolocation was acquired in a real-time kine-
matic (RTK) survey using two survey-grade GPS receivers
tape to measure antenna height above the monument, a
tripod for the base, a bipod for the rover, a range pole,
and a Topcon Data Collector. The dominant species were
longleaf pine (P. palustris) and turkey oak (Quercus leavis
Walter). The plot measurements are publicly available at
the ForestGEO website under request (https://forestgeo.si.
edu/explore-data/ordway-swisher-termsconditionsrequest-
forms) and with agreement to the use terms.

The lidar data were collected in June 2019 with the
GatorEye Unmanned Flying Laboratory (http://www.
gatoreye.org/). This system is composed of a DJI M 600
Pro hexacopter with a Phoenix Scout Ultra core, which
has a STIM300 inertial measurement unit (IMU) coupled
with a differential GNSS antenna and integrates a Velodyne
Ultra Puck 32c, a 24 MP visual camera, and a Headwall
Photonics Nano hyperspectral camera. The lidar dense
point clouds (~288 pts/m?) were acquired from three
separate flights 80 m apart, following terrain at 80 m

Table 2: UAV-lidar parameters and related specifications

Parameters Specifications
No. of lasers in Lidar Sensor 32

Max. range of individual laser 220 m
Forward-backward FOV 40°
Side-to-side FOV 360°

Pulses per second 600,000

Returns per pulse Dual (strongest and last)

(@)
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above ground level and at a ground speed of 10 m/s
(see Table 2). Flightlines were post-processed using the
GatorEye multi-scale post-processing (GMSPP) workflow
(v. 229 detailed at http://www.gatoreye.org/).

3 Workflow

Herein, we walk you step-by-step through the process of
ITD from the 3D point clouds. This section is further
divided into three subsections: (i) CHM generation, (ii)
Tree detection, and (iii) accuracy assessment. Figures 2
and 3 show the overall workflow and process. Full-length
open access codes and step-by-step information for acces-
sing and downloading the data are shared as a pdf file
(ITD_Tutorial_2021_RCodes; from here referred to as S1)
in the supplementary section. Hereby, we encourage first-
time users to download the sample point cloud UAV-SfM
data and UAV-lidar data available, for practice purposes
and follow the R coding instructions in S1 on the side as
you progress on with this section. The tutorial was built
using the R packages rLiDAR 0.1.1 [29] and 1idR 3.0.4 [35]
and their dependencies. Any queries or concerns can be
directly communicated with the authors using the google
form (https://tinyurl.com/ITD-Tutorial-2021-Feedback),
which we have created for troubleshooting.

3.1 Canopy height model (CHM) generation

CHM refers to the distance between the ground level and
the topmost point of the objects (which are treetops in our

Figure 2: Graphicalillustration of ITD; (a) drone survey on a forest, (b) top view of the forest, (c) side view of the forest, and (d) top view of a
treetop; herein, top view images resemble what we would observe in a UAV-captured imagery.
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DSM (which represents features on the earth’s surface) or
(ii) height normalizing the point cloud using the DTM
elevation values and deriving the elevation model from
the topmost point cloud returns.
We used the functions available in the lidR package
[35] for CHM generation and one sample plot of 900 m?
(30 m x 30 m) at random in each study site as examples
for processing. The plot polygons are included in the data
sources described in Section 2.1 and 2.2 in “.shp” format
that you can download (as per instructions provided in
Section 2.3) and load into R Studio.
¢ Step 1- Loading the data: Use the readLAS function to
load the 3D point clouds. This function can read both
“.las” and “.laz” files (lines 6 and 8 of S1). Specifications
and standards of the “.las” format can be found in http://
www.asprs.org/a/society/committees/standards/LAS_1_
4_r13.pdf. For files that are excessively large to be loaded
at once, the readLAScatalog function can be used (for
example, in case if you are loading data for the entire
study area all at once). This function is used as a repre-
sentation of one or multiple .las files and works with
several lidR functions for processing the point clouds
without loading it into R (details on the LAScatalog can
be found here: https://cran.r-project.org/web/packages/
lidR/vignettes/lidR-LAScatalog-class.html).

¢ Step 2 - Clipping the area of interest: Use the clip_roi
function to clip a point cloud. This function allows clip-
ping the point cloud based on a given geometry, such
as shapefiles. Clipping can help in the visualization of a
region of interest (ROI) or for increasing processing
efficiency. We clipped one of the example-plots in
each site as the ROI In this example, we created a
3 m buffer (lines 14 and 15 of S1) around the plot before
clipping (lines 18 and 19 of S1) with the purpose of
avoiding edge effects in the following processes.

¢ Step 3 - Classifying ground points: Use the classify_
ground function to classify the points that represent
the ground. This function changes the “Classification”
attribute of points that represent the ground to the
value of “2” following the.las file formatting standards
(see step 1). For lidar point clouds, there is still an
option for using only the last returns in this process
as those are most likely the ones from the ground. We
can assess the quality of the ground classification by
plotting the point cloud by its classification values
(Figure 3b; lines 31 and 32 of S1) or directly assess the
generated DTM in the next step. If improvements are
necessary, the parameters of the algorithm can be
changed empirically or based on previous publications
in similar types of forests. Furthermore, lidR provides
other ground filtering algorithms such as the CSF [36].

Individual tree detection using UAV-lidar and UAV-SfM data
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The points classified as ground returns are used in the
next step for generating the DTM.

¢ Step 4 - Creating a DTM: Use the grid_terrain function

for creating the DTM. This function creates a rasterized
surface representing the terrain by interpolating the
ground points and has several algorithms available.
Herein, we used the k-nearest neighbor with inverse
distance weighting (lines 37 and 38 of S1). The cell
size of the DTM can be defined as a function of the point
density [37], empirically, or based on previous works in
similar types of forests. Given the low tree density in
most of the area and the high density of the point
clouds (especially for the lidar dataset), we defined
the cell size to be 0.25 m. The quality and consistency
should be assessed in this part on a case-by-case basis
as the subsequent process relies on it. For instance, you
can use the function plot dtm3d as a reference to
visually assess the consistency of the DTM (Figure 5).

¢ Step 5 - Height normalization of the point cloud:

Use the function normalize_height for normalizing the
point cloud elevation values. This algorithm subtracts
the DTM elevation (z value) from the elevation of
all points. After this process, the lowest returns (i.e.,
ground returns) in the point cloud are set to ~0, and the
point cloud elevation values (z) will represent the true
height of the objects (lines 43 and 44 of S1).

¢ Step 6 - Creating a CHM: Use the grid_canopy func-

tion for creating the CHM. This function creates a ras-
terized surface using the upper returns of the point
cloud and has several algorithm options (refer to lidR
package description for more details; https://cran.r-
project.org/web/packages/lidR/index.html). Herein, we
used the method p2r (point to raster) that holds
the highest value for a user-defined voxel and interpo-
lated them into a rasterized surface (lines 48 and 49
of S1).

3.2 Individual tree detection (ITD)

One of the most well-known, effective, and simplest
methods for ITD is the LM algorithm, which is incorpo-
rated in this study. Within the LM algorithm, the treetops
are associated with the high-intensity LM of the imagery,
and we can further apply smoothing techniques and
height thresholds to get rid of spread-out tree branches
and contorted snags which otherwise might create spur-
ious LM [1,2,28,29,38]. For our study, we used a smooth-
ing window size (SWS) of 5 x 5 pixels as advised for open
canopies [1,2,5]. Additionally, a fixed tree window size
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Figure 5: Processing steps for point cloud height normalization using the SfM and lidar-derived point clouds from the study sites in Texas
and Florida (a and b). Starting from the raw point cloud with elevation values (a1 and b1), the ground points are classified (a2 and b2). By
subtracting the DTM from the point cloud elevation values (a3 and b3), a normalized point cloud with true height values is obtained

(a4 and b4).

(TWS) of 7 x 7 and 5 x 5 pixels for the Texas and Florida
sites, respectively, was employed as it allows us to define
the boundary within which the algorithm has to look for
treetops. For more information on optimizing SWS and
TWS combinations for enhancing tree accuracy based on
canopy density, please refer to [5].

¢ Step 7 - Smoothening the CHM: We used the function
CHMsmoothing to smoothen the CHM (see Figure 6).
This is an optional but commonly used process that
can improve the treetop detection algorithm results
as it helps eliminate spurious LM (e.g., caused by
branches) [1,2,28,29,38]. This function uses an image
convolution kernel allowing the application of mean,
median, or gaussian-based effects. We used the “mean”
option as often applied using a 5 x 5 window size. Note
that the mean filter changes the pixel values, and it
may be needed to verify it when assessing the height
of the objects (lines 53 and 54 of S1).

e Step 8 — Detecting the treetops: The function Find-
TreesCHM, which employs an LM filter, was applied
to detect the treetops and retrieve their heights (see
Figure 6). The LM are found using a user-defined fixed
window. It is also necessary to define a minimum height
threshold to exclude non-tree features. We defined a7 x 7
grid cells window for the point clouds from the treetop
detection. Furthermore, a 3 m minimum height threshold
was set for avoiding shrubs and dead trees (lines 56 and
57 of S1).

LM filters are a well-known, widely used, simple, and
effective method for ITD. It is important to keep in mind
that it is a raster-based method and allows the identifica-
tion of trees that are in the upper canopy strata. For more
complex forest environments such as areas with steep
slopes or dense canopies, alternative algorithms —such
as TM or VF or deep learning — and approaches or their
combinations should be tested [19,39-44]. Furthermore,
it is worth noting that most of the functions used here
have optional parameters that might be different depend-
ing on the forest structure and must be tested based
on inferences drawn from previous studies [2]. The R
packages presented here also have several other inter-
esting features — for filtering (see lidR filter_poi function),
processing large datasets (see lidR catalog_apply func-
tion), delineating crowns (see rLiDAR forestCAS func-
tion), segmenting tree crowns (see lidR segment_trees
function), and building 3D forest representations (see
rLiDAR LiDARForestStand function) — that we encourage
the users to explore.

3.3 Accuracy assessment

For validation purposes, we compared the LM-based ITD
results with the manual interpretation of tree counts
made from the high-resolution imagery for the UAV-
SfM dataset. This is the most common method used for
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Figure 6: Data processing and CHM creation (al and b1); smoothened CHMs (a2 and b2); application of LM filter to detect the treetops
(a3 and b3). The CHMs were generated from the SfM (a1-3) and li-dar-derived point clouds (b1-3) obtained in UAV surveys in Texas and

Florida sites, respectively.

regional-level studies as the acquisition of concurrent
data is not economically viable for small-scale land-
owners. For the UAV-lidar data, we used the position of
the trees in the field as a reference for comparison. A total
of 10 random plots of 900 m? (30 m x 30 m) in each site
were considered for this study. Accuracy metrics calcu-
lated include true positive (TP, correct detection), false
negative (FN, omission error), false positive (FP, commis-
sion error), recall (r), precision (p), and F-score (F); equa-
tions are listed below Equations (1)-(3) and for more
information on the individual metrics, please refer to
[45-47]. Herein, we can obtain a measure of trees
detected from recall; precision gives a measure of cor-
rectly detected trees; F-score provides a measure of the
test’s accuracy by taking the harmonic mean of recall
and precision.

r = TP/(TP + FN),
p = TP/(TP + FP),

ey
)

F = 2xrxp/(r + p). 3

Overall, the F-scores were approximately 0.8, and
omission was higher than commission errors (see Table 3).
In the Texas site, 49 of the 64 reference trees were correctly
detected. The omission and commission errors in this site
were 24.6 and 18.4%, respectively. However, in the Florida
site, 70 of the 87 reference trees were correctly detected
with an omission error of 19.5% and commission error of
18.3%. It should be borne in mind that the tree detection
accuracy is highly dependent on the forest structure, topo-
graphy, and canopy characteristics. Homogeneous forests,
plantations, and woodlands usually will present higher
accuracies as the same window size will work in a similar
way throughout the area [2,5]. It is highly recommended
that the user bases their accuracies on previous works
in the same type of forests. To improve the accuracy
and F-score, it is possible to vary the smoothening and
LMF window sizes as well as check the consistency of
the DTM.
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Table 3: Accuracy assessment statistics for ITD using LiDAR and structure from motion (SfM)-derived point clouds

Source Subplots Detected Reference FP FN TP Recall Precision F-score
UAV-SfM P1 3 4 1 2 2 0.5 0.67 0.57
(Texas) P2 10 10 2 2 8 0.8 0.8 0.8
P3 1 1 0 0 1 1 1 1
P4 7 7 1 1 6 0.86 0.86 0.86
P5 4 6 1 3 3 0.5 0.75 0.6
P6 5 5 1 1 4 0.8 0.8 0.8
P7 7 9 1 3 6 0.67 0.86 0.75
P8 11 12 2 3 9 0.75 0.82 0.78
P9 9 8 2 1 7 0.88 0.78 0.82
P10 4 3 1 0 3 1 0.75 0.86
Overall 61 65 12 16 49 0.75 0.8 0.78
UAV-Lidar P1 10 11 2 3 8 0.73 0.8 0.76
(Florida) P2 8 6 2 0 6 1 0.75 0.86
P3 4 6 1 3 3 0.5 0.75 0.6
P4 8 8 2 2 6 0.75 0.75 0.75
P5 9 7 2 0 7 1 0.78 0.88
P6 9 9 2 2 7 0.78 0.78 0.78
P7 9 8 2 1 7 0.88 0.78 0.82
P8 13 13 2 2 11 0.85 0.85 0.85
P9 6 8 0 2 6 0.75 1 0.86
P10 10 11 1 2 9 0.82 0.9 0.86
Overall 86 87 16 17 70 0.8 0.81 0.8

) (h)

Figure 7: (a) Species classification; (b) tree crown delineation; (c) fruit/yield estimation; (d) biomass estimation; (e) habitat structural
assessment; (f) forest uniformity; (g) forest health/pest monitoring; and (h) disturbed forest and recovery tracking.
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4 Immediate applications and
conclusion

As a tutorial-type short paper, this article is intended to
expose the lay people to the applicability of UAVs for ITD
and its applications in forest conservation, management,
and policy analysis sectors. Our results underscore the
potential of simple and easy-to-apply algorithms in com-
bination with drone-derived CHMs for performing ITD in
open canopies. By making 3D point cloud data freely
available and including open-source R programming
codes along with a description of the workflow imple-
mented, we expect the task of ITD to be less daunting
and highly accessible to a broad audience. Thus, the
study contributes to the expansion of the use of point
cloud data, not only by scientists or professionals who
are in the remote sensing field, but also to those who are
unaware of the possibilities and multiple available resources
for processing point cloud data. Furthermore, it can be a first
step for early career remote sensing students or anyone initi-
ating on point cloud data processing. After obtaining a
strong understanding of the ITD methodology and having
successfully executed the workflow presented for per-
forming ITD, the users would be in a position to ven-
ture into various applications of ITD within the field of
forestry, conservation, and management spectrums (see
Figure 7). Nonetheless, it should be borne in mind that
the proposed approach employing LM is only one among
many approaches/technologies to do ITD. LM was pro-
posed due to its simplicity over alternative methods,
and as reported, there were no specially accurate results
in detecting trees presented. A list of references to
related research articles and open-source R program-
ming packages is also provided in the reference section
[19,29,35,39,48-57] for encouraging public participation.
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