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Abstract: Lane-level road cluster is a most representative
phenomenon in road networks and is vital to spatial data
mining, cartographic generalization, and data integra-
tion. In this article, a lane-level road cluster recognition
method was proposed. First, the conception of lane-level
road cluster and our motivation were addressed and
the spatial characteristics were given. Second, a region
growing cluster algorithm was defined to recognize lane-
level road clusters, where constraints including distance
and orientation were used. A novel moving distance (MD)
metric was proposed to measure the distance of two
lines, which can effectively handle the non-uniformly
distributed vertexes, heterogeneous length, inharmonious
spatial alignment, and complex shape. Experiments demon-
strated that the proposed method can effectively recognize
lane-level road clusterswith theagreement tohumanspatial
cognition.

Keywords: cartographic generalization, spatial data min-
ing, spatial cluster, lane-level road cluster, distance mea-
surement

1 Introduction

Emerging geographic information system applications
such as vehicle navigation, intelligent transportation sys-
tems, and self-driving technology ask for precise lane
information in road networks [1–9]. Hence, road net-
works are more and more modeled in a realistic way,
capturing all the lane-level information of the networks
in datasets [10,11]. Lane-level road cluster is common in

road network dataset and is of great importance to spatial
data mining, cartographic generalization, data integra-
tion, road change detection, and even the urbanization
process [12–15].

Lane-level road clusters treat more than one road
as a unit. In data integration, lane-level road clusters
can transform the most challenging many-to-many pair
matching to one-to-many and one-to-one matching pro-
blems, which will greatly reduce the difficulty of data
integration [12]. For example, there are three roads in
the cluster in Figure 1a, while two in Figure 1b. If road
clusters are identified and treated as a unit, the 3:2 multi-
scale matching problem will be transformed to 1:1, which
is much easier. This is also termed as structure matching.
In addition, objectmatching is used in various applications
including conflation, data quality assessment, updating,
and multi-scale analysis [16].

On the other hand, the highly modeled road network
is one of the most important data sources for spatial
data collecting and updating. However, the quality and
level of details are not guaranteed when referring to the
national or authoritative topographic map productions.
According to the National Mapping Agency (NMA) carto-
graphic specifications, roads are always represented
using polyline or dual-polyline on map production.
Lane-level road cluster with high density will bring
great limitation to map legibility [17], which is defined
as a combination of map readability (discerning the
symbols) and map interpretation (understanding the
content of the map). Hence, necessary processing such
as transforming lane-level road cluster to dual-polyline
or polyline is needed to make it conform to the NMA
cartographic specifications. This is termed as structured
generalization in map generalization [18], such as extract-
ing the centerlines. For example, the road cluster in Figure
1a at the scale of 1:10,000 is transformed to dual-polyline in
Figure 1b at the scale of 1:50,000, and single polyline in
Figure 1c at the scale of 1:250,000. In the research frame-
work, the lane clusters will be first cleaned and then used
for several applications, such as lane information extrac-
tion or correction in road analysis, centerline or dual-poly-
line road extraction in map generalization, and so on.
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In order toachieve these applications, thefirst step is tofind
which roads need to be transformed. This comes to be the
focus of this article, with the aim to find the roads by the
proposedmethodas theoperationalobjectiveof suchappli-
cations. Here we propose a lane-level road cluster mining
algorithm with bidirectional region growing (LCBRG) to
identify lane-level road clusters, based onwhich,map gen-
eralization algorithms including road cluster typification,
centerline extraction, and simplification could be better
performed.

In addition, as a lane ismodeledas a line inGeographic
Information Science, from a more macroscopic scientific
perspective, lane-level road clustering actually contri-
butes to the research content of line clustering problem.
In spatio–temporal data mining, trajectory analysis is a
typical application. By clustering the similar trajectories,
their main trend can be better understood, which brings
great advantages in principal component analysis, beha-
vior pattern analysis, and trend prediction [19]. The
analysis of movement behavior has been investigated
for different purposes and explored in several domains.
For example, by clustering the typhoon trajectories,
we could forecast its direction and trend. The trajectory
data record daily human mobility, such as working,
shopping, and engaging in entertainment and leisure
activities. Such data contain various patterns of human
behavior which can be utilized to identify hotspots in
urban areas [20].

Cluster analysis is the main task of exploratory data
mining. Clustering algorithms can be categorized based
on their cluster model [21,22]. (1) Connectivity-based clus-
tering, also known as hierarchical clustering, is based on
the core idea of objects being more related to nearby
objects than to objects farther away, such as BIRCH [23].
(2) Centroid-based clustering, where clusters are repre-
sented by a central vector, which may not necessarily be
a member of the dataset, such as K-means and CLARANS

[24]. (3) Distribution-based clustering, where clusters can
then easily be defined as objects belonging most likely to
the same distribution, such as EM [25]. (4) Density-based
clustering, where clusters are defined as areas of higher
density than the remainder of the dataset. Objects in
these sparse areas, that are required to separate clusters,
are usually considered to be noise and border points,
such as DBSCAN [26].

Most algorithms are developed for points, while only
few are for the line or polygon dataset; however, line
clustering is a classic issue and is in urgent need in
both theory and practice. Lu et al. [27] presented a clus-
tering method to classify contour lines using wavelet
analyzing and numerical statistic, which is based on
contour line’s geography fractal character together with
its position. Contour lines are characterized by fractal
dimensions that exhibit similar patterns at increasingly
small scales, but lane-level roads show great spatial het-
erogeneity. Liu et al. [28] proposed a spatial lines clus-
tering algorithm based on their connectivity. Based on
K-means, this algorithm selects the spatial line connectivity
as the distance measurement between lines to cluster
spatial lines. A similar idea was employed by Zhu [29],
who used DBSCAN to cluster lines to detect the outliers,
where intersection and adjacent relationship are used
as distance. However, the relationships of connectivity,
intersection, and adjacency are qualitative and weak spa-
tial constraints, resulting in arbitrary orientations and
discretionary distances of the clusters. While lane-level
road clusters are synchronized with the law of common
fate in the perspective of Gestalt principles [30]. Tang et
al. [31] proposed an efficient partition-and-filter model to
filter trajectories with expected accuracy according to the
spatial feature of high-precision GPS data and their error
rule. GPS trajectory is still defined via massive zero-
dimensional points with high density, while the object
in this article is one-dimensional line cluster.

Figure 1: The road cluster in multi-scale spatial data. The scales are: (a) 1:10,000, (b) 1:50,000, and (c) 1:250,000, respectively.
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With the scope of cartographic generalization, a lane-
level road cluster recognition method was proposed in
this article. First, the conception of lane-level road cluster
and our motivation were addressed, and the spatial
characteristics are given in Section 2. Second, a region
growing cluster algorithm is defined in Section 3 to recog-
nize lane-level road clusters, where constraints including
distance and orientation were used. A novel moving dis-
tance (MD) is proposed in Section 4 to measure the dis-
tance of two lines, which can effectively handle the non-
uniform length and heterogeneously distributed vertexes.

Our contributions are summarized as follows:
• With the aim of cartographic generalization, the moti-
vation and conception of lane-level road cluster were
addressed, and the spatial characteristics were given.

• A novel MDmetric was proposed tomeasure the distance
of two lines, which can effectively handle the non-
uniformly distributed vertexes, heterogeneous length,
inharmonious spatial alignment, and complex shape.

• Based on the above work, a new region growing cluster
algorithm was defined to recognize lane-level road
clusters, where constraints including distance and
orientation were used.

2 Line cluster and its
characteristics

2.1 Motivation

A cluster refers to a group of similar things that are close
together. Lanes are always modeled as lines in the spatial
database. Generally speaking, a lane-level road cluster is
defined as a set of lane lines that are clustered into

groups by some constraints such as distance and orienta-
tion. The lane lines in one cluster are not limited to these
with strict parallel relationships. As shown in Figure 2,
some short lanes are nonparallel but they are still regarded
asapart of the cluster because theyare located in the region
of the existing cluster. However, the existing research
cannot deal with these complex situations. For example,
Luan and Yang [32] and Savino and Touya [10] provide
methods for parallel line recognition, which are unable to
handle complex line cluster with nonparallel sense.

With the development and integration of mobile com-
munication and wireless Internet, smart mobile devices,
and mobile sensors and measurement, the spatial infor-
mation is massively surging. The possible reasons for line
cluster include at least the following aspects [33]:
(1) In terms of user demands, the spatial data used for

driving and riding navigation require that the geogra-
phical features should be detailed as precisely as
possible, and that motorway, lanes, sidewalks, and
so on should be modeled in detail.

(2) Fromtheviewofdatacollection,VolunteeredGeographic
Information (VGI) systems are now important data
source for spatial data updating. Some participants
of VGI are short of professional cartographic knowl-
edge (such as the concept ofmap scale), so they collect
data according to their personal need and experience
without authoritative supervision, strictly in accor-
dance with neither the navigation data standards
nor the topographic map standards. The subjectivity
of the participants leads to the appearance ofmultiple
inharmonious shapes and attributions of the same
geographic object. This may lead to the existence of
data repetition andmultiple and inconsistent levels of
details (LoDs) [34].

(3) The reference dataset is of great variety, including
existing map productions, different high resolution

Figure 2: Lane-level cluster in road networks of OpenStreetMap.
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remote sensing image datasets, the US Census Bureau
TIGER, Ordnance Survey OpenData, ArcGIS Open
Data, open navigation data, VGI systems such as
OpenStreetMap, and other open or authoritative data
sources. These platforms are independent of each
other, and there are no uniform data production spe-
cifications, resulting in spatial data inconsistency (in
referencing system, datamodel, coding system, visua-
lization, and so on). The location and geometric shape
of different referencedatasets are always inconsistent.
In addition, the LoDs of some data sources are higher
than the topographicmap specifications, while others
are lower or even short of.

(4) New acquisition equipment such as vehicle-based
GPS and smart mobile devices are widely used [35–37],
resulting in the acceleration of the speed of data
acquisition and the improvement of data currency,
but the data quality is not always guaranteed: spatial
and temporal accuracy of different receivers and posi-
tioning methods (such as GPS/Beidou satellite naviga-
tion system, mobile wireless positioning, or integrated
navigation) are inconsistent; the storage formats and
attributions of data collected by different equipment
lack uniform standards; unprofessional operations
such as arbitrary driving lead to irregular trajectory;
and acquisition equipment is also greatly affected by
platforms, weather, and other natural conditions [38].
The noises may make the road trajectory irregular.

A large amount of noises in spatial data not only
increase the data redundancy but also affect the overall
accuracy of the map production, which will increase the

burden of the cartographers, thus affecting the quality of
the map updating. For example, in the emergency map-
ping [39,40], noise information is a serious obstacle to
the acquisition of fine information in the disaster area,
which will delay the relief time and will directly bring
great life and property damage. Therefore, it is necessary
to quickly and automatically extract high-quality road
information for cartographic mapping.

2.2 Characteristics of line cluster

The abovementioned investigation shows the following
characteristics: (1) most of the line clusters in various
reference datasets are always with multiple inconsistent
versions; (2) they do not comply with the existing NMA
cartographic specifications; and (3) the topological rela-
tionships of the line primitives in the lane-level road
cluster are chaotic. Although the symbolized Digital
Cartographic Model (DCM) map production appears to
be correct, the Digital Landscape Model (DLM) dataset
behind may be chaotically organized with disordered
topological relationships. Figure 3a shows the DCM result
from OpenStreetMap website after symbolized rendering,
while Figure 3b shows the corresponding DLM dataset. It
can be seen from the DLM dataset (and the five enlarged
views) that the length and orientation of the lines in the
lane-level road cluster are almost inharmonious, but
the one or more line primitives together contribute to
the geometric representation of the corresponding geo-
graphic object.

Figure 3: DCM and DLM of lane-level roads from OpenStreetMap: (a) DCM and (b) DLM.
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Examining the different conditions of the lane-level
road cluster, we found that the line primitives that make
up the cluster have the following characteristics or
relationships:
(1) Condition C1: Distance. The distance between line

primitives satisfies the certain prior threshold. In gen-
eral, a semantic road entity (road sections that have
the same semantic name) may be represented collec-
tively by one or more lane-level primitives, but the
distance between them is generally less than the road
width w plus the data error δ, namely the sum (w + δ).

(2) Condition C2: Parallelism. The orientation between
line primitives is approximately parallel. Due to the
practical factors such as traffic rules, vehicle driving
safety, and so on, the lane-level road primitives that
represent the traffic information are generally parallel
to each other.

(3) Condition C3: Containing relationship. The line
primitives located in the region of existing clusters
are regarded as a part of the cluster. This condition
mainly deals with the nonstandard lane information
such as overpass and footway with the corresponding
steps. These facilities are usually modeled as lines
and stored together in the road database, sometimes
with attributions provided by conscientious and
dedicated participants.

Of the three conditionsabove, not all the three relation-
ships are necessary to be a lane-level road cluster. If condi-
tions C1 andC2, or C1 andC3, or C1, C2, andC3 are satisfied, it
is possible to determine those lanes as a cluster.

As we know, the distance between two intersecting
lines is zero. So not all the lines with a distance of zero
constitute a cluster. Either parallelism or containing rela-
tionship or both of them are required to be satisfied to be
a lane-level road cluster. Take Figure 4 as an example.
The red dotted line primitive in Figure 4a is not accepted
as a part of the cluster for distance constraint. Though
distance constraint is satisfied, the red dotted line

primitive in Figure 4b is not accepted because neither
parallelism nor containing relationship is satisfied,
while the blue dotted line in Figure 4c satisfies con-
taining relationship; therefore, it is accepted as a part
of the cluster.

In addition, the composition of a cluster has no direct
relationship with the length of the line primitive. Even
though the lengths of line primitives are uneven, which
means failing to meet the spatial alignment [41], a cluster
is possible if they satisfy the above relationships. This
situation will be handled by the novel MD algorithm in
Section 4.

According to the characteristics of the lane-level road
cluster, the constraints condition of lane ri and rj to be a
cluster can be formalized as the following three sub
constraints:
T1: the distance between ri and rj is less than the
threshold Td.
T2: the orientation difference between ri and rj is less
than the threshold Tdir.
T3: though T2 is not satisfied, ri (rj) is located in the
region of any existing cluster.

A bidirectional region growing algorithm is proposed
to lane-level road clustering in Section 3, and the involved
quantitative constraints is descripted indetail in Section4.

3 The bidirectional region growing
algorithm to lane-level road
cluster

3.1 Method’s basic strategy

The lane-level road cluster can be extracted by geometric
and semantic methods. The semantic information such as
the street names is very efficient when extracting the

Figure 4: Three cases of cluster conditions.
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lane-level clusters. In practical project, we prefer the
semantic information in the extraction work when it is
available and with high quality. However, there are still
many difficulties when using the semantic information.
For example, the semantic information may be omitted or
uncompletedduring the data acquisition. Another example
is that, the semantic information may have different
encoding methods and recording formats, which leads
to more measurement difficulties in semantic similarity.

From the perspective of scientific research, geometric
methods and semantic methods are two different cate-
gories, so the research objects are greatly different.
In this article, we focus on the geometric information.
From the perspective of practical application, the geo-
metric method and semantic method complement each
other and need to work together.

By analyzing the characteristics of the lane-level road
cluster, the following strategy is proposed to identify
the cluster: First, according to condition C1, the distance
constraint is used to identify the initial cluster. Second,
line primitives that do not meet the parallelism relation-
ship in condition C2 are removed from the recognized
initial clusters. Finally, for the remaining line primitive
which has not been assigned to any cluster, check con-
dition C3. If the line primitive is contained by the region
of any existing cluster, assign it to the corresponding
cluster.

Based on this strategy, a lane-level road cluster
mining algorithm with bidirectional region growing
(LCBRG) is proposed, which extracts clusters both horizon-
tally and vertically. The algorithm steps are as follows:
Step 1: Calculate the quantitative constraints of lines

and capture the proximity relationships among
line primitives.

Step 2: Region growing cluster on the vertical (RGCV)
examines the neighboring lines of the initial
seed line along the line orientation and deter-
mines whether the line neighbors should be
assigned to the existing cluster. Here the neigh-
boring relationshipmeans the connectionbetween
neighboring roads.

Step 3: Region growing cluster on the horizontal (RGCH)
examines the neighboring lines of the initial seed
line which are perpendicular and adjacent to the
seed line and determines whether the neighbors
should be assigned to the existing cluster. Here
the neighboring relationshipmeans the proximity.

Step 4: Traverse all the remaining ungrouped line primi-
tives and examine whether the line primitive is
contained by any existing cluster. If yes, assign
this line primitive to the corresponding cluster.

The complexity of LCBRG is O(n2), where n denotes
the lane number. In order to reduce the computational
complexity, strokes are first constructed according to the
principle of good continuation [42]. Line primitives with
similar orientation at the touching endpoint are assigned
to the same stroke. In fact, stroke construction is in some
sense a sub-step of RGCV.

The two key sub-steps of LCBRG algorithm, RGCV
and RGCH, are conducted in the Sections 3.2 and 3.3,
respectively to recognize the lane-level road cluster.

3.2 RGCV

RGCV examines neighboring lines of the initial seed line
along the line orientation and determines whether the
line neighbors should be added to the existing cluster.
Here the neighboring relationship means the connection
between the neighboring roads. Considering the quality
characteristics of lane-level road cluster, lines may have
dangles or pseudo-nodes. As shown in Figure 5, the end-
points should be touched, but they are not due to the lack
of professional knowledge of the participants. Hence,
a buffer circle with the radius α is offered to cover the
dangles or pseudo-nodes that are not connected to the
seed line. That is, if two lines are connected by the same
buffer circle, they are regarded as neighbors and will be
assigned to the same cluster.

Here the buffer radius α is critical. Figure 5a shows
the case that buffer radius α is too small to detect the
candidate neighbors, where line B is ignored which
should be assigned to the cluster of line A. While
Figure 5b shows the case that buffer radius α is too large
that too many candidate neighbors are detected, where
lines C and D are detected which should not be assigned
to the cluster of line A. Considering the fact that the max-
imum distance between lanes is generally less than the
road width, half of the road width is suggested for buffer
radius α. Even in the case that candidate neighbors are
excessively detected, the detected candidates are still
located in the region of the road polygon, which will
not affect the identification results of lane-level clusters.

(a) (b) 

A B 

C D D 

A

C

B αα

Figure 5: The buffer circle in RGCV.
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Thus, the maximum value of buffer radius α is suggested
to be half of the road width.

Let the integer K denote the cluster number, the
integer array cls() denote the cluster that a stroke belongs
to, the list array clu(k) denote the objects that a kth
cluster contains, and the Boolean array bVisited() denote
whether the stroke has been visited. The RGCV is con-
ducted by the following steps:
Step 1: For the interested dataset, strokes are first iden-

tified using the method in research [32]. Initialize
all the notation variables to 0.

Step 2: For the identified strokes, select one of them (the
first in this article) as seed stroke r0.

Step 3: If bVisited(r0) = false, query the candidate neigh-
boring strokes set Cnt(r0) which are not disjoint
with the buffer circles of the endpoints of stroke
r0. If cls(r0) = 0, then K++; set cls(r0) = K, and add
r0 to clu(cls(r0)). Let bVisited(r0) = true.

Step 4: For each stroke cri ∈ Cnt(r0), if cls(cri) = 0, test the
constraints condition c(r0, cri). If c(r0, cri) is satis-
fied to T2, then cls(cri) = cls(r0), add cri to clu(cls
(r0)). Let bVisited(cri) = true.

Step 5: Let r0 = cri, recursively carry out step3 to step5
until all the strokes are visited.

3.3 RGCH

RGCH examines neighboring lines of the initial seed line
which are perpendicular and adjacent to the seed line
and determines whether the neighbors should be added
to the existing cluster. Here the neighboring relationship
means the proximity relationship. The methods to mea-
sure proximity include the topological method (such as
Delaunay triangle) and metric method (such as buffer
analysis). The topological method using Delaunay triangle
captures proximity relationship without the limitation of
distance, and two features are regarded as neighbors if
they are connected by the same Delaunay triangle and
are not separated by other features, which means that it
is a qualitative approach. It can be seen that even if there
is a street block between two lanes from different roads
(the distance between them is larger than road width),
they are considered adjacent. This is against our motiva-
tion. In fact, only the lanes with specific distance can be
treated as a cluster. So the topological method using
Delaunay triangle may fail to detect the correct candidate
neighbors, thereby making the subsequent steps time-
consuming. Taking the road width into account, this

article uses the buffer analysis with fixed radius β to cap-
ture the neighbors. The buffer radius β needs to agree
with traffic rules, driving safety, road design principles,
and other related factors.

Using the notations in RGCV, the RGCH is conducted
by the following steps:
Step 1: Perform RGCV. Reinitialize the Boolean array

bVisited() to zero. Set variable k = 0.
Step 2: While k ≤ K, visit the kth result clu(k) identified in

RGCV. For each stroke ri ∈ clu(k), go to step 3.
Step 3: If bVisited(ri) = false, query the candidate neigh-

boring strokes set Near(ri) which are not disjoint
with the buffer of ri. Let bVisited(ri) = true.

Step 4: For each stroke nrj ∈ Near(ri), if cls(nrj)≠cls(ri),
test the constraints condition c(ri, nrj). If c(ri,
nrj) is satisfied to both T1 and T2, then add the
list array clu(cls(nrj)) to clu(cls(ri)). For each stroke
rq∈ clu(cls(nrj)), set cls(rq) = cls(ri)andbVisited(rq) =
true. Let bVisited(nrj) = true.

Step 5: Let ri = nrj, go to step3.
Step 6: Let k = k + 1, recursively carry out step 2 to step 5

until k > K or all the strokes are visited. The list
array clu(k) with more than one object inside is
regarded as a candidate cluster.

4 Quantitative constraints

According to the characteristics and three conditions of
lane-level road cluster mentioned above, the quantitative
constraints for cluster recognition mainly include dis-
tance and orientation.

(1) Distance. At present, the distance measurement
method between lines includes Euclidean distance (ED),
Hausdorff distance (HD), and Fréchet distance (FD).
However, ED is unable to measure the distance between
complex lines. The HD and FD are generally used to
measure the matching degree of point sets. When the
vertexes are non-uniformly distributed, the local shape
mutation has a great influence on the HD and FD. That
is, the stability of the HD and FD is poor [43–48].

(2) Orientation. The orientation of a line not only
describes its own orientation characteristics but also
can be used to reflect the relative orientation relationship
between two lines. The orientation of a line can be
divided into two categories, namely global and local
orientation. The global orientation refers to the azimuth
determined by the first and last vertex of the line. The
local orientation refers to the azimuth determined by

LCBRG: A lane-level road cluster mining algorithm  841



every segment of the line, usually weighted by the seg-
ment length. For a lane cluster, the line with angle 0 and
the line with angle 180 have the same contributions.
Hence, the angle of a line ranges from 0 to 180 in our
algorithm. Here the orientation difference is used to
describe the relative orientation relationship between
two candidate lines. Considering the situation in this
article, the orientations of line primitives in a lane-level
cluster suffer a slight change. So we employ the global
orientation to approximately measure the orientation dif-
ference of two lines, denoted by:

( ) ∣ ∣= −D θ θ θ ,A B (1)

where θA and θB are the global orientations of the two
lines, respectively.

It should be noted that the cluster is a fuzzy spatial
concept, and line primitives in a lane-level cluster may be
heterogeneous in length and inharmonious in spatial
alignment, as shown in Figure 6. For the purposes of
this study, the composition of a cluster has no direct
relationship with the length of the line primitive, so the
dotted lines in Figure 6a and b should be identified as a
part of the cluster. Hence, a new distance metric is needed
which is compatible with the situations in Figure 6a and b.

Taking the advantages of HD and FD, here a novel
MD metric method is provided to avoid the effects of non-
uniformly distributed vertexes, heterogeneous length,
inharmonious spatial alignment, and complex shape.
The MD method consists of two stages, namely distance
metric strategy and moving strategy.

Considering the heterogeneous geometry and the
inharmonious spatial alignment of lanes, a novel moving
metric method is proposed to calculate the distance and
orientation between lanes.

4.1 Distance metric strategy

First, the facing projection distance (PD) metric strategy
is achieved by the following:

For the given two lines, noted as { }= …A a a a, , , p0 1

and { }= …B b b b, , , q0 1 , interpolation is conducted. For
line A, for each vertex bi on B, the travel distance between

the bi and b0 is noted as subLen(b0, bi) and the length of B
is noted as Len(B). Create a new vertex on A at the loca-
tion with the length subLen(b0, bi) × Len(A)/Len(B).
Traverse all the vertexes on B, so that we get the inter-
polated A noted as { }′ = ′ ′ … ′A a a a, , , t0 1 , where t = p + q.
Similarly, using the same strategy, interpolation on
B is conducted and the interpolated B is noted as

{ }′ = ′ ′ … ′B b b b, , , t0 1 . The aim of interpolation is to reduce
the effect of the unequal number and non-uniform dis-
tribution of vertexes.

With this, the distance between A and B is defined as

( ) { ( ) ( )}= ′ ′ ′ ′PD A B PD A B PD B A, MAX , , , , (2)

( ) (∥ ∥)′ ′ = − ′

∈ ′

PD A B a B, AVG ,
a A (3)

( ) (∥ ∥)′ ′ = − ′

∈ ′

PD B A b A, AVG ,
b B (4)

where MAX[·] means the maximum function, AVG[·]
means the average function, and PD(A′, B′) denotes the
average of facing PDs between each vertex of lines A′ and
B′. ‖a − B′‖means the facing PDs between the vertex a and
the line B′. The facing PD between a vertex and a line is
the distance between the vertex and its projection point
on the target line.

The projection point is calculated as follows. As
shown in Figure 7, L1 and L2 are two lines and C (x1, y1),
D (x2, y2), and B (x3, y3) are the vertexes. The projection
point zt(xt, yt) of source vertex B projected on the segment
linking C and D is defined as:

⎧

⎨

⎪

⎩
⎪

= +

= +

x x λ
μ

x

y y λ
μ

y

Δ

Δ
,

t

t

2 21

2 21

(5)

where = +λ x x y yΔ Δ Δ Δ21 32 21 32( = −x x xΔ pq p q, = −y y yΔ pq p q)
and = +μ x yΔ Δ21

2
21
2 .

Here it is critical to find which segment the projection
point is projected on. However, except the two endpoints,
every vertex is shared by two segments. When the angle

(a) (b) 

Figure 6: Heterogeneous length and spatial alignment.
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t 
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t
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A

Figure 7: The calculation of projection point.
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of the two touching segments is sharper, it is difficult
to find which segment the projection point is on. For
example, the projection point of vertex E in Figure 7
will fall beyond any segments of L2 but on the extension
of the segment. Xing et al. [47] proposed the midpoint of
the source segment as reference point to calculate the
facing PD.

The method to find the projected segment is as fol-
lows: Taking Figure 8 as an example, midpoints of every
segments of L1 are calculated first, and they are treated as
reference points. Taking P2 as an example reference
point, its projection point projected on L2 is noted as P
′2. Among the segments linking P2 and the vertexes of L2,
the distance of P2P6 is the minimum. Hence, the projec-
tion point certainly falls on either P5P6 or P6P7. According
to the geometry characteristics of the triangle, if the per-
pendicular segment starting from one vertex of a triangle
falls inside the triangle, the interior angles at the other
two vertexes cannot be obtuse angle. As shown in Figure 8,
both the interior angles at P6 and P7 of the triangle
ΔP2P6P7 are not obtuse angle, so the segment linking P6
and P7 is suggested as the segment that the projection
point P′2 is projected on.

More details about facing PD can be found in our
previous research by Xing et al. [47]. Existing research
about the line distance is based on the set of the line
vertexes, while the PD metric is based on every vertex
of the line to another line, which makes it outstanding
in dealing with inharmonious spatial alignment [47].

4.2 Moving strategy

The spatial alignment is of great importance in measuring
distance and orientation between lines. When the spatial

alignment suffers a greater difference (twice as sug-
gested), the true distance and orientation may become
greater than they are. Hence, we give more attention to
spatial alignment by employing the proposed moving
strategy and define a novel MD metric. The intended pur-
pose is to get the minimum orientation and distance
between two lines with large differences. The moving
strategy is performed when the length of the longer line
is greater than or equal to twice the length of the shorter
one [49]. The moving step length, noted as stepLen, is set
by the user. It is suggested as 1 m in this work. The com-
parison in Section 5.1 shows that the MD metric is more
capable than PD with the situation of heterogeneous
length.

Let Len() denote the length function. Referring to
Figure 9, the moving strategy is carried out by the fol-
lowing steps to get the MD and orientation:
Step 1: Let A be the longer line and B the shorter. Set

interpolation step length as stepLen and interpo-
late A and B.

Step 2: Calculate the ending condition N, N = (Len(A)-
Len(B))/stepLen. Set variable i = 0.

Step 3: Select a0 as the starting seed vertex (i = 0), get
the sub-curve A′i with the distance of Len(B),
and calculate the distance PDi and orientation
θi between A′i and B.

Step 4: If i < N，then move A′i along A with the distance
of stepLen. That is, move A′i to the next interval
location, so that A′i + 1 is obtained. Calculate the
distance PDi + 1 and orientation θi + 1 between A′i + 1

and B. i = i + 1. Execute step 4 until i ≥ N. If i ≥ N,
then go to Step 5.

Step 5: Find the minimum value of PDi. The correspond-
ing PDi and θi are regarded as the moving dis-
tance and orientation difference, respectively,
between A and B. That is, the moving distance
MD(A, B) = MIN(PDi).

The computational processes of MD mainly include
point distance, point interpolation, facing PD, and the
moving strategy. The computational complexities are O
(1), O(t), O(t2), and O(t3), respectively. So the computa-
tional complexity of MD is O(1 + t + t2 + t3) = O(t3).

P1 P2 P3

P6P5P4
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Figure 8: The position judgment of facing projection points.
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5 Experiment results and
discussion

5.1 Validation of MD

To check the validation and compatibility of the proposed
MD for line clustering, five examples are provided, as
shown in Figure 10. The dashed line is the buffer region
with a distance of 5 m. From the perspective of human
visual perception, it can be qualitatively found that the
distance between lines in the experimental examples is
approximately 10 m. Four sets of comparison experi-
ments are designed. Compared with Figure 10a, the
length of the line below in Figure 10b is smaller, the
shape complexity is less in Figure 10c, the vertex number
of the line below in Figure 10d is less, and the spatial
alignment in Figure 10e is more heterogeneous. With
the line distance, these examples include the aspects
of length, shape complexity, vertex distribution, vertex
number, and spatial alignment. Actually, Figure 10b–d
collaboratively contribute to the shape complexity to
some extent.

Besides the classic ED, HD, and FD, other two recently
introduced distance metrics from Huang et al. [46] and

Xing et al. [47] are employed to compare with the MD
method proposed in this article. More details of these
five distance methods can be found in refs [43–47]. For
short, these five metrics are noted as ED, HD, FD, HBHD,
and PD. For the five examples in Figure 10, the distance
results calculated by these five methods are shown in
Table 1.

To understand Table 1, the readers have to compare
both different rows and columns. Different columns
demonstrate the different metric capabilities with the
same factors. Different rows demonstrate the different
metric stabilities with different factors. For example,
the HD and MD in Figure 10a are 25.487063 and 10.745835.
In Figure 10e, the line below only moves right side, and
the spatial alignment is the more heterogeneous, While
the HD and MD are 54.021876 and 9.679917. The rates of
value change are |25.487063 − 54.021876|/25.487063 and
|10.745835 − 9.679917|/10.745835, that is, 111.958027% and
9.919359%, respectively. This means that when measuring
distance, MD has a better stability and is more robust to
the heterogeneous spatial alignment.

For further analysis, statistical indicators, i.e., max-
imum (Max), minimum (Min), average (Avg), median
(Med), and standard deviation (SD), are calculated, as
shown in Table 2. Box plot is also employed to visualize
the range, distribution, central value, and variability of

Figure 10: Example for the validation of MD.

Table 1: Distance results by different methods

ED HD FD HBHD PD MD

a 8.564134 25.487063 19.279053 12.052824 10.745835 10.745835
b 8.564134 19.482878 14.942706 12.284965 13.138293 11.818602
c 8.739612 28.556984 18.628247 12.531829 12.314051 10.292981
d 8.674569 25.487063 19.011023 11.853981 11.682789 10.390045
e 7.393849 54.021876 45.149334 18.215809 9.679917 9.679917
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each metric, as shown in Figure 11. The box ranges
from 25 to 75%. The whisker indicates variability out-
side the upper and lower quartiles such as the most
extreme values in the dataset (maximum and minimum
values).

In order to measure the deviation between the dis-
tance of different metrics and that of human visual per-
ception, the deviation between the average and 10m
(visual distance) is calculated, noted as avg-10 in Table
2. The dashed line standing for the distance of 10 m is also
illustrated in Figure 11 to visualize the deviation. It can be
found that the deviation (avg-10) of MD is the smallest in
Table 2, which means it is closest to the distance of
human spatial cognition as shown in Figure 11.

On one hand, as stated in refs [46,47], ED measures
the minimum distance between point sets without the
consideration of shape, size, order, and alignment of
object groups. On the other hand, though the SD of ED

is the smallest, the avg-10 deviation is larger than that of
MD. Among the other four, the variation range of MD is
the smallest, which means that MD has better stability
when dealing with the situation of non-uniformly distrib-
uted vertexes, heterogeneous length, inharmonious spa-
tial alignment, and complex shape.

Actually, HBHD and PD are improved based on HD
and FD. The results also reflect the fact that they perform
better than the latter. On the state of the art, the applic-
ability for line clustering from large to small is MD, PD,
HBHD, FD, HD, and ED. The theory analysis, measuring
stability, and visual reliability jointly proved that the pro-
posed MD method is suitable for line clustering.

5.2 Lane-level road clustering

To verify the effectiveness of the proposed method, a real
dataset from OpenStreetMap is used in the experiments.
The experimental region is located in the east of Beijing
City, between 39°56′25.30″ N to 39°54′24.40″ N latitude
and 116°29′3.22″ E to 116°32′14.60″ E longitude, as shown
in Figure 12. The semantic information of the region is
uncompleted and fails to conduct the extraction work, so
lane-level road clusters are extracted using the proposed
LCBRG method. The distance threshold is critical and it is
necessary to consider traffic planning, road design, and
other factors. The lane width is the width required for safe
and comfortable driving on the road, which considers the
vehicle width and the extra width that is necessary for the
overtaking or parallel driving. In general, the width of
motorway in the city’s main road is 3.5–3.75 m, and the
width of the sidewalk varies from 3 to 10m [50,51]. The
width of the central isolation zone ranges from 1 to 10m
[50,51]. There may also be overpasses, toll stations, and
so on. Accordingly, the distance threshold Td of lane
width in this article is set to 25 m. Therefore, the buffer
radius α in RGCV is 12.5 m and the radius β in RGCH is
25 m. The orientation difference threshold Tdir is set to
30°. The parameter table is shown in Table 3.

Table 2: Statistics of different distance methods

ED HD FD HBHD PD MD

Max 8.739612 54.021876 45.149334 18.215809 13.138293 11.818602
Min 7.393849 19.482878 14.942706 11.853981 9.679917 9.679917
Avg 8.387260 30.607173 23.402073 13.387882 11.512177 10.585476
Med 8.564134 25.487063 19.011023 12.284965 11.682789 10.390045
Avg-10 −1.612740 20.607173 13.402073 3.387882 1.512177 0.585476
SD 0.501225 12.071724 10.987031 2.424597 1.205058 0.705705

Figure 11: Box plot to display the range of each metric.
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There are 119 road lanes in the experimental area, as
shown in Figure 12. Because of the good organization of
road networks, we use the method in ref. [42] to identify
the strokes. Fifty-two strokes are recognized including
the stroke-structured road group and single road lane.
Using the proposed LCBRG method to mine the lane-level
clusters from Figure 12, eight lane-level clusters are
obtained, where 38 strokes are involved, as the colored
solid class 1–8 shown in Figure 12. The details of the lane-
level road clusters are listed in Table 4. Also, the statistics
of lane-level road cluster result are shown in Table 5. It

can be seen that 73.08% strokes are recognized as lane-
level clusters. There are still 14 (52-38, as shown in Table 5)
single road strokes that are not involved in the lane-level
clusters, shown as the dashed class 0 in Figure 12.

In addition, there is one undesirable phenomenon in
the recognized result, the cluster A shown in Figure 12,
which is surrounded by the dotted line. Cluster A con-
tains strokes {#45, #46, #47, #50, #51}. The overlap pro-
portion of stroke {#45} and strokes {#46 and #47} is
consistent with the constraint of lane-level constraint
condition and therefore they are identified as part of
the same cluster. There are at least the following two
reasons responsible for this undesirable phenomenon:
(1) Stroke construction algorithm. The experimental

dataset does not have semantic information, so
strokes are geometrically identified mainly according
to the principle of good continuation. Hence, two
lanes may be regarded as parts of a stroke because
of their good local continuation, leading to the fact
that the lanes may have large curvatures, such as the
strokes #45, #46, and #47. In other applications, users
should take into account both semantic information
and good continuation principle to identify a stroke.

(2) Lane-level road cluster recognition. In order to be
compatible with the situation of heterogeneous length
and inharmonious spatial alignment, the radius β in
RGCH is relaxed. The advantage is that short lanes,
such as those in the region C in Figure 13, are also

Figure 12: Lane-level road cluster input data and result. (a) The input
strokes labelled with strokes IDs; (b) Lane-level road cluster result.

Table 3: The parameter table

Td (m) Tdir (°) α (m) β (m)

25 30 12.5 25

Table 4: Details of lane-level road clusters

Cluster ID Stroke ID Stroke
number

C1 0, 15 2
C2 1, 2, 4, 9, 10, 11, 17, 30, 31, 32, 33,

34, 35, 36, 37, 38
16

C3 3, 5, 23, 24, 43, 48, 49 7
C4 7, 8 2
C5 12, 13 2
C6 18, 19 2
C7 21, 25 2
C8 45, 46, 47, 50, 51 5

Table 5: Statistics of lane-level road cluster result

RN SN CN SiC SiC/SN SSN

119 52 8 38 73.08% 14

RN: road number, SN: stroke number, CN: cluster number, SiC:
stroke number in cluster, SiC/SN: SiC divided by SN, SSN: single
stroke number.
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identified as parts of a cluster, which will greatly
increase the robustness and universality. But the
drawback is also clear that there will be some unde-
sirable lanes such as those in the dotted region A
in Figure 12. On the whole, this relaxation is worthy,
because the number of short lanes is far more than
the number of that with large curvature (at least
10 times in general). In other applications, the
threshold of the length constraint should be set
based on user demands, data characteristics, and
actual situation.

An enlarged sub-view of Figure 12 is shown in Figure 13.
It can be seen that the proposed method can not only
extract the regular two-lane road, but also the irregular
lane-level road. However, the method by Zhang et al. [48]
uses a strict parallel coefficient as a quantitative indicator
to extract only two-lane roads, while the proposed method
uses the distance, proximity, and orientation relation-
ships; hence, it is more advantageous in robustness. Con-
sequently, some noise lanes that satisfy T1 or T2 are
assigned to clusters, for example, the region C in Figure 13.
This means that the proposed method is more general
that Zhang et al. [48]. Assigning these noise lanes to
clusters makes the concept of semantic road entity more
sufficient.

It should be noted that the overpasses are usually
modeled as lines and stored together in the road data-
base, as the region D shown in Figure 13, which is
enlarged and shown in Figure 14a. This may lead to the
fact that parts of the facilities such as steps or escalators
along the road may be identified as parts of lane-level
clusters. Although it is reasonable in geometry and social
function, it destroys the semantic integrity of overpass,
and will affect the actual width of the detected road clus-
ters. An overpass is a bridge, road, railway, or similar
structure that crosses over another road. The steps or
escalators are components of overpass structure and
cannot be individually assigned to the cross road. Hence,
steps or escalators should be treated as a whole according
to their semantic information or other more excellent
methods.

In addition, due to data collection, data quality, and
other reasons, some lanes may be visually involved in the
composition of multiple lane-level road clusters. In the
“L” shaped #43 lane shown in Figure 14b, the corner
vertex at the right angle visually turns the lane into two
parts, the horizontal part of #43 lane is visually adjacent
to the cluster C3, while the vertical part is visually adja-
cent to the cluster C8. The length proportion that each
part falls into the corresponding cluster is approximately
the same. Since the distance between the road and the
cluster C3 is smaller, it is recognized as a part of cluster
C3. In other applications, distance, length proportion of
each cluster, and other factors may be taken into account.

The validation of the proposed method is verified
using the local region of Beijing City. The undesirable
phenomenon and possible affecting factors are also dis-
cussed. Furthermore, experiments are carried out on the
whole city of Beijing. In the result shown in Figure 15, the
red lines are the clusters recognized using the proposed
method, while the gray ones are unassigned roads. It can
be seen that the recognized lane-level clusters act as the
skeleton and framework of road networks.

Figure 13: Enlarged view of lane-level road cluster result.

Figure 14: Two undesirable examples: (a) overpass in lane-level road cluster dataset and (b) lane involved in the composition of multiple
clusters.
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In urban planning, the lane-level roads are always
the ones that are important due to the amount of traffic
flow and the aim is to relieve the traffic pressure. It means
that compared with single road, the lane-level roads
reflect the importance and capacity to some extent. The
characteristics of lanes measure the hierarchy of the road
networks. In general, the more the number of the lanes is,
the greater the capacity of the road is, and the more
important the road is. Hence, the lane-level road always
has high priority in cartographic generalization and
multi-scale representation.

The experiment is conducted on a laptop equipped
with a Microsoft Windows 10 64-bit operating system.
The central processing unit (CPU) is an Intel Core i7-
8750H, and the memory (RAM) is 32 GB in size. The total
computation time of the Beijing case is 311.22 s. The pro-
posed algorithm with high complexity is still time-con-
suming and may affect the scalability. For example, when
the data volume is very large, it may run timeout and fail
to get the result. Spatial partitioning and indexing strategy
such as hashing, trees, and Morton index may be referred
to speed up the searching process and reduce the number
of candidates for testing.

6 Conclusion

The collective map generalization of object group is one
of the difficulties of map generalization. Lane-level road
clusters are common in the road network dataset. However,
there is few if any research on the line group generaliza-
tion. In addition, line group identification is one of the
most difficult fields. This article analyzes the concept of
lane-level road cluster and its causes, offers the effective

spatial constraints, and provides the basic strategy for line
cluster recognition, which provides strong support for map
generalization of the line group. Further research includes:
the identification of high-level semantic structures (such as
road roundabout and stack interchange) of road networks
through geometric features and group-based line general-
ization operations such as simplification, typification, and
so on.
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