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Abstract: Remote sensing (RS) water depth inversion is
an important technology and the method of water depth
measurement. Taking the waters around the islands out-
side the Pearl River Estuary as an example, five optical RS
depth inversion algorithms were introduced. Then, five
water depth inversion models were trained through the
HJ-1B satellite RS image and the measured water depth
data. The results show that the mean absolute error (MAE)
of the deep learning model was the smallest (2.350 m),
and that the distribution of predicted water depth points
was closest to the actual value. Deep learning has been
widely used in RS image classification and recognition and
shows its advantages. Therefore, the deep learning model
was applied to extract the depth of the shallow water.
Meanwhile, the obtained inversion effect map is closest
to the actual contour map. The water depth inversion per-
formance of back propagation neural network model is
better than that of the radial basis function (RBF) neural
network model. Besides, the inversion accuracy of the RBF
neural network may be affected due to the small amount
of data and the improper number of hidden neurons.
The results show broad application prospects of machine
learning algorithms in RS water depth inversion. Also,
this study provided data support for model optimization,
training, and parameter setting.
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1 Introduction

The ocean plays a vital role in the strategic layout of
national security and economical construction, and the
water depth is the essential marine element in shallow
seas. Whether in the construction of ports, docks, water-
ways, and anchorages, or in the safe navigation of ships,
marine scientific research, marine engineering construc-
tion, and marine environmental assessment need the
water depth data as the primary guarantee [1]. Traditional
water depth measurement methods have large limi-
tations and take a long time. The water depth remote
sensing (RS) technology is favored because of its wide
range and short-time consumptions.

Solar radiation is weakened by the atmosphere
(absorption, reflection, and scattering) before reaching
the surface of the water body, and only few part of the
energy is reflected to the atmosphere at the water—air
interface. The main energy enters the water body through
water surface refraction [1]. By collecting the optical
radiation information received by the sensor and per-
forming preprocessing operations such as atmospheric
correction, this study obtained some information. The
information included the spectral information and the
water body bottom and topography information con-
tained in the water emission and reflection spectra of
the study area. Then, the study used the water depth
inversion model to invert the study area [2]. Since the
1970s, with the formation and development of RS satellite
technology, the water depth RS inversion method has
been known by researchers because of its unique advan-
tages. Then, various water depth inversion models have
been continuously proposed [3]. According to the prin-
ciple of water depth optical inversion by RS, the methods
of deriving the water depth inversion model based on the
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relationship between the water depth and the reflection
spectrum are called the density method. The density
methods were divided into three categories [4] according
to the different calculation methods.

The theoretical interpretation model was derived from
the radiation transmission model. The advantage of the
model is that the inversion results are more accurate. The
disadvantage is that the inversion process must have a
certain amount of optical parameter data as a support.
But the amount of the optical parameter data that the
inversion process requires is so large that the model is
not easy to implement, the equations are challenging to
solve, and the application in the inversion process is less.
Only by making the theoretical interpretation model more
perfect [5], it can be more convenient for water depth
inversion [6]. Polcyn et al. simplified the theoretical inter-
pretation model by using the research of Polcyn as a
basis, making it possible to apply this model to actual
water depth back evolution [7].

The semi-theoretical and semi-empirical model com-
bined theoretical interpretation models and empirical
algorithms, and performed regression analysis through
measured parameter data to obtain the correlation
between reflectivity and water depth, and then inverted
the water depth of the entire area. The theoretical inter-
pretation model required a small number of parameters
and only required that the input optical radiation data of
the local water body can be used to derive the global
water depth inversion results, and the inversion accuracy
was better. According to the attenuation curve of the
reflection spectrum of sunlight passing through water
bodies at different depths, Benny and Dawson developed
a single-band model (only for single-band water depth
inversion) and verified its feasibility [8]. John et al. pro-
posed a multiband water depth inversion model based on
a constant ratio of the bottom water reflectivity between
bands, ignoring the influence of the water substrate on
the reflection spectrum. Besides, the accuracy of the
inversion was verified [9]. Jingjing and Qingjiu proposed
to use the B3 and B4 bands of Landsat 8 data to construct
a band ratio water depth inversion model and used the
inversion results to draw a water depth map [10]. After
processing the water depth of Hongze Lake, the average
water depth error of the inversion value was 0.35 m, and
the effect was better. The assumptions of the aforemen-
tioned two models were also to ignore the influence of the
bottom of the water body, so as far as possible the inter-
ference of low environmental noise and other factors on
water depth inversion, with high inversion accuracy and
good effect [11]. Benging et al. applied domestic GF-1
satellite data to carry out image geometric correction,
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atmospheric correction, and flare correction preproces-
sing. Based on the dual-band water depth inversion
model and the logarithmic ratio model, the water depth
inversion of Jinsha Island in Xisha Islands was performed
by RS, and the measured data was used to prove the
Jinging Island GF-1 satellite data based on the dual-
band linear model. Water depth inversion results were
significantly better than the dual-band logarithmic ratio
model [12].

The statistical model is based on statistical ideas
and methods. The data objects are as follows: sunlight
radiating on the water surface, water body-atmospheric
scattering, and water body bottom reflection, to establish
the relationship between the measured area water depth
value and the RS optical image spectrum. Knowing the
linear relationship, the correlation of these can be used to
infer the water depth value. The method was mature and
widely used in water depth inversion. Based on the dif-
ferent types of functions used in the model, the statistical
model can be divided into linear function model [13],
logarithmic function model [14], exponential function
model [15], power exponential function model [16], quad-
ratic polynomial function model, and so on.

The introduction of multiple bands further weakened
the interference of different substrates on light reflec-
tance. Water depth was independent of the substrate
type. During the inversion process, regression analysis
was performed on the measured water depth data to cal-
culate relevant parameters. Most of the models described
earlier were based on the correlation between the optical
signal’s bottom reflection spectrum information and the
water depth. Therefore, the limitations of the aforemen-
tioned models were also undeniable [17]. After nearly
50 years of research, optical water depth inversion models
have been continuously developed and gradually over-
come. The following research introduced new methods
into water depth inversion to overcome the problems
existing in the previous model. Sandidge and Holyer
introduced machine learning to water depth inversion,
combining the neural network method with water depth
RS inversion for the first time. Then Sandidge and Holyer
used the water hyperspectral data and measured the
water depth data of the study area to establish a neural
network multilevel decision-making water depth inver-
sion [18].

In recent years, on the basis of actual situation of the
research area, scholars have constantly adjusted the
neural network model to adapt to the inversion of water
depth in more complex waters. In the water depth inver-
sion of the Yangtze estuary, Wang introduced the “sus-
pended sediment influence factor” based on the neural
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network model, which improved the accuracy of the
neural network model in the inversion of the turbid water
depth [19]. Zhicheng introduced chlorophyll and sedi-
ment into the neural network model to retrieve the depth
of Dalian Bay [20]. Honggi et al. proposed a modeling
method that introduced support vector machine (SVM)
into water depth inversion, constructed a SVM inversion
model, and proved the potential of this model in water
depth inversion [21]. Xu applied neural network tech-
nology to the domestic HJ-1A satellite for shallow water
depth inversion and realized the application of HJ-1A
satellite in shallow water depth inversion [22]. Yanguo
and Jinxia compared the water depth inversion capability
of the traditional linear model and the neural network
model and proved the advantages of the neural network
model in dealing with the water depth inversion problem
in terms of the model’s adaptive ability and mapping
ability [23]. Subsequently, Bin et al. added particle swarm
algorithm to train the water depth data in the process of
inverting the water depth of the neural network model,
improving the iterative convergence speed of the neural
network model. Bin et al. also proved that the improved
algorithm was better than the traditional neural network
algorithm in the depth of water depth of 30 m or less [24].
Guizhou et al. compared the back propagation (BP) and
radial basis function (RBF) neural network models. They
changed the parameters of the BP network through the
control variable method to maximize the correlation coef-
ficient of training. The trained BP and RBF networks were
applied to the water depth inversion of Mischief Reef, and
the advantages and disadvantages of the two neural net-
works were analyzed from different angles [25].

So far, domestic and foreign scholars had established
a variety of models of RS depth inversion for different data
sources and research areas and achieved good results.
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Figure 1: The map of the study area.
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However, it had to be admitted that the technology of
RS depth inversion was not perfect, and its accuracy and
stability cannot yet replace traditional measurement
methods. As a machine learning algorithm that was closer
to artificial intelligence, deep learning had achieved image
recognition results. These results were far exceeding the
results that were achieved by previous related technolo-
gies [26]. This study attempted to combine deep learning
algorithms with RS water depth inversion to explore a
more accurate model.

2 Data

This section introduced the study area and the RS satel-
lite data. The characteristics of the study area and the
characteristics of the HJ-B satellite data were explained.

2.1 The overview of the study area

The sea area of the archipelago outside the Pearl River
Estuary has geographical coordinates between 113°37E
and 114°21E and between 21°44 N and 22°12 N (Figure 1).
The maximum length of the studied area is 30 km, the
maximum width is 45 km, and the average water depth is
about 30 m. It has a subtropical maritime climate, with
sufficient sunshine and abundant rain.

The Islands off the Pearl River Estuary, located out-
side the Pearl River Estuary in Guangdong Province, is
the second largest archipelago after Zhoushan Islands in
China. It consists of more than 150 islands. The larger ones
are Hong Kong Island, Datong Island, Hengqin Island,
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Gaolan Island, Hebao Island, Dajin Island, Shangchuan
Island, and Xiachuan Island, and the smaller islands include
Wanshan Islands, Po Toi Islands, and Dangan Islands. They
are administratively divided into Hong Kong, Macau, Zhuhai
city, and Taishan county. Because it is affected by the North-
East-South-West fault, it is arranged in a series of northeast
directions, surrounded by the Pearl River Funnel Bay mouth,
and stretches over 160 km. The archipelago was originally a
continental mountain range (Lotus mountain) and later
separated from the mainland into islands due to mountain
subsidence and seawater intrusion.

The archipelago waters are good fishing grounds,
and the Pearl River estuary, which is the place for fish
to feed and spawn, is rich in bait. Besides, the fishing
industry is pretty developed. In terms of transportation,
there are highways on the island, beacon for Guangzhou
and Hong Kong route navigation target. Due to its excel-
lent geographical location, the archipelago has been a
gateway for foreign trade and traffic, especially Hong
Kong Island. Hong Kong Island is the world’s leading
waterway and the largest trading port in the East.
Wanshan archipelago is the only way for Guangzhou to
voyage to sea, which is located at the mouth of the Pearl
River and under the jurisdiction of Zhuhai City.

2.2 Overview of HJ-1B satellite data

China’s “environment and disaster monitoring small
satellites” A and B (HJ-1A and HJ-1B) were launched in
Taiyuan Satellite Launch Center on September 6, 2008. It
is the first small satellite constellation dedicated to the
environment and disaster monitoring and prediction in
China and is another new civil satellite system launched
after the meteorological, marine, and resource satellite
series in China. HJ-1B is a sun synchronous orbit near
noon, with an orbit height of about 650 km. It carries
two widecover multispectrum cameras and an infrared
sensor, with a revisit period of about 96 h. The CCD
camera has a width of 360 km, the combined width of
the two sets is greater than 700 km, and the spectrum
range is 0.43-0.9 pm. The resulting image is divided
into four bands with a resolution of 30 m under the satel-
lite. The infrared scanner has a width of 720 km, the spec-
tral range is 0.75-12.5 pm, and the obtained image is also
divided into four bands. Subsatellite point resolution of
the first three bands (near infrared, short wave infrared,
and mid infrared) is 150 m, and Subsatellite point resolu-
tion of the fourth band (thermal infrared (band)) is 300 m
[27]. HJ-1B satellite’s wide observation width and other
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characteristics can provide strong support for large-scale,
all-weather dynamic monitoring of the environment.

3 The introduction of methods

The methods used in this study included deep learning,
curve fitting, and simple machine learning algorithms.
The calculation principle of each algorithm was different,
and the characteristics of different algorithms were explained
in detail.

3.1 Deep learning method

The concept of deep learning comes from the study of the
artificial neural network. A multilayer sensor with mul-
tiple hidden layers is a deep learning structure. Deep
learning can combine low-level features and then build
more comprehensive high-level attribute features layer
by layer. Deep learning model has five to ten layers or
more neural networks, while traditional neural networks
usually have only two or three layers. Moreover, the para-
meters and computing nodes of traditional neural net-
work are limited, and its ability to learn and express
complex functions is limited. The complex structure of
deep learning makes it to produce more effective training
mechanism. The hierarchical structure of deep learning
model is only connected between adjacent layers of neu-
rons, and the same layer and cross layer neurons are not
connected with each other, which is similar to the struc-
ture of human brain, and can imitate the brain to express
information efficiently and accurately [28].

3.2 Curve fitting methods

Curve fitting uses a certain model to fit a series of data
into a smooth curve, to observe the internal relationship
between the data and the model, and to understand the
changing trend of the data. Commonly used models
include linear model, polynomial model, exponential
model, and Gaussian model. Generally, the model used
can be determined according to the characteristics of the
specialty. When the model cannot be determined, the
scatter diagram can be drawn, and the appropriate curve
type can be selected according to the distribution of the
scatter [29].
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3.3 BP neural network

The BP neural network is a kind of multilayer feed for-
ward neural network. Its main feature is that it can for-
ward to transmit the signal and back transmit the error
[30]. It uses the error after output to estimate the error of
the direct leading layer of the output layer and then uses
this error to estimate the error of the previous layer, so that
the error estimation of all other layers can be obtained
if the layer passes backward, and the connection weight
of the network can be constantly changed by the obtained
error, so as to make the output of the network keep close to
the expected output (Figure 2).

3.4 RBF neural network

RBF neural network is a three-layer neural network,
which includes input layer, hidden layer, and output layer.
Both the RBF neural network and the BP neural network
belong to the feedforward neural network. Different from
the BP neural network, the transformation from input
space to hidden layer space of the RBF neural network is
nonlinear, while the transformation from hidden space to
output space is linear. In other words, RBF is used as the
“base” of the hidden unit to form the hidden layer space.
In this way, the input vector can be directly mapped to the
hidden space without weight connection. When the center
point of RBF is determined, the mapping relationship is
determined. The mapping from the hidden layer space to
the output space is linear, that is, the output of the net-
work is the linear weighted sum of the output of the hidden
unit, and the weight here is the adjustable parameter of the
network. Among them, the function of the hidden layer is
to map vector from low dimension to high dimension, so
that low-dimension linear indivisibility can become linear
separable from high dimension. In this way, the mapping
from input to output of the network is nonlinear, while the

Input layer

Middle layer (hidden layer)

Figure 2: The simple structure of the BP neural network [31].
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output of the network is linear to the adjustable para-
meters. The weight of the network can be directly solved
by the linear equations, thus speeding up the learning
speed and avoiding the local minimum problem [32].

3.5 SVM neural network

SVM was first proposed by Cortes and Vapnik. It is a
supervised learning model and related learning algo-
rithm to analyze data in classification and regression
analysis. The main idea of SVM is to build a classification
hyperplane as the decision surface, so that the isolation
edge between positive and negative examples is maxi-
mized [33].

When the data are linearly separable, the linear clas-
sifier can be learned by maximizing the hard interval,
that is, the hard interval SVM; when the training data
is not linearly separable but nearly linearly separable,
the linear classifier can also be learned by maximizing
the soft interval, that is, the soft interval SVM; when the
training data are linearly separable, it can be learn by
maximizing the inner product kernel and the soft interval.
A nonlinear SVM is obtained. Therefore, SVM can provide
good generalization performance in pattern classification,
which is unique to SVM.

4 Applications and results of
different methods

The water depth data are divided into the training set and
the test set. The training set was used to train each model,
and the test set was imported into the trained model to
obtain the depth inversion results of different methods.

4.1 The results of deep learning

This study used a deep feed forward neural network
(DFNN). In the regression task, it can extract advanced
features from a large number of variables to obtain high
prediction accuracy. This study used keras’s deep learning
framework to build the DFNN model. The specific training
process of deep learning includes feature learning using
bottom-up and unsupervised methods. First, the first layer
was trained without calibration data to learn the para-
meters of itself. Due to the large capacity and loose
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Table 1: A selection of results of tuning the key parameters of the model

Hidden layers Neurons Epochs Train R? Train MAE Test R? Test MAE
3 36 50 0.627 1.471 0.601 5.936

3 36 100 0.711 0.684 0.697 3.215

3 36 150 0.764 0.602 0.722 3.154

4 36 50 0.890 0.123 0.825 2.350

4 36 100 0.832 0.101 0.825 2.946

4 36 150 0.816 0.166 0.790 3.054

5 36 50 0.894 0.094 0.791 3.468

5 36 100 0.887 0.167 0.727 3.271

5 36 150 0.845 0.085 0.704 3.240

constraints of the model, the generated model can learn
from the data structure itself and obtain more features
than the input. After learning to obtain the N-1 layer, the
output of the N-1 layer was taken as the input of the N-
layer, and the N-layer was trained, thereby obtaining the
parameters for each layer. In addition, the model adopted
top-down supervised learning. By using labeled data for
training, the error propagated backward in order, and the
weight of each layer was adjusted.

The training set and the test set were used to find the
optimal parameters of the model. The correlation coeffi-
cient (R%) and MAE of the model were obtained by adjust-
ing the number of hidden layers, neurons, and epochs.
The selection of the results is presented in Table 1. When
the maximum R? and minimum MAE of the training set
appeared, the R* and MAE of the test set were not optimal.
This result showed that the blindly pursuing of minimizing
the error of training set may lead to the decline of the ability
to predict unknown data (test set). Therefore, to avoid over-
fitting and improve the generalization ability of the model,

it was important to consider the evaluation parameters of
training set and test set at the same time. In this study, the
following were finally selected as the initial input para-
meters of the model: hidden layers = 4, neurons = 36,
and epochs = 50. As presented in Table 1, R? between the
predicted depth and the measured value of the training set
was 0.890, and the R? between the predicted depth and the
measured value of the test set was 0.825. In addition, the
MAE of training set and test set were 0.123 and 2.350,
respectively. The result showed that the simulation accu-
racy of the model is high, and the prediction ability of new
data was also improved.

The prediction result of this deep network structure is
shown in Figure 3.

4.2 The results of curve fitting models

Considering the different indexes (some bands) had dif-
ferent correlation coefficient with the values of water

113.90

113.85 113.95 114.00
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depth/m
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114. 05 114.10 114.15

Figure 3: Prediction results of water depth based on deep learning model.
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Table 2: The correlation coefficient between different indexes (some bands) and water depth in this area
Correlation coefficient Inversion indexes
B1 B2 B3 B4 B1/B2 B2/B3 B3/B2 B1/B3 B1/B4 B4/B1 B2/B4
p 0.764 0.696 0.393 -0.661 -0.387 0.600 -0.635 0.606 0.776 -0.808 0.704

deep in this area, the study referred to some researches
[23,32] and did a correlation analysis, which is presented
in Table 2.

According to Table 2, the correlation coefficient between
B4/B1 band ratio and water depth in this area was the
highest. Therefore, the band ratio of B4/B1 was selected as
the input value for the inversion of water depth in this area
by the curve fitting model (Figure 4).

According to Table 3, the cubic model had the better
results than other curve fitting models with the lower R, R?,
and so on (R = 0.875, R’ = 0.766, R’ (modified) = 0.761, and
the standard error of the estimate = 0.353). Thus, the study
wound use the cubic model to inverse the water deep value
of the area. The inversion result is shown in Figure 5.

4.3 The results of BP neural network

In this study, 60% of the total data and 40% of the total data
were used as the training set and the test set. The structure of
the BP neural network is shown in Figure 6. The B1-B4 and
B4/B1 band data were used as the input of the model.

The MAE of training results was 1.674, and the stan-
dard deviation was 2.194; the MAE of test results was

B4/B1

Point
~—Linear
Logarithmic
Inverse
Quadratic
Cubic

10.007

2.455, and the standard deviation was 3.271. The impor-
tance of predictive variables of the model was 0.35, 0.25,
0.21, 0.11, and 0.09 (B4/B1, B4, B2, B3, B1, respectively).
The inversion result is shown in Figure 7.

4.4 The results of RBF neural network

In this study, 60% of the total data and 40% of the total
data were used as the training set and test set. The structure
of the RBF neural network is shown in Figure 8. The B1-B4
and B4/B1 band data were used as the input of the model.

The MAE of training results was 1.838, and the stan-
dard deviation was 2.47; the MAE of test results was 2.719,
and the standard deviation was 3.702. The importance of
predictive variables of the model was 0.25, 0.25, 0.25,
0.17, and 0.08 (B4/B1, B2, B1, B4, and B3, respectively).
The prediction result is shown in Figure 9.

4.5 The results of SVM

This study used SVM with a linear function kernel. The
training set and the test set were composed of 60% of the

Table 3: The results of curve fitting

9.001

== Growth
Exponential

= ~Logistic

8.001

7.007

6.00-

5.00¢

T T T
10.00 20.00 30.00 40.00 b/m

Figure 4: The results of curve fitting models of water deep in this
study area.

Names of R R? R? (modified) The standard
models error of the
estimate

Linear 0.808 0.654 0.651 0.427
Logarithmic 0.748 0.559 0.556 0.482
Inverse 0.675 0.456 0.452 0.535
Quadratic 0.873 0.762 0.759 0.355
Cubic 0.875 0.766 0.761 0.353
Compound 0.794 0.631 0.628 0.055
Power 0.727 0.529 0.526 0.062

S 0.651 0.423 0.419 0.068
Growth 0.794 0.631 0.628 0.055
Exponential 0.794 0.631 0.628 0.055
Logistic 0.794 0.631 0.628 0.055
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Figure 5: Prediction results of the water depth based on curve fitting models.

total data and 40% of the total data. The B1-B4 and B4/B1
band data were used as the input of the model.

The MAE of training results was 2.046, and the stan-
dard deviation was 2.621; the MAE of test results was
2.451, and the standard deviation was 3.228. The impor-
tance of predictive variables of the model was 0.28, 0.27,
0.23, 0.17, and 0.04 (B4/B1, B1, B2, B3, and B4, respec-
tively). The inversion result is shown in Figure 10.

Bias & -
&
B4B1 &
H(1:1)
&
B4 &
&
B3 &
H(1:3)
&
B1 &

Figure 6: BP neural network structure.

5 Comparative analysis and
discussion

To better reflect the accuracy of each model, for each
water depth inversion algorithm, the MAE between the
inversion value of all prediction points and the measured
value was calculated, and the results are presented in
Table 4. Besides, for each model, the measured water

Predicted water
&  depthim
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Figure 7: Prediction results of water depth based on the BP neural network.

depth value was taken as the horizontal axis of the plane error between the inversion value and the measured
rectangular coordinate system, and the inversion value value, as shown in Figure 11.

was taken as the vertical axis of the coordinate system. The performance of several depth inversion algo-
All points were plotted in the coordinate system to get the rithms is compared in Table 4. Table 4 indicates that

B4/B1

B2

Predicted water
B1 &  dephim
B4
B3

Figure 8: Structure of RBF neural network.
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Figure 9: Prediction results of water depth based on the RBF neural network.

the MAE between the depth learning model and the mea-
sured water depth was the smallest (2.350 m), followed by
the linear SVM model (2.451 m), and the BP neural net-
work model was in the middle (2.455 m), and the errors of
the curve fitting model and RBF neural network model
were relatively large (2.575m and 2.719 m, respectively).
Therefore, the deep learning model was the best, fol-
lowed by the linear SVM model and the BP neural net-
work model, and the curve fitting model and RBF neural
network model were poor.

Figure 11 directly reflected the deviation between the
predicted water depth and the measured water depth at
each inspection point. For the convenience of observation,
the straight line passing through the coordinate origin,
and slope of 1 was called “coincidence line” [17]. The
inversion value of all inspection points on the coincidence
line was equal to the measured value. The performance of

several depth inversion algorithms was analyzed and com-
pared from Figure 11.

From the curve fitting model in Figure 11(a), the dis-
tribution of prediction points was relatively scattered as a
whole. When the actual water depth was less than 25 m, the
prediction value of the model was generally greater than
the measured value, and the fitting between the prediction
point and the coincidence line was not good as a whole.

It can be seen from Figure 11(b) that for the BP neural
network model, when the actual water depth value of the
predicted point was greater than 35m, the prediction
error of the model was larger. When the actual water
depth was about 30 m, the prediction accuracy of the
model was higher. The upper prediction point fitted
well with the coincidence line.

According to Figure 11(c), in the RBF neural network
model, the overall distribution of prediction points was

113.85
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113.95 114.00

Figure 10: Water depth prediction results based on linear SVM.
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Table 4: The MAE of five water depth inversion models

Model MAE

Curve fitting 2.575
BP neural network 2.455
RBF neural network 2.719
Linear SYM 2.451
Deep learning 2.350
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more centralized than that of the linear fitting model.
Still, it was more decentralized than that of the BP neural
network model. Although all prediction points were evenly
distributed on both sides of the coincidence line, the error
between them and the measured value was large, and on
the whole, the prediction points and the coincidence line
were not well fitted.

By using the linear SVM model in Figure 11(d), it
turned that the distribution of prediction points was
very similar to that of the BP neural network model, but
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Figure 11: Deviation diagram of predicted and measured values of model water depth: (a) curve fitting model, (b) BP neural network model,
(c) RBF neural network model, (d) linear SVM model, and (e) deep learning model.
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Figure 12: Inversion results of water depth in the study area: (a) actual water depth, (b) curve fitting inversion, (c) BP neural network, (d) RBF

neural network, (e) linear SVM, and (f) deep learning inversion.

the dispersion degree of prediction points when the mea-
sured water depth about 30 m was greater than that of the
BP neural network model. In addition, when the water
depth was less than 23 m, the predicted value of water
depth at the prediction point was generally greater than
the measured value, and the fitting between the predic-
tion point and the coincidence line was general.
Through the deep learning model in Figure 11(e), it
can be learned that the distribution of prediction points

Paired sample test

was dense, but when the actual water depth value was
less than 23 m or greater than 33 m, the error of prediction
points was larger. The distribution was very similar to
that of the BP neural network model, and the prediction
points and the coincidence line were generally better.
From Figure 12(a)-(f), it can be seen that the results
obtained by the five water depth inversion models had
certain errors compared with the actual results, but the
overall error of the deep learning model and the BP

4.4
4.2
4.0
384
364
3.4
321
3.0
287
267

Value 247
2.2
2.0
187
167
1.4
1.2
1.07
08+
0.6+
0.4
0.2
00~

Qtandard detriats,

of Standard error of paired
paired difference difference means

[l Measured value — curve fitting

[l Measured value —BP neural network
] Measured value —-RBF neural network
@ Measured value —Linear SVM

[0 Measured value —Deep learning

Sid (bilateral)

Figure 13: Comparison between inversion results of five models and measured values.
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neural network model was smaller. The similarity of the
actual result graph was higher, and the errors of the other
three models were larger.

From the comparison of Figures 11(a)—(e), 12(a)—(f),
and 13, it can be seen that the deep learning model had
the best fitting degree, the BP neural network model took
the second place, the linear SVM model was the third,
and the RBF neural network and the curve fitting model
were poor.

It can be seen that deep learning was better than the
traditional machine learning algorithm in RS depth inver-
sion. The reason was that the advanced features extracted
from large amounts of data were unmatched by other
simple algorithm. But the deep learning model often needs
a large sample size to achieve the desired effect. Simple
machine learning algorithm can also backpropagate the
error through continuous transmission of water depth
information, so as to adjust the error. Therefore, the accu-
racy of traditional machine learning algorithm was higher
than that of the curve fitting model.

6 Conclusion

Based on the HJ-1B satellite data and the measured water
depth data in the sea area near the islands outside the
Pearl River Estuary, the water depth values of the sea area
were inversed by various methods. Only from the curve
fitting model, the cubic model was better than other
curve fitting models. However, the error of machine
learning method was less than that of the curve fitting
method. Of course, the curve fitting method is simpler
than the machine learning method, and there is no great
requirement for the computer’s computing power and
machine configuration. Among the four machine learning
methods, the deep learning model had the best inversion
effect, followed by the BP neural network model. Therefore,
the best method of this study was the deep learning model.
As an advanced machine learning method, deep learning is
a hot field of artificial intelligence, and its advantages in
the image recognition field are far more than the previous
technology. Although the RBF neural network was better
than the BP neural network in generalization ability and
learning speed, it was inferior to the BP neural network
model in this study. The reason may be the adjustment of
parameters such as the number of network layers, the
number of nodes in each layer, the function type of nodes,
and the epochs of the neural network model. The adjust-
ment can achieve the best effect in the training, but cannot

DE GRUYTER

meet the requirements to achieve the best results in the test
data. Therefore, to avoid under fitting and over fitting, the
model parameters should be adjusted many times to select
the most suitable model.
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