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Abstract: The correct individual tree segmentation of the
forest is necessary for extracting the additional informa-
tion of trees, such as tree height, crown width, and other
tree parameters. With the development of LiDAR tech-
nology, the research method of individual tree segmenta-
tion based on point cloud data has become a focus of the
research community. In this work, the research area is
located in an underground coal mine in Shenmu City,
Shaanxi Province, China. Vegetation information with
and without leaves in this coal mining area are obtained
with airborne LiDAR to conduct the research. In this
study, we propose hybrid clustering technique by com-
bining DBSCAN and K-means for segmenting individual
trees based on airborne LiDAR point cloud data. First, the
point cloud data are processed for denoising and fil-
tering. Then, the pre-processed data are projected to
the XOY plane for DBSCAN clustering. The number and
coordinates of clustering centers are obtained, which are
used as an input for K-means clustering algorithm. Finally,
the results of individual tree segmentation of the forest in the
mining area are obtained. The simulation results and ana-
lysis show that the new method proposed in this paper out-
performs other methods in forest segmentation in mining
area. This provides effective technical support and data
reference for the study of forest in mining areas.
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1 Introduction

The large-scale mining causes huge subsidence land
around the mines, causing different degrees of damage
to the surrounding natural landscape and ecological
environment [1]. With the acceleration of China’s ecolo-
gical civilization, green mining has turned to be the
development trajectory of the national mining industry
[2]. Green mining is modern practice to mine in a scien-
tific and environmentally friendly manner to have the
least impact on the environment [3]. Green mine con-
struction allows the overall environment of the mining
area to be reasonably laid out to protect nature [2,3].
Green mining recognizes the importance of forests and
therefore pursues a progressive path to eliminate or
reduce undesirable impacts on forest ecosystems and
biodiversity [4]. Therefore, we need to systematically
study the impact of mining on the ecological environ-
ment, especially to evaluate the current situation of vege-
tation in mining areas. These can provide assistance and
suggestions for the environmental assessment and man-
agement of mining areas [5].

Vegetation is the producer in an ecosystem and is a
major player in the ecological environment. Any signifi-
cant damage to the vegetation in the mining area reduces
the stability and functionality of the ecosystem [6]. The
vegetation in the mining area comprises forests with tree
as a basic unit. The parameters of the single tree effec-
tively showcase the impact of mining on vegetation [7].
Currently, individual tree segmentation mainly relies on
the manual measurement and remote sensing technolo-
gies. It is noteworthy that the manual measurement
methods take a long time for collecting data. Thus, it is
difficult to collect the data at a large scale. In addition,
these techniques also have a high monitoring cost [8].
Although, it is possible to efficiently obtain the data using
traditional remote sensing methods, such as satellite
imaging and photogrammetry, the satellite images have
limits in terms of resolution and the data accuracy is low.
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Photogrammetry only provides two-dimensional (2D)
data, and its ability to obtain three-dimensional (3D)
information of the forest is poor [9].

In recent years, the development of LiDAR tech-
nology created an opportunity to collect accurate data
of single-tree segmentation conveniently. LiDAR incident
busts of laser pulses on the vegetation and receives
the echo signals that contain the desired information,
such as 3D positional information of trees. The received
reflected signals are then used to generate point clouds
[10]. The point clouds have a wide range, high precision,
and can be processed efficiently [11].

At present, many researchers have proposed numerous
methods for segmenting individual trees using LiDAR
data. For example, Hyyppa et al. started with local max-
imum and used a region growing algorithm to segment
individual trees [12]. Wang et al. proposed a marker-con-
trolled watershed segmentation algorithm that assumed
that treetops were represented by local radiation maxima
and used the crown points as markers to improve accu-
racy [13]. The aforementioned method is more suitable for
the forest with a simple structure, but it is not suitable for
taller trees and thicker forests. This method is difficult to
correctly segment the cases where adjacent branches are
intertwined [14]. Therefore, a new method for segmenting
individual trees using an adaptive TWS (treetop window
size) to find tree vertices was proposed, which can reduce
the phenomenon of over-segmentation in broad-leaved
forest [15,16]. For mixed forests, Koch et al. proposed
that tree tops were detected with a local maximum filter,
and then using a pouring algorithm to segment indivi-
dual trees [14].

What these segmentation algorithms share is that
they segment individual trees using canopy height model
(CHM), which is a raster image interpolated from LiDAR
points. These kinds of algorithms are not ideal enough, as
the CHM can have inherent errors and uncertainties in
the process of CHM generation, which will lead to decline
in data quality and affect the accuracy of segmenting
individual trees. For example, there may be calculation
error in the process of original data filtering, and spatial
error can be introduced during the interpolation process
[17]. Therefore, it is extremely important to develop a new
method to segment individual trees directly from the
LiDAR point cloud. Reitberger et al. proposed a method
using the Random Sample Consensus (RANSAC) for tree
segmentation based on normalized cut segmentation in
graph theory. This algorithm had high segmentation
accuracy, but the normalized cut segmentation required
too much computation, resulting in low segmentation
efficiency [18]. On this basis, Ayrey et al. improved the

DE GRUYTER

normalized cut segmentation algorithm and proposed
a new algorithm combining Layer stacking algorithm
with DBSCAN, which greatly improved the efficiency
and accuracy of segmenting individual trees [19]. In addi-
tion, some classical algorithms in the field of computer
vision and image processing (K-means, region growing
algorithm) have also been applied to segment individual
trees based on LiDAR point cloud data [20,21].

In this study, we developed a new algorithm to seg-
ment individual trees based on the synergy of DBSCAN
and K-means, which can directly segment LiDAR point
cloud data. This new algorithm can well solve the pro-
blems that DBSCAN algorithm has poor processing ability
for multi-dimensional data and K-means has high
requirements for the initial clustering center. The algo-
rithm first deletes the Z value of each point in the original
point cloud data and uses the 2D DBSCAN algorithm for
coarse clustering. The points after clustering are pro-
cessed and their Z values are added. Then, we calculate
the number of clusters and the average of the coordinates
of all the points in each cluster, and take it as the initial
value. Finally, we use K-means clustering algorithm to
complete accurate single tree segmentation. Based on
the LiDAR point cloud data, we perform segmenting indi-
vidual trees for leafy and leafless forest located in the
target area. We also verify the accuracy of the new algo-
rithm. The results and analysis show that the new method
improves the accuracy of segmenting individual trees. In
addition, the proposed method also provides feasible tech-
nical support and effective data reference for the restora-
tion of the ecological environment in the mining area and
the construction of green mines.

2 Data acquisition and processing

2.1 Overview and explanation of data

The target area in this work is located near a coal mine in
the northwestern part of Shenmu City, Shaanxi Province,
China, on the edge of the Mu Us Sandy Land. The coal
mine was officially put into production in December 2013.
The mining area is 119.7735km? the mining depth is
80-240 m, and the mining method is shaft mining. The
main geomorphological types are loess hilly and gully
areas and river valley terraces. The topography of the
area is northwest, southwest, and central low. The target
area is a typical mid-temperate, semi-arid, and conti-
nental monsoon climate, with an annual average
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temperature of 8.8°C and an average annual rainfall of
436.6 mm. The target area is dominated by psammo-
phytic vegetation. The most abundant tree in the target
area is salix mongolica. In recent years, large-scale
mining in this area has caused damage to local primary
vegetation.

2.2 Data collection
2.2.1 Acquisition of airborne LiDAR point cloud data

In this work, the point cloud data used are obtained by
DJM600 UAV equipped with RIEGLminiVUX-1UVA laser
scanning system. The measurement accuracy of this
equipment is 15 mm. We collect LiDAR point cloud data
from the target area in two phases, i.e., on October 22,
2019 and November 23, 2019. On these days, the weather
was sunny. The tree leaves were existent on October 22,
2019, and the collected data were recorded as leafy phase
data. However, on November 23, 2019, the tree leaves fell
off, and the collected data were recorded as leafless phase
data. The airborne LiDAR parameters and UAV flight
parameters are presented in Table 1.

2.2.2 Field survey data collection

The ground survey and drone flight operations are con-
ducted at the same time. We used drones to obtain high-
resolution orthophoto images of the area. The ground
truth is obtained by visual interpretation of the image.
We randomly select five sample plots from the data of
leafy stage, which includes 47 trees. Similarly, we also
randomly select five sample plots from leafless phase,
which include 50 trees.

Table 1: The UAV airborne LiDAR scan data and flight parameters

Related parameters The parameters settings

Projection mode UTM
Coordinate system WGS-84
Relative flight altitude 70m
Flight speed 6m/s
Route spacing 45m
Scan overlap 100%
Scanning frequency 100 kHz
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2.3 Data processing flow

In addition to the coordinate information of the target,
there is some noise in the original airborne LiDAR point
cloud data. It is necessary to remove noise in pre-proces-
sing to improve the quality of the data. Second, the point
cloud data are filtered and classified to separate the
ground point and non-surface points. Then, the DBSCAN,
K-means, and the proposed algorithm based on DBSCAN
and K-means are used to cluster the pre-processed point
cloud data to realize single tree segmentation of vegeta-
tion in the mining area. Finally, the segmentation results
based on the three clustering algorithms are compared
with the measured data and high-resolution images. In
this work, we use LiDAR360 software to denoise and filter
point cloud data. We use Python programming language
for the implementation of the proposed method. The
implementation process of the improved algorithm in
this paper is shown in Figure 1.

3 The segmentation method of
single tree of vegetation in
mining area

3.1 Point cloud data preprocessing

In this work, to reduce the quantity of data and improve
the segmentation accuracy, it is necessary to remove
other types of points and only retain the vegetation
points. This work uses LiDAR360 software to denoise
the original point cloud. In this software, the ground
points are obtained using the filtering algorithm based
on irregular triangulation network. The original point
cloud data are divided into ground points and non-
ground points. The non-ground point data are the point
cloud data of the follow-up operation in this work. The
comparison chart before and after point cloud filtering is
shown in Figure 2.

3.2 DBSCAN clustering algorithm

The DBSCAN clustering algorithm is a classical spatial
clustering algorithm based on density. This algorithm
starts from randomly selected core point and recursively
classifies the points that meet the density requirements
into a class. Finally, it obtains the maximized region
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Figure 1: Workflow diagram.

The result of
segmenting individual
trees

Select target sample

including core points and boundary points. During execu-
tion, the DBSCAN algorithm does not require defining the
number of clusters, but it needs two parameters: Eps and
MinPts. The Eps represents the radius of the cluster, and
MinPts denotes the least number of points in the cluster.
The core point means that the number of points in the
neighborhood of the point is not less than MinPts. The
workflow of DBSCAN algorithm is shown in Figure 3.
The major steps of this algorithm are as follows:
Input: 3D point cloud data of the trees, and the initial

Eps and MinPts values.

Output: the number of cluster centers and 3D coordinates.
Step 1. Load data and mark all objects as unvisited;
Step 2. Randomly select an untagged object P and mark
it as visited. Calculate whether it contains at least
MinPts objects in its Eps neighborhood. If so, a new
cluster C is established, and P is added to C;

!

Accuracy verification and
analysis of experimental results

Ground data
acquisition
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Step 3. Make the collection of all objects in the Eps
neighborhood where N is P, select the unmarked objects
in N as visited, and calculate the number of objects in its
neighborhood. If the number of objects is greater than
the MinPTs, put the objects in its neighborhood into the

N set. Otherwise, add the object to C;

Step 4. Repeat Step 3 until the objects in the N collec-

tion are empty;

Step 5. Repeat Steps 2-4, until all objects are either
assigned to a cluster or are marked as noise.

The advantages of DBSCAN algorithm are that it
recognizes classes of arbitrary shape, allows clustering
into different sizes for each class, does not require
defining the number of clusters, and efficiently recog-
nizes noise. However, the computational efficiency of
this algorithm is low, and it is unable to deal with high-
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Figure 4: The segmentation results of the DBSCAN algorithm with three different values of Eps and MinPts. (a) Eps =1, MinPts = 10; (b) Eps =1,
MinPts = 1; (c) Eps = 2, MinPts = 1.

dimensional data effectively. The value of Eps has a great 3.3 K-means clustering algorithm

impact on the results. The experimental results show that

the segmentation effect of Eps = 1 and MinPts = 1is better, The K-means clustering algorithm is a classic partitioned
as shown in Figure 4. clustering algorithm. Because of its simplicity computational
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efficiency, it is one of the well-known clustering algo-
rithms. The K-means clustering algorithm recursively
shifts the cluster center coordinates to minimize the func-
tional relationship between each central point and each
internal member [22].

The K-mean is mathematically expressed as

k
E=) Y x-x7 )

j=1 xeD;

where k represents the number of clusters, D; represents
the j class of clustering, x represents any point in D;, and
x;j represents the mean of D;. E denotes the sum of the
square of the distance from the sample point to the
cluster center in each class. The smaller the value of
E is, the better is the clustering result. The workflow of
K-means algorithm is shown in Figure 5.
The major steps of this algorithm are presented

below:

Input: The 3D point cloud data of the trees in the

mining area, and the number of clusters denoted by k.

Output: The clustering results.

Step 1. Load the data and randomly select k samples as

the initial centroids;

Step 2. Calculate the Euclidean distance between each

sample and each centroids;

Step 3. Classify each sample into the nearest cluster;

Step 4. Find the average of the samples of each class as

the new cluster centroids;

Step 5. Repeat Steps 2—4 until the centroid of the class

no longer changes or the number of iterations is reached,

and the algorithm ends.
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Although K-means algorithm is simple, computation-
ally efficient, and effectively processes the large number
of data, there are still some shortcomings. First, it has
high requirements for the selection of the initial cluster’s
mean values. The initial clustering center of the K-means
algorithm is randomly selected by the algorithm, and the
selection of an initial center represents a result. Especially,
when the termination condition of the algorithm is set to
stop the recursive computation when the specified number
of iterations is reached, the result of the algorithm may not
represent the optimal solution.

3.4 Clustering algorithm combining DBSCAN
and K-means

In this work, on the basis of in-depth research on DBSCAN
clustering algorithm and K-means clustering algorithm,
we combine these algorithms with the characteristics of
vegetation point cloud data in mining areas and propose
an improved single tree segmentation algorithm. Keeping
in view the advantages of DBSCAN algorithm, first, the
preprocessed data are clustered by DBSCAN to obtain the
number and coordinates means of K-means clustering
centers. However, the point cloud data of vegetation stu-
died in this work are characterized by wide canopy and
thin trunk. In addition, the distance between the crown
vertex of the tree and the lowest point of the trunk is large.
Now, if the DBSCAN algorithm is directly used to cluster 3D
point cloud data, some points may have too small density

A: 3D point cloud data

Input A and k /

k: The number of clusters l

Randomly select k
samples as the initial

distance between each

sample and each centroids |

centroids and i=20 Output clustering
result
v
Calculate the Euclidean ?{

!

[he centroid of tire

Classify each sample
into the nearest cluster

cluster no longer
changes or i=0

!

Find the average of the

Figure 5: Workflow of K-means algorithm.

samples of each class as
the new cluster centroids

=i-1
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because of too large Z value. Therefore, the core point may
not be selected accurately. Therefore, in this work, we
choose to project the 3D data to the XOY plane, and then
process the 2D point cloud data to obtain the number and
coordinates of clustering centers. According to the data
density of point cloud and the characteristics of trees con-
sidered in this work, the experimental results show that
the segmentation result of Eps = 2 and MinPts = 14 is best.
Then, the point cloud data are clustered based on the
classical K-means clustering algorithm. The value of k
and the initial clustering center coordinates are obtained
by the DBSCAN clustering algorithm. The Euclidean distance
is used to calculate the distance from the other points in the
data set to the clustering center. The clustering results of 3D
point cloud data are finally obtained by following the prin-
ciple of nearest distance distribution. The workflow of the
improved method is shown in Figure 6.
The major steps of the algorithm are as follows:

A: 3D point cloud data

Eps: the radius of the cluster

MinPts: the least number of points in the cluster

Figure 6: Workflow of the improved method.
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Input: 3D point cloud data of the trees in the mining
area, and the initial values of two parameters, i.e., Eps
and MinPts.

Output: The clustering results and the coordinates of
the clustering center.

Step 1. Load the data, traverse each sample, delete its Z
value, and project it onto the XOY plane;

Step 2. Load the projected data into 2D DBSCAN clus-
tering algorithm;

Step 3. After the 2D DBSCAN clustering algorithm is
completed, the Z value is correctly added to each
object;

Step 4. Then the average value of the 3D coordinates of
each cluster and the number of clusters are calculated
and used as the initial value of the K-means clustering
algorithm;

Step 5. Finally the original 3D point cloud data are
clustered by K-means.
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4 Accuracy verification and
analysis of experimental results

4.1 The accuracy evaluation index of the
segmentation algorithm

We assess the validity of these three methods for seg-
menting individual trees. This is achieved by comparing
the results of the algorithm segmentation with the results
of the visual interpretation. In this work, we use three
evaluation metrics to assess the performance of the afore-
mentioned algorithms. These metrics include recall (r),
precision (P), and Fl1-score (F1) [23]. Furthermore, we
also explore the applicability of the three single tree seg-
mentation methods in the vegetation of mining area.

r represents the ratio of the number of effective single
trees detected by the algorithm to the actual number of
trees. This is mathematically expressed as

TP

r= ——— . 2
TP + FN @

P represents the ratio of the number of effective

single trees detected by the algorithm to all the results
extracted as presented in equation (3).

(a) (b)

(d) (e)
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TP

P=———. 3
TP + FP G)

F1 represents the overall evaluation index of the
single tree segmentation accuracy of the algorithm. The
larger the F1 score, the higher the segmentation accuracy
of the method. This is presented in equation (4).

P12
P+r

(4)

Please note that the TP represents the number of
trees that have been correctly identified, FN represents
the number of trees that have not been identified, and
FP represents the number of trees that are identified
incorrectly.

4.2 Analysis of experimental results

In this paper, we select the segmentation results of a
sample plot to show. This intuitively shows the segmen-
tation of individual trees in different phases using three
types of tree segmentation methods, which is presented
in Figure 7. The high-resolution orthoimages obtained in
the same phase is combined with the field survey results
as the standard of accuracy evaluation in this work.

(¢)

M)

Figure 7: The schematic diagram of tree segmentation in leafy and leafless mining areas using three different clustering algorithms. (a) Leaf
stage-DBSCAN, (b) leafl stage-K-means, (c) leafl stage-Improved method, (d) leafless stage-DBSCAN, (e) leafless stage-K-means, and

(f) leafless stage-Improved method.
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Table 2: The F1-score table of tree segmentation in mining area

Segmentation Segmentation Segmentation accuracy

method accuracy of leafy of leafless phase
phase
r P F1 r P F1
DBSCAN 0.532 1.000 0.694 0.864 0.974 0.916
K-means 0.852 0.535 0.657 0.667 0.432 0.525
Improved 0.950 0.844 0.894 0.955 0.977 0.966
method

These are compared with the results of three single tree
segmentation methods. The results are statistically ana-
lyzed and are presented in Table 2.

As shown in Figure 7, the distribution density of trees
in the target area is high, the growth in leafy stage is
better, and in leafless stage, it is poor. Based on the tradi-
tional DBSCAN method, the single-tree segmentation of
the trees in the mining area causes serious omissions. The
segmentation results based on the K-means method have
some trees that are over-segmented. On the contrary, the
improved method obtains a good segmentation of the
trees in the mining area. It is also noticeable that there
is only a small number of missed classification and
misclassification.

As shown in Table 2, the K-means is lower segmenta-
tion accuracy for point cloud data in the leafless phase
than the leafless phase. The other two methods have a
better effect on the individual tree segmentation of point
cloud data in the leafless phase, and their F1-scores are
greater than 0.90. This is because the canopy structure is
complex, and there is an overlap between the canopies in
the leafy stage. The point cloud density obtained in the

(a)

Improved Method]

e

K-means

DBSCAN

(=]
(=]
~
o J
S
(<]
)
(=]
o
-
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leafy stage is much higher than the leafless stage, which
leads to the difficulty of individual tree segmentation at a
later stage.

To show the accuracy comparison of results of dif-
ferent algorithms more intuitively, we present the result
of Table 2 in Figure 8.

In the segmentation results of the point cloud data of
the leafy stage, the value of r obtained by the DBSCAN
segmentation algorithm is very low, i.e., 0.532. This is
because the presence of the leaves make the crown width
of the arbor quite different, consequently leading to
mutual occlusion. As a result, the density of the obtained
point cloud data is not uniform. Now, the DBSCAN seg-
mentation algorithm which is a density-based clustering
method does not perform well. The K-means and the pro-
posed segmentation algorithm require the number of
clustering centers in advance, which leads to improve-
ment in r as compared to the DBSCAN algorithm. The P
value of the proposed method is much higher than the K-
means algorithm. Therefore, we observe that the pro-
posed method has the highest processing accuracy for
leafy point cloud data.

When the leaves fall, the airborne laser LiDAR obtains
the point cloud information of the tree branches. Because
of the absence of leaves, there is no occlusion. In addi-
tion, the point cloud density is much smaller as com-
pared to the leafy stage, and the distance between the
trees is clearly defined. Therefore, it is notable that the
segmentation result of DBSCAN and the proposed algo-
rithm are better as compared to the K-means clustering
algorithm. The F1-score difference of the former two algo-
rithms is slightly smaller and higher than 0.9. On the
contrary, the F1-score of the K-means algorithm is much
lower. This shows that the absence of leaves in the target

(b)

Improved Method

K-means

DBSCAN

I

o
o
~

0.4 0.6 08 1

Figure 8: The accuracy of single tree segmentation in leafy and leafless stages. (a) Accuracy of single tree segmentation in leafy stage, and

(b) accuracy of single tree segmentation in leafless stage.
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area has a great impact on the segmentation results of the
DBSCAN algorithm, but not on the results of the other two
methods.

In short, although all three methods have the phe-
nomenon of misclassification, the proposed method shows
effective results in both phases of the two-phase experi-
ments. On the contrary, the DBSCAN segmentation algo-
rithm is greatly influenced by the presence or absence of
tree leaves. The results of K-means algorithm in the two-
phase experiments are the worst. Therefore, it is evident
that the proposed method for single tree segmentation of
vegetation in mining areas is an effective technique that
outperforms other methods.

5 Discussions

In this paper, the improved algorithm is used to segment
the point cloud data of leafy and leafless stage in the
study area, and the segmentation results are compared
with those of traditional K-means and DBSCAN clustering
algorithms. The simulation results and analysis show
that the single tree segmentation method proposed in
this work has high accuracy and good efficiency.

Since the emergence of LiDAR, it has shown great
potential in the field of forest science [24-27]. At present,
the study of vegetation in mining area can strengthen the
management of ecological environment in mining area,
which is of great significance for the protection of ecolo-
gical environment. However, now people need to study
the forest more carefully. The successful identification
and characterization of individual trees are critical in
forest science.

However, it is more difficult to segment some trees
with complex structures [28]. In some past studies, the
accuracy of most individual tree segmentation can only
reach 50-80% [15,29]. For example, Koch et al. divided
the canopy of coniferous forest and broad-leaved forest,
and the overall accuracy rate was 62% [14]. Wang et al.
overlaid the automatically detected tree-crown image
with one of the manually delineated crown images and
found that the accuracy rate was 75.6% [13]. Kwak et al.
reported accuracies of their new algorithm from 60 to
80% in coniferous and deciduous forests [30]. In this
paper, the new algorithm is directly applied to point
cloud data, and the accuracy of segmenting individual
trees has been improved. The accuracy of the leafless
stage is 98%, and the accuracy of the leaf stage can
also reach 849%. The new algorithm shows an excellent
segmentation effect for trees with simple structure, but it
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is still poor for trees with complex structures, especially
for trees with small intervals.

When choosing a single tree segmentation algorithm,
we must consider not only the accuracy of the algorithm,
but also the efficiency of the algorithm. Many segmenting
individual trees algorithms use the normalized cut seg-
mentation method, but the computational complexity of
the normalized segmentation is too large, which will lead
to low efficiency. For example, the segmenting individual
trees algorithms proposed by Reitberger et al. and Yao
et al. based on normalized cut segmentation do not
have high segmentation efficiency [18,31]. Even if Yao
et al. improves the previous algorithm and proposes the
combination of normalized cut segmentation method and
DBSCAN, the segmentation efficiency has not been greatly
improved [32]. Kandare et al. use 2D and 3D K-means clus-
tering algorithm to segment individual trees above and
under the forest respectively. The segmentation efficiency
of this algorithm is high, but it requires high initial value
and threshold setting [20].

In this paper, the improved algorithm can not only
improve the efficiency of single tree segmentation, but
also obtain better results. Because the research object
of this paper has the characteristics of wide canopy and
thin trunk, if we directly use the three-dimensional DBSCAN
clustering algorithm for segmenting individual trees, it
will be impossible to accurately select the core point.
Therefore, the improved algorithm projects the original
three-dimensional point cloud data to the XOY plane,
and then uses the DBSCAN clustering algorithm to seg-
ment. The number and coordinates of clustering centers
can be calculated and input to the K-means algorithm
as an initial value. Finally, we can get a more accurate
result of segmenting individual trees. This algorithm can
greatly accelerate the processing speed of DBSCAN clus-
tering algorithm and can provide a more accurate initial
value for K-means clustering algorithm, which is of great
significance for the final segmentation results.

In our algorithm, the uncertainty in tree segmenta-
tions mainly derives from the size of the threshold. In the
forest where the tree spacing is large, we can choose a
relatively large threshold to segment individual trees.
However, it is difficult to select the threshold. A higher
threshold will lead to under-segmentations whereas
a smaller threshold can lead to over-segmentations.
Therefore, in future research, we can consider using
an adaptive threshold to segment individual trees. The
improved algorithm has not been tested on mixed forests.
The applicability of the algorithm to other types of forests
is not clear. In future research, we can test forests with
mixed forests.
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6 Conclusion

This paper proposes an improved algorithm of segmenting
individual trees based on LiDAR point cloud data. The
algorithm is based on the advantages of DBSCA and K-
means clustering algorithms. The experimental results
show that the proposed algorithm has higher accuracy
in both the leafy stage and the leafless stage. The accu-
racy, in terms of Recall, Precision, and F1-score, is rela-
tively high, indicating that the improved algorithm has
good potential for use in other forested areas. Through
the individual tree segmentation of the vegetation in the
mining area, the researchers can accurately extract var-
ious parameters of the vegetation. We compare and ana-
lyze the vegetation parameters in the early and later
stages of green mine construction. This can quantita-
tively evaluate the construction of green mines in the
experimental area and provide effective references for
relevant departments to carry out environmental protec-
tion and construction in mining areas in the future. We
can also monitor the vegetation parameters to clarify the
impact of mining activities on vegetation in the mining
area and provide a direction for the construction of green
mines.
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