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Abstract: The increase of sulfide (S2−) during the water
flooding process has been regarded as an essential and
potential risk for oilfield development and safety. Kriging
and stochastic simulations are common methods for
assessing the element distribution. However, these tradi-
tional simulation methods are not able to predict the
continuous changes of underground S2− distribution in
the time domain by limited known information directly.
This study is a kind of attempt to combine stochastic
simulation and the modified probabilistic neural network
(modified PNN) for simulating short-term changes of S2−

concentration. The proposed modified PNN constructs
the connection between multiple indirect datasets and
S2− concentration at sampling points. These connections,
which are treated as indirect data in the stochastic simu-
lation processes, is able to provide extra supports for
changing the probability density function (PDF) and
enhancing the stability of the simulation. In addition,
the simulation process can be controlled by multiple con-
straints due to which the simulating target has been
changed into the increment distribution of S2−. The actual
data test provides S2− distributions in an oil field with

good continuity and accuracy, which demonstrate the
outstanding capability of this novel method.

Keywords: machine learning, stochastic simulation, sul-
fide, chemical estimation, multiple constraints

1 Introduction

With water flooding development in the oilfield, a series
of security issues have been caused by the continuous
increase of sulfide (S2−) concentration. Obtaining the
S2− distribution is an essential foundation of taking pre-
cautions for high-benefit, low-risk, and long-term oilfield
development. Previous studies have found that whether
it is initially injected into seawater or freshwater (gradu-
ally back-injection the produced water), varying degrees
of reservoir souring will occur in water flooding develop-
ment [1]. Sulfate-reducing bacteria (SRB) play an impor-
tant role in the generation of S2−, which is the main
reason for reservoir souring during water flooding [1–3].
In the process of dissimilatory sulfate reduction, SRB
typically uses organic components as the electron donors,
uses sulfate ( −SO4

2 ) as the terminal electron acceptor for
respiration, and generates energy with the production of
sulfide [2,3]. The existing forms of the sulfide ion (H2Saq,
HS−, and S2−) in the aqueous solution will convert to each
other depending on the pH of the solution, where fraction
coefficients are commonly calculated from the pH of the
solution and the ionization constants [4]. In oilfield sys-
tems, the concentration of sulfide in the water phase is
usually tested by the iodometric method, which includes
the sum of these forms. Hence, the sulfide represents the
sum of three forms in the water phase with the chemical
formula S2− in this study.

Many negative effects have been caused by the con-
tinuous increase of sulfide concentration in the oilfield
system. Corrosion of mild steel is a common effect in the
environment of H2S aqueous solution, which causes great
economic losses in the oilfield system [5]. A possible
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mechanism can be simply written as Fe(s) + H2S →
FeS(s) + H2 [6]. In addition to the corrosion of petroleum
pipelines and storage tanks, the reservoir souring due to
S2− generation, the plugging of machinery, and rock
pores caused by the precipitation biomass and amor-
phous ferrous sulfide are also critical problems for oilfield
development [7]. Besides, H2S is soluble in water, alcohol,
crude oil, and so on, which the solubility is affected
by temperature and other environmental factors. The
water solubility of H2S at 20°C is 1 g in 242 mL [8]. In
the late stage of water flooding development, the water
content is higher than 80% and even more than 90%
in most oilfields. In such an environment of tempera-
ture or other factors change, releasing H2S gas from the
water phase is worth to be concerned. For centuries,
H2S is known as toxic acidic gas. However, it has been
reported that H2S, as an endogenous gaseous mediator,
might show a certain regulatory effect in neurotransmis-
sion, cardiovascular function, and cell metabolism in recent
years [9]. There is no doubt that H2S is harmful once it
exceeds the safe concentration. According to the survey,
we can smell and recognize H2S with a characteristic
odor of rotten eggs at a concentration of about 11μg/m3,
and it can be fatal for a few breaths at 700mg/m3, where
the conversion factors for H2S in air (20°C, 101.3 kPa) is
1mg/m3 = 0.71 ppm [8]. Therefore, the release of H2S gas
from the liquid is another significant risk, once the concen-
tration of H2Saq is overstandard. In general, the concentra-
tion of S2− in the late stage of water flooding, attributed by
SRB, is a threat to human life and generates serious pipe-
line corrosion. Also, the increased rate of S2− concentration
usually varies with different oil wells at different times
during the water flooding process [10], and its value is
mainly achieved by sample testing. The changeable and
lateness information brings an unknown risk to safe pro-
duction. Hence, it is important to study and predict the
underground S2− spatial distribution in the water phase.

The increase of sulfide is a concomitant problem in
the late stage of water flooding development. So far,
numerous studies have been done to reveal themechanism
of S2− formation and inhibit the generation of S2−

during the water flooding process, which mainly includes
the studies of growth kinetics, substrate utilization and
metabolism of SRB, and chemical and biological inhi-
bitors [11–14]. Many researchers have simulated the
transport of S2− to distinguish the effect of different
inhibition methods in the lab scale and have applied
the laboratorymodels to the simplified oil reservoir [15–17].
These simulations are based on biokinetic mechanisms
and reactive transport models, in which S2− is a pro-
duct of SRB. Achieving precise simulations relies on

various physical, chemical, and biokinetic parameters,
while these parameters generally show dynamic instability
behavior in a realistic oil developing area. Therefore, more
sophisticatedmodels than laboratoryneed tobe considered
for simulating the realistic S2− distribution in the oil-
field. In terms of estimating the spatial distribution of
variables, geostatistics is an alternative or a supple-
ment method to realize the element spatial distribution.
A growing number of researchers have successfully
applied geostatistics to investigate the spatial distribu-
tion of trace elements or other variables in soil and
environmental science [18–22]. What is more, some
researchers have realized the applications of geostatis-
tics on reservoir modeling, porosity spatial distribution,
and lithological distribution in the oilfield development
[23,24]. Geostatistics is a common and effective tool for
exploring and analyzing uncertain phenomena, which
estimates unknown points by the sampling points. Cur-
rently, it has been widely applied in numerous fields,
e.g., mining, oilfield exploration, geography, environ-
ment science, and soil science field [24–26]. Generally,
according to the data types and the simulation target,
both Kriging and stochastic simulations are widely
used as geostatistics methods. The cognition of spatial
distribution can be realized by Kriging with only the
estimation result [27]. However, the ordinary Kriging
method tends to smooth out the spatial variation of
the unknown attributes [27]. Therefore, this method is
more applicable for estimating geological parameters
with gentle changes. Stochastic simulation is another
geostatistical simulation method, which allows each
variable to have multiple realities under the premise
of the correctness of the overall trend [28,29]. It means
that the local uncertainties are incorporated into the
simulated attribute values at unsampled sites. This
method overcomes some limitations of the ordinary kri-
ging method and highlights the volatility of spatial dis-
tribution of the raw data [28,29]. Hence, stochastic
simulation is a more suitable approach to estimate
the S2− spatial distribution in this study.

Nowadays, some researchers have integrated machine
learning (ML) with the geostatistics method and have
achieved good simulation and prediction results [30–33].
It is known that ML is an effective empirical approach to
address regression and classification problems in science
and engineering, especially in mathematics, meteorology,
and computer sciences [34,35]. With the evolution and
popularity of ML, a series of ML algorithms have been
applied in different geoscience fields such as predicting
the distribution of geochemical variables (including
element concentrations) in soil, realizing the reservoir
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simulation, and predicting the permeability of tight
carbonates [36–38]. With the application of ML in
geoscience, it gradually shows the ability in estimating
physical/chemical variables that are difficult to monitor
directly and forecasting long-term trends of geoscience
variables [39]. Moreover, successfully combining ML
and geostatistics method leads to realizing simulation
and prediction of geoscience parameters, which provide
a new perspective to address geoscience problems.

In this study, the conventional stochastic simulation
method is not able to directly simulate and predict the
continuous change of geochemical element distribution
with very limited known datasets. The statistics of the
probability density function are hard to be estimated,
especially in the condition of sparse sampling points
and insufficient sampling times of each point. To over-
come the aforementioned limitations, we propose a novel
method to simulate short-term changes of S2− distribu-
tion in oil exploitation, which combines the stochastic
simulation method and the modified probabilistic neural
network (modified PNN). It possesses the advantages of

stochastic simulation and the traditional ML method, so
there is no need to compare it with a simple ML method.
In this method, the modified PNN constructs the connec-
tions between multiple indirect datasets and the S2− dis-
tribution at sampling points, which are treated as indirect
data in the stochastic simulation processes. By modifying
the structure, the output becomes continuous variables,
and it is able to provide parameters for the next simula-
tions. The association of the temporal structure was con-
structed by simulating the same layer in the continuous
time range, which expands the selection range of con-
straints. In addition, the simulation target has been
changed into the distribution of S2− increment for enhan-
cing the accuracy of the simulation. The case study illus-
trates the outstanding ability of this method. The flow-
chart of the proposed method is shown in Figure 1.

The rest of this article is organized as follows. Section
2 describes the detailed information of employed meth-
odologies and techniques. Section 3 applies the proposed
method into the field case examples. Section 4 concludes
this article.

Figure 1: The flowchart of the conventional stochastic simulation and the modified PNN method.

Underground sulfide distribution with multiple constraints  809



2 Method

The detailed information of the modified PNN and
adaptive probability distribution constrained stochastic
simulation methods is introduced in this section. The
process of the proposed method can be summarized as
follows:
(1) Train the modified PNN for generating the mean

value of PDF.
(2) Introduce three indirect constraints for stochastic

simulation.
(3) Simulate the continuous changes of S2− concentration

distribution in the last 1 year by merging multiple con-
straints (Stage 1).

(4) Predict S2− concentration distribution in the next 3
months through the previous simulation (Stage 2)

(5) Adjust the scope of results and validation.

2.1 Modified probabilistic neural network
(modified PNN)

The PNN model is one of the supervised learning net-
works, and it can compute the nonlinear decision bound-
aries,whichapproach theBayesoptimal [40]. The training
process of PNN is normally a forward propagation due to
which the summation layers are highly related to the
training datasets, and the output is a probabilistic expres-
sion, which will benefit the analysis of stochastic simula-
tion. The outputs of PNN are the highest value of the com-
petitive layer based on the distribution of probabilistic
density function (PDF). As the principle of PNN, a simple
PDF can be expressed as follows [41]:
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where ( )f x is the PDF of the training datasets x, n is the
number of x, and σ is the standard deviation of x. The
hidden layer is able to evaluate each input array with a
set of probabilities when a PDF is used in a neural net-
work, and the output layer will select the highest value
from these probabilities for the final result:

( ) ( ( ( )))= ′K x f xtype max ,j (2)

where ( )K x is the final result of input data ′x , ( )⋅fj is the
PDF of j category, and type(·) is the transformation from a
probability to a category or a value.

PNN is a method that can provide an uncertainty
evaluation of classification or regression problems through
multiple parallel probability density functions. It has been
effectively applied in classification, signal processing, eval-
uating seismic liquefaction potential, recognition system
for language characters, and otherfields [42–45]. However,
the computational complexityofPNN isusuallyhigher than
a traditional ANN because it needs lots of comparison with
training datasets to ensure the accuracy of output in each
cycle of simulations. Besides, this neural network structure
does not exactlymatch our purpose of chemical simulation
in a complex layer. Therefore, we proposed the modified
probabilistic neural network (modified PNN) to solve this
problemfor serving the simulationprocess. The structure of
traditional PNN ismodified to adapt the estimate tasks, and
few layers of auto-encoder (AE) are combined to stabilize
the training process. The structure of this modified PNN is
shown in Figure 2. The pattern layer is replaced by the full
connected layer toeliminate the tedious calculationwithall
training datasets, and the objective of this layer is to gen-
erate 10 possible values of the target point. Next, the sum-
mation layer will not only be a summation of former layers
but will also be used to select the best value for the output
layer. The decoder layer, which is designed to enhance the
stability of the fully connected layer, is the same as the
decoder of AE, but it do not required to be symmetry
with the fully connected layer. The fully connected layer
includes two layers, the summation layer includes three
layers, and the decoder layer includes only one layer. The
decoder layer is set to stabilize the training process, and
the training will end within 300 iterations after using it,
which is lower than 1,000 iterations without this structure.
Besides, there is noneed toenlarge thedecoderbecause the
weight of this loss function is lower than 0.3.

The main structure of this method is the same as the
traditional PNN, but the objective function is changed

Figure 2: Structure of traditional PNN (a) and the modified PNN (b).
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and divided into two parts. The first part is the loss func-
tion with the label value, which provides the prediction
of a mean value for the next simulation, and it can be
expressed as follows:

( ) ∣ ( ) ∣= −x y P x yLoss1 , min , (3)

where x is the input data, y is the label value of x, and P(·)
is the full connected layer. Both the training process and
the prediction process select the minimum value from the
summation layer. Besides, the second part of the loss
function in the decoder, which is aim to stabilize the
construction of the fully connected layer, can be defined
as follows:

( ) ∣ ( ( )) ∣
∑

= −

=
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i
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1
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where Q(·) is the decoder layer of the modified PNN.
Therefore, the loss function of the modified PNN will be
changed into:

( ) = +x α αLoss3 Loss1 Loss2,1 2

where α is the weight subscripts that denote the two parts
of the loss function. The loss function is optimized by
iterative training, which gradually improves the effective-
ness of the entire neural network, and then it can provide
an average value that meets the stochastic simulation
accuracy requirements. In this research, the training
time of this structure is about 2 h, and it is only a small
part of the total computation cost, and hence, it is not
necessary to pay too much attention to reducing it.

2.2 Adaptive probability distribution
constrained stochastic simulation

Bayesian sequential simulation ref. [46] is the most
common method used to simulate geological and geo-
chemical distributions. After generating a stochastic
path for searching points, the posterior probability is
needed to estimate a value for the current point. Gaus-
sian probability density function is usually used for gen-
eral simulation tasks:
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where ( )p a is the PDF of a, μ is the mean value of a, and σ
is the standard deviation of a. The mean and variance can
be calculated by the Kriging method. The estimated value
of the target point is obtained by random sampling in this

PDF. Finally, the numerical distribution of the whole
study area can be realized by simulating the entire area
point by point. However, this method is difficult to simu-
late the distribution of the chemical component during
the oilfield development. Since only a few wells have
regular test data, the Kriging method hardly obtains the
accurate mean and variance directly. Therefore, it is
necessary to make full use of indirect data to constrain
the simulation process.

In general, the changes of water components in the
underground environment, such as common elements,
nutrients, and bacteria content, have certain continuity
in the time domain. However, changes in these compo-
nents do not show a strong correlation at each time point
due to the influence of water injection and other factors.
Hence, the monthly variation of S2− concentration is our
simulation target. This study was divided into two stages:
the first stage focuses on the simulation of current S2−

distribution in the target layer and the second stage pre-
dicts the short-term S2− distribution.

In the first stage, we selected six-component datasets
as indirect datasets, which are the long-term monitoring
data in the three-phase separator outlet and the water
injection well head. These components include sulfide
content, oil content, total iron content, and three types
of bacteria (sulfate-reducing bacteria (SRB), iron bacteria
(FB or FEB), and putrefying bacteria (TGB)). The pro-
posed modified PNN constructs the connection between
indirect datasets of these six components and the S2−

distribution at sampling points. At the same time, the
simulated point near the target point is used as a coop-
erative constraint, and the value change of this point in
the previous month is used as a restriction condition. In
this study, we also applied the Gaussian probability den-
sity function, which is commonly used in reservoir simu-
lation. The mean of the function can be calculated by the
following formula:
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where z0 is the current simulating location, r1 is the
searching radius for simulated points, ul is six kinds of
relevant component changing values in the processing
station at the current simulating time l, β is the weight
for three kinds of restraints, n1 is the number of proces-
sing station, δ is the inverse distance weight,G(·) denotes
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the modified PNN, al is the simulated value at time l, and
H (·) is the constraint of a former time, which is shown as
follows:
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where μ11 is a temporarymean value. If ( ) =H z 00 , =μ μ11 1.
This constraint is conducive to make full use of the neural
network to construct the connection between the target
reservoir S2− concentrationand indirect datasets. As a con-
ventional random simulation, the influence of the simu-
lated points on the unsimulated points is also considered
to ensure each simulation result is smooth enough. In
addition, the influence of the previous time point simula-
tion results at the same location is also considered in the
third constraint. Next, the standard deviation is calculated
from the former layer to guarantee the stability of the
simulation.

In the second stage, we attempt to simulate the
dynamic changes of S2− distribution in the next 3 months.
The variance is still calculated based on the near-point
value of the former layer. However, due to the lack of
processing station data at these times, it is failed to cal-
culate the mean value of the probability density function
using the neural network as the main constraint. Thus, to
simulate the short-term changes of S2− distribution, the
simulation mainly utilizes the near point value of the
previous three time points and the value of the points
that have been simulated in the simulating layer. At
this time, the mean value calculation formula can be
expressed as follows:
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where r2 and r3 are the searching radius for previous time
and this time, respectively, λ is the weight of different
constraints, and n is the number of known points in the
searching scope. Many previously simulated datasets are
introduced as constraints to reduce the influence caused
by the processing station datasets deficient, which is
helpful to enhance the stability of PDF and relatively
accurately reflect the changes of overall data. Although
the small-scale changes or fluctuations of the simulation
target cannot be accurately realized by this prediction,
the prediction results still have the function of evaluation
and guidance for safe production in the oilfield.

In short, the adaptive PDF constrained random simu-
lation is realized by the aforementioned processes with a
series of indirect datasets. It obtains the S2− distribution
at the current time and the changes of S2− distribution in
the near future by conducting random simulations with
equal probability. We will apply it to an oilfield develop-
ment area case in the next section.

3 Result and discussion

The study area is located in the east of China. It has
formed multiple sets of source bed, reservoir rocks, and
caprocks due to the polycyclic tectonic movements and
the cyclical change of climate. The types of oil and gas-
bearing reservoirs that have been discovered are mainly
sandstone reservoirs. In this study area, the S2− concen-
tration in the produced water was very low at the early
stage of water flooding development. In recent years, the
increase of S2− concentration and serious pipeline corro-
sion gradually occur in some areas. Due to the high
concentration of SO4

2− in the formation water in this
area, the possibility of generating high S2−concentration
could increase with the quantity of SRB. The sudden
increase of S2− concentration is a potential risk for opera-
tors and sewage treatment equipment, especially where
the current detection of S2− concentration is not overstan-
dard. Hence, prediction of the short-term change trend of
S2− distribution can provide significant guidance for oil-
field development and safety. There are 67 sample points
in this study area, which are in the vicinity of four dif-
ferent process stations, as shown in Figure 3.

The variation range of the original data is very large
as shown in Figure 4a and b, which exist as a large order

Figure 3: The distribution of sampling points in the region. X and Y
represent the geographic distance.

812  Qiuyan Ji et al.



of magnitude difference between these data. In parti-
cular, the concentrations of Fe and Oil show relatively
significant changes, while the variation range of S con-
centration is relatively insignificant (Figure 4a). It easily
leads to a substantial imbalance in the neural network
training by directly adopting these data. In this study, the
log transformation is used to reduce the large variance of
the original data. The transformed results are presented
in Figure 4c and d, which increase the distinguishability
of the transformed three chemical composition data.
While the variation ranges of three types of bacterial con-
centration are very large, they are basically in a similar
variation range. Thus, the normalized data meet the para-
meters input requirements of the neural network. The log
transformation equation can be expressed as follows:

( ) ( )= +S S k S k, log ,1 0 0 (9)

where S1 is the transformed processing station data, S0 is
the original processing station data, andk is thehyperpara-
meter about the minimum value of the overall data distri-
bution to ensure that the transformed S1 is greater than 0.

The modified PNN needs to be trained before we use
it to estimate the distributions of S2−. The input datasets
include concentrations of sulfide, oil, total iron, SRB,
FEB, and TGB, and the outputs are five probable concen-
tration of S2−. Eighty percent of these datasets collected in
2008–2011 are introduced for training the modified PNN,
and the final residual is about 0.23, which is acceptable
for stochastic simulations.

In the training process, the update weight is 0.01,
batch size of the normalization is 20, and each iteration
includes 100 batch. The activation function using in the
training process is RELU. After 300 iterations, the trained
model can be used for assisting the calculation of mean
values.

There is an overall increasing trend of S2− distribu-
tion from 2010 to 2011 (as shown in Figure 5), which is in
line with the oilfield development status. Figure 5 shows
that the rough distribution of S2− is concentrated in three
small areas in two distribution maps. However, the entire
distribution map is obtained by simulation. Thus, the
value of distribution points away from the sampling point
is set as 0, which means that these two initial maps
cannot fully reflect the S2− distribution in the target layer.
This is one of the defects of conventional simulation
methods.

According to the sequential simulation process, the
modified PNN will be introduced into equation (6), and
six kinds of indirect datasets are considered to constrain
the simulation. The weights of constraints are 0.5, 0.3,
and 0.2 if the former layer exists, or the weights are
0.7, 0.3, and 0. This weight means that the mean value
of the simulation mainly relies on the modified PNN,
and the influence of the former layer is the minimum.
Then, the mean value will be introduced into equation
(5) to build the probability density function.

Then, we need about 20 h to run the simulation pro-
cess for obtaining the S2− concentration changes. In
the research block, the changes of S2− distribution in
12 months mainly show the slowly rising trend and
the overall distribution is relatively stable (Figure 6). It
is consistent with the change of S2− concentration in
the processing station. The variation of concentration
appeared in 2011 is in coincidence with the oilfield devel-
opment trend. From the first month to the sixth month,
the increment of S2− concentration shows some reduc-
tion, and even some areas have shown the negative
growth. These might be attributed to the addition of

Figure 4: Traditional (a and b) and transformed (c and d) distribution
of the processing station data. (a) and (c), The S, oil, and Fe
represent sulfide content, oil content, and total iron content in the
produced water, respectively. (b) The number of bacteria per milli-
liter in the produced water.

Figure 5: Distribution maps of S2− concentration in 2010 (a) and
2011 (b).
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bactericide in the injection water of the test well, which
effectively decreases the number of SRB and controls
the increasing trend of S2− concentration. However, with
the process of water injection, the number of SRB is
increasing again when the concentration of bactericide
is exhausted. Hence, there is some increase in the incre-
ment of S2− concentration in the later months. In Figure 6,
a few outliers appeared in the red circle, which will not
influence the following simulations. Since the absolute
value of the data is not large, it has little effect on the
final result.

Based on the simulation results presented in Figure 7,
which ignore the outliers, the overall tendency of simula-
tion results changes in 12 months, which is consistent
with the trend shown in Figure 6. This also confirms
that these abnormal points have a very limited impact
on the simulation results. First, we test the overall preci-
sion by comparing the distribution of interpolation con-
centrations. The average accuracy of these results can be
considered as 80%, which includes the points with less
than 15% deviation. Besides, the total residual of one map
is lower than 5%. In the study area, the distribution of
S2− concentration basically shows a different increasing

trend. It can be found that S2− distribution shows a sig-
nificant increase in the red box (Figure 7). In contrast, the
S2− distribution has invaded the yellow box, and the con-
centration changes is not obvious. This may be related
to the treatment scheme, reservoir characteristics, and
water quality environment. Generally, the injection pro-
duction form that was adopted in the process of water
flooding development is that one injection well corre-
sponds to multiple production wells. The addition of
bactericide with injected water might have different
effects on the S2− distribution of the produced water
due to the differences in reservoir connectivity, diffusion
coefficient,water content, andsoon.Forexample, the chan-
ging time of S2− is earlier than before, and the changes of
thenumerical valuesand rangesare obvious in the reservoir
with good connectivity. Besides, owing to the different
types of SRB and water quality environment in different
blocks, the growth rate of SRB and the drug resistance is
different. These are possible reasons for the rapid increase
of S2− distribution in the eastern part of the research
area, while the distribution of S2− in the western part of
the research area only gradually diffusedwith no obvious
increase.

Figure 6: Distribution maps of S2− concentration changes in 12 months. (a)–(l) January–December in 2012.
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Moreover, the values of the processing station are
also utilized for verifying the effectiveness of this method.
We selected five sampling points near the processing sta-
tion as verification points, one of which has a large devia-
tion, and in the case of other four points, the deviation
between the test value and the simulation result is within
13%. Therefore, the simulation results can effectively
reflect the S2− distribution in the target layer. It can be
considered that the simulation accuracy of target points
within 2 km of the original sampling points is higher than
85%, and they roughly reflect the variation trend of the
target point located away from the sampling points.
Thence, these simulation results can provide certain gui-
dance for oilfield development and safety.

We can confirm that the modified PNN is effective
again by these ideal simulations due to the weight of
the major controlling factor. Although the first layer
cannot be controlled by the former layer, its simulation
still performs smoothly. Therefore, the influences of the
same layer points and the former layer are very limited for
the mean value, but the contribution of these constraints
for stabilizing the probability distribution is still impor-
tant. In terms of the current simulation results, it is neces-
sary to take better inhibitory measures to prevent the
continuous increase of S2− concentration in the eastern

part of the study area. The diffusion of S2− distribution in
the western part needs to be paid attention to, and some
precaution measures should be taken.

Reasonable results of S2− distribution are obtained in
the simulation of 12 months in 2012. Therefore, we predict
the distribution of S2− distribution in the next 3 months
using these data. In the simulation of the next 3 months,
a large number of outlier blocks appear in the S2− distri-
bution maps because of the lack of constraints of the
neural network and the processing station data. The failure
of simulations in these locations may be due to few con-
straints. However, the overall change trend fits the general
patterns of S2− distribution change in the reservoir.

The monthly changes of S2− distribution have shown
the increasing trend in prediction 1 (Figure 8(a–c)), the
decreasing trend in prediction 3(Figure 8(d–f)), and little
changes in prediction 2, prediction 4, and prediction 5
(Figure 8(d–f), (j–l), and (m–o)). Since the prediction of
S2− concentration derived from the stochastic simulation
is completely based on the previous statistical data,
obtaining such changes also conforms the statistical
law. However, the outliers need to be processed because
the number of outliers is far more than the simulation
results with neural network constraints. Here, the neatest
neighbor value is used as the outlier value.

Figure 7: Distribution maps of S2− concentration in 12 months. (a)–(l) January–December in 2012.
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The five prediction results mainly reflect the statistical
value changes because the prediction results are largely
dependent on the previous simulation results. In Figure 9,
the predictions of S2− distribution presented by ladder dia-
gramsdue to thechangesofS2−distributionare insignificant.

According to the five predictions, they are not sensi-
tive to the changes of S2− distribution on a small scale.
This might be because there is no obvious change in the
last 12 months in the western part, and there is only a
small change in the overall S2− distribution in the eastern
part. The changes of S2− concentration looks similar to
these 12 predictions because the constraints of the mod-
ified PNN are lost, and the former layers become the main
factors for estimating the probability distribution. The
weights in equation (8) are 0.8 and 0.2 when the known
points of the same layer are lower than 20%, and the
weights will be changed into 0.5 and 0.5 after the known
points are higher than 20%. Hence, the prediction results
mainly show small-range changes of S2− distribution.

However, these five predictions still have the indicative
ability for the changes of S2− distribution. For example, in
prediction 1 (Figure 9(a–c)), the range of S2− distribution
shows the north–south extension and shrinkage in the
second and third months, respectively. However, the pre-
diction 3 shows a gradual shrink in the north–south
direction for S2− distribution range in the eastern part
(Figure 9(j–l)). In five prediction results, the change is
mainly reflected in the north–south direction extension
of the S2− distribution range in the eastern part of the
study area, and the extended diffusion of the east–west
direction is small. It indicates that these predictions have
the ability to show the short-term changes in the diffu-
sion and distribution range of S2−, even though it is not
sensitive to the absolute change of the value. Therefore,
predictions can provide some guidance for safe produc-
tion, which can be considered as the reference to assess
the possibility of S2− distribution overstandard in dif-
ferent areas in advance.

Figure 8: Predictions of S2− concentration distribution on the next 3 months in 5 times stochastic simulations.

816  Qiuyan Ji et al.



4 Conclusion

In this study, the machine learning-driven stochastic
simulation method is presented and applied to realize
the simulation of S2− distribution. The simulation of the
current S2− distribution and the prediction of the short-
term S2− distribution are carried out successively. Based
on the results of this study, several conclusions can be
drawn as follows:
(1) The indirect information constructed themodified PNN,

which is able to provide extra support for changing the
PDF and enhance the stability of the simulation.

(2) The S2− distributions possess good continuity, and
the accuracy is around 80%, which relies on the
two-stage strategy and multiple constraints, and
these ideal results demonstrate the effectiveness of
the proposed method.

(3) The results reveal the chemical and bacterial move-
ments, so this proposed method has the ability to
show the overall trends and the changes in value in
an oil field, and even some small-scale changes or
fluctuations of S2− distribution is not displayed on
these predictions

Results of this study suggest that the proposed
machine learning-driven stochastic simulation has
certain application prospects for the oilfield develop-
ment and safety. The predictions show the distribu-
tion range of S2−, but the value is not as accurate as
of the simulations. Besides, it also has a great potential
to apply in simulating and predicting the spatial dis-
tribution of different physical/chemical variables in
other fields. Although the computational time of this
approach is much higher than the traditional method,
its unique capacity is still worth and acceptable for
application.
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