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Abstract: Understanding the risk of grassland fire occur-
rence associated with historical fire point events is critical
for implementing effective management of grasslands.
This may require a model to convert the fire point records
into continuous spatial distribution data. Kernel density
estimation (KDE) can be used to represent the spatial
distribution of grassland fire occurrences and decrease
the influences historical records in point format with
inaccurate positions. The bandwidth is the most impor-
tant parameter because it dominates the amount of varia-
tion in the estimation of KDE. In this study, the spatial
distribution characteristic of the points was considered to
determine the bandwidth of KDE with the Ripley’s K func-
tion method. With high, medium, and low concentration
scenes of grassland fire points, kernel density surfaces
were produced by using the kernel function with four
bandwidth parameter selection methods. For acquiring
the best maps, the estimated density surfaces were com-
pared by mean integrated squared error methods. The
results show that Ripley’s K function method is the best
bandwidth selection method for mapping and analyzing
the risk of grassland fire occurrence with the dependent

or inaccurate point variable, considering the spatial dis-
tribution characteristics.
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1 Introduction

Grassland fires are considered to be one of the major
disturbances affecting natural ecosystems in grass-domi-
nated regions with human activities, and the emissions of
greenhouse gas is a main factor that influences the global
climate change [1–4]. Annual fires are also problematic
for soil erosion, grass resources, and biodiversity and
diminish the production of agriculture and livestock [5].
In this sense, identifying and assessing the risk of grass-
land fire ignition occurrence are key issues for the ade-
quate design and decision-making of fire management
[6,7].

In wildland fire studies, the spatial pattern and distri-
bution of fire events are essential to wildfire managers or
scientists [1]. And continuous distribution surface of fire
occurrence is widely used in the explanation for the spatial
pattern of fire risk or the analysis of the influencing factors
by decreasing the inaccuracies and substantial errors of
fire history record as a point with x- and y-coordinates
[1,8,9]. The methods that can convert the fire record point
into continuous density are needed [8,10].

Kernel density estimate (KDE) is a nonparametric esti-
mation of deriving a continuous surface with the under-
lying unknown density function [11]. And it was applied
to effectively convert point-based events into grid-based
distribution for analyses in various disciplines, such as
animal home range estimation in wildlife ecology, traffic
accident density estimation, analysis of central business
districts, and seismic risk analysis in geology [12–14].

In wild fire studies, KDE is used extensively to convert
fire historic point records into continuous fire occurrence
density surfaces for defining the spatial distribution of
fire ignition at different scales, analyzing its extent and
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distribution, or representing the fire risk associated with
the influencing factors [6,8,10,15–17]. KDE method has
also been used in grassland fire analysis [10,17].

The kernel density functionwas defined [18] as follows:

{ }∑( ) =
−

=

f x
nh

K s s
h

ˆ 1 ,
i

n
i

2
1

(1)

n is the total number of observed events, K is the kernel
function, h is the bandwidth that defines the searching
radius of the kernel function, s is the position where the
estimation density value is being calculated, and si is the
position of each observed event.

The bandwidth controls the smoothness of the KDE
surface, and it is considered more critical than the selec-
tion of kernel functions [19]. A large value of h will pro-
duce a smooth distribution, but it may cause a loss of
details on the resulting surfaces. In contrast, when using
a narrow h, the estimated surface tends to show too many
finer variations that often obscure the clustering charac-
teristic [6].

Some methods were applied to set appropriate band-
widths that are widely used in many studies [20,21]. In
one approach, the bandwidth is defined by the mean
polygon size in the study area [20]. The mean polygon
size is computed, and a theoretical square is created that
has the same area as the mean polygon. Hence, the band-
width of the square can be defined as the radius of the
circle around the square, which also is half of the diag-
onal of the square as follows:

=h D
2
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where D is the diagonal of the theoretical square.
RDmean approach is given based on the calculation of

local mean random distance [20]:
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where A is the mean size polygon and N is the average
number of point events in a polygon. The final value of
bandwidth is given by multiplying RDmean by two [8].

Another bandwidth based on all of the observed
points is defined [22]. Because it does not consider the
area, the value of the bandwidth was altered according to
the dimension of the area through multiplying it by the
square root of the area, and it is named as Willamson
function [23]:

= −h N A0.68 ,0.2 (4)

where N is the number of all observed points, 0.68 is a
constant, and A is the study area size.

The first method does not consider the number of
observed points except the polygon of the study area.
The last two methods consider the number of observed
points and the size of the study area. And these band-
widths are used to calculate the concentrations of observed
events in a specified area. With a high concentration of
observed events, the value of bandwidth is small. And
when the concentration is low, the value of bandwidths is
big [21].

In our previous works, RDmean is used to determine
the bandwidth of the KDE method for providing the
grassland fire regime studies by the fire density maps
with MODIS fire active production in the eastern Inner
Mongolia of China [10,17]. Although the results have
appropriately expressed the characteristic of grassland
fire distribution in the whole study area, when analyzing
the fire occurrence risk in the local area, the calculated
fire density varies markedly with the same influence fac-
tors. At or near the observed fire points, the density is
higher. Around the points, the density is lower. Hence,
the risk in the area with the observed points will be over-
estimated and the risk in the area without or near the
observed points will be underestimated. These band-
width selection methods don’t consider the spatial corre-
lation of locations of the observed points. Mostly, the
characteristic of the point distribution pattern was not
considered in these methods for defining the bandwidth.
In a specified area with the same number of points, the
characteristic of the distribution can be clustered, random
or disperse, but the concentration characteristic of points in
the area can be the same or similar if don’t consider the
spatial distribution of events, as shown in Figure S1. Then,
onlyusing theareaand thenumberofpoints in themethods
can’t express the characteristic of spatial distribution. In
the field, once a location is targeted by a fire, nearby loca-
tions face an elevated risk of experiencing the same event
shortly. Thus, spatial point pattern analysis has been inten-
sively investigated to reveal the scale, extent, anddynamics
of point events and to test potential patterns related to spa-
tial mechanisms of fire occurrence. Due to the distribution
of wildland fire events is a cluster, the characteristic of the
spatial distribution pattern should be considered when
defining the bandwidth of KDE [24].

Themain purpose of this study is to identify the spatial
continuous distribution surface of grassland fire occur-
rence with improving the bandwidth selection method of
KDE by considering the spatial distribution patterns of
observed point events and to provide guidance on which
methodmostaccuratelydetermines theunderlyingdensity.
The study area is in eastern Inner Mongolia, China, which
has suffered from a high grassland fire incident rate, using
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KDE methods with MODIS fire active products (for the
period from 2001 to 2014). This method demonstrates that
such a technique, which considers the spatial distribution
characteristics, can be extended to different spatial data
analyses. To achieve this objective, several methods of
choosing the bandwidth were applied. Then, the KDE
mapswere compared to reveal the effects of different band-
widths. A case study is expressed by figuring out the dis-
tribution pattern of the spatial point data, and the suitable
bandwidth selection can easily be implemented for geogra-
phical areas. The results of the current research can also be
a valuable reference for policy-making infiremanagement.

2 Study area and methods

2.1 Study area and data

Hulunbuir is located in the northeast Inner Mongolia
Autonomous Region of China, from 47.08°N to 53.23°N
and 115.22°E to 126.06°E (Figure 1). The study area is
approximately 681 km long and 703 km wide, covering a
total area of 252,948 km2. The climate in the region is a
typical temperate continental monsoon climate, with low,
irregular rainfall and extreme temperature variations in
summer and winter. The annual mean air temperature
and precipitation are about −2.3°C and 320mm, respec-
tively. The vegetation in the eastern Inner Mongolia grass-
land region consists of diverse plant communities, which

are dominated by Stipa baicalensis, Filifolium sibiricum,
and Leymus chinensis. The elevation ranges from 200 to
1500m. The Greater Khingan Mountains is located in the
middle region, stretching from the center of the region
toward theeast andwest. The elevationgraduallydecreases,
and the topography gradually becomes flatter. The activities
of the inhabitants lead to accidental fires. Approximately
600 wild fires occur annually in this region. In previous
studies,KDEmethodwasused toaccess the risk of grassland
fire in this area,which iswhy it was chosen as the study area
to analyze the bandwidth selection method [10,17].

In the study area, the MODIS Active Fire Data contain
daily fire pixel coordinate positions and they are most
suitable to determine the spatial and temporal distribu-
tions of fire points. The MODIS Terra and Aqua daily
active fire product data are available (MOD14A1 and
MYD14A1). The fire product data set from 2001 to 2014
was downloaded from the Land Processes Distributed
Active Archive Centre (LP-DAAC) using a web-based
interface known as Reverb, which is a replacement for
the Warehouse Inventory Search Tool (http://reverb.cs.
washington.edu/). The resolution of the fire product is
1 km pixels, in which burning was detected at the times
of Terra and Aqua satellite overpass under the condition
of less cloudiness. Calculated from 4 and 11 µm channels,
the brightness temperature of fire pixels was obtained
based on an algorithm that enhances the detection sen-
sitivity of smaller, cooler fires and decreases the emer-
gence of false alerts [25–28].

As the major component of the MODIS active fire
product, the fire mask is stored as an 8-bit unsigned
integer Scientific Data Set (SDS). In the data set, the value
of each pixel is assigned to 1–9 classes [29]. These classes
are listed in Table 1. According to the meaning of data
code, 7, 8, and 9 are, respectively, low confidence fire
point, medium confidence fire point, and high confidence
fire point. Meanwhile, previous studies have shown that

Figure 1: The location of the study area in the northeast Inner
Mongolia Autonomous Region of China.

Table 1: MOD14/MYD14 fire mask pixel classes

Class Meaning

0 Not processed (missing input data)
2 Not processed (other reason)
3 Water
4 Clouds
5 Non-fire clear land
6 Unknown
7 Low-confidence fire
8 Nominal-confidence fire
9 High-confidence fire
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the combination of 8 and 9 has the best accuracy of
MODIS active fires [30]. The pixels with values of 8 and
9 were extracted from the MOD14A1 and MYD14A1 down-
loaded collections and converted from raster to vector
format as active fire points [10].

The land use data set of the study area was offered
by the Data Centre for Resources and Environmental
Sciences at the Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn). These data were obtained from
the interpretation of Landsat TM/ETM from 2010 at the
scale of 1:100,000. The format of the land use data set
was raster. The grid with values representing the grass-
land type was selected and extracted as grassland data.
Then, the active fire data sets from 2001 to 2014 were
overlaid to a whole layer and then clipped by grasslands
to erase the non-grassland fire events. The occurrence
times and coordinates were saved in an attribute table
[10]. The total number of grassland fire events in the
study area was 4628 over the 14 years (2001–2014).
Annually, the peak months were April, March, September,
and May, and the months with the fewest events were
January, December, and July. The time series reveals sea-
sonal patterns: a large number of events occurred between
March and May, with a maximum in April. A secondary
large number occurred between August and October, with
a peak in September. The probabilities of grassland fire
occurrence in the study area in decreasing order are
spring, autumn, summer, and winter, and the total number
of fire events in each season was 2639, 1505, 406, and
78, respectively. Because there were nearly no events in
winter, the season was excluded from this research. Three
different mean density categories based on area divided by
the numbers of seasonal fire points were set to analyze the
bandwidth selection. Figure 2 shows the distribution of
active grasslandfire events in spring, autumn, and summer.

The standard map of the study area in digital format
and grassland fire data obtained from MODIS were all set
to a Transverse Mercator projection and D_WGS_1984
datum.

3 Methods

3.1 Kernel bandwidths

As a nonparametric statistical approach, KDE has been
extensively applied in some research fields to estimate
the probability densities of events [6,8,16,31,32]. There

Figure 2: Distribution of the grassland active fire points from 2001 to
2014 in spring (a), autumn (b), and summer (c) observed by MODIS.
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are several kernel functions, and the Epanechnikov kernel
function was used in this study [19,20].

The choice of the bandwidth value is the most critical
step in the analysis of KDE. When calculating the density
of the Kernel surface, the bandwidth parameter deter-
mines the distance to find neighbors and affects the
smoothness of the output density surfaces [20]. At pre-
sent, the commonly used bandwidth selection methods
are mainly based on these three methods: theoretical
bandwidth, RDmean, and Willamson function [8,20–23].
Four different bandwidth selection methods were used
to identify the bandwidth parameter of the KDE model
for getting the appropriate continuous surface. The first
three methods were calculated according to the previous
functions (2)–(4) with the active grassland fires in spring,
autumn, and summer.

To characterize the spatial distribution patterns of
historical fire point events, Ripley’s K function was used
as it determines the events that show a statistically sig-
nificant spatial clustering or dispersion by cumulating
the distributional frequency of the distances among the
events with the changing of neighborhood size [12,33,34].
Commonly, Ripley’s K function is transformed as a linear
L function for facile interpretation [35]. The L function is
implemented as follows:
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where d is the distance, n is equal to the total number of
point events, A is the total area, ki,j is a weight, which (if
there is no boundary correction) is 1 when the distance
between i and j is less than or equal to d and 0 when the
distance between i and j is greater than d.

The Ripley’s K tool that was used is a built-in func-
tion of ArcGIS software (https://desktop.arcgis.com/
zh-cn/arcmap/latest/tools/spatial-statistics-toolbox/
multi-distance-spatial-cluster-analysis.htm). The output
of Ripley’s K tool includes the values of ExpectedK,
ObservedK, DiffK, LwconfEnv, and HiconfEnv. The
ObservedK value refers to the actual density of points in
different distances, and the ExpectedK value refers to the
expected distribution in the case of random distribution.
LwConfEnv and HiConfEnv contain confidence interval
information for each iteration of the tool. If the ObservedK
of the specific distance is greater than the ExpectedK, the
distribution is more clustering than that of the random
distribution. If the ObservedK is less than the ExpectedK,
the dispersion of the distribution is higher than that of
the random distribution. If the ObservedK is greater than
the HiConfEnv, the spatial cluster characteristic for the

distance is statistically significant. If the ObservedK is
less than LwConfEnv, the spatial dispersion character-
istic for the distance is statistically significant. The DiffK
contains the difference between the ObservedK and the
ExpectedK. The maximum DiffK will determine the most
obvious distance where the spatial clustering process is
most pronounced.

If the spatial distribution of points is a cluster, half of
the maximum DiffK value is applied as the recommended
value of the bandwidth that represents the clustering
characteristic of the spatial distribution pattern of active
grassland fires. If the distribution of points is not a
cluster, there is no use for this DiffK value and it cannot
be used as a bandwidth. In this circumstance, other
methods, such as Theoretical bandwidth, RDmean, and
Williamson, should be used to calculate the KDE surface.

3.1.1 KDE calculations and comparison

For estimating the kernel densities of active grassland
fire, Ripley’s K and kernel density tools for spatial ana-
lysis of points were provided by ArcGIS software (V10.2).
The calculation of KDE was conducted using a grid of
1000 × 1000m resolution with bandwidths defined by
the four methods.

For reflecting the effect of the bandwidth selection
method, the grassland active fire points with different
concentrations according to spring, summer, and autumn
were used to calculate the density values. A raster mask
layer was used to control the boundary of results in the
study area map.

The best bandwidth was selected by observing the
variability of the estimated density surface according to
the characteristic of the spatial distribution, which avoided
too spiky or excessive smoothing surfaces [8]. The selected
bandwidth is the one that provides an acceptable medium
between these two extremes.

In theory, the accuracy of the density estimation is
accessed by comparing the mean-square error (MSE)
between the estimated density and the true density [36].
The mean integrated squared error (MISE) of different
bandwidths of kernel estimates is estimated as follows
to determine which one best fits the true distribution [37]:

∑=
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where n is the total amount of active fire point events,
( )f xˆ is the estimated kernel density, and ( )f x is the true

density at the location of active fire points. By calculating
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the density estimate of the error on the same point for
four density estimation methods, MISE provides a useful
comparison among the methods of bandwidth selections.

To acquire the true density of each active fire point,
an adaptive procedure is defined:

=
( )D

A
k

,r i k
tr

, (7)

where Dtr is the true density for an active fire point i, k is
the number of adaptive nearest neighbor points, r is the
distance to the kth nearest neighbor point at the sample
point i, and ( )A r i k, is the circular area with the radius r.
This procedure emphasizes the estimation in the vicinity
of each active fire position, rather than estimating the
density of the whole samples in the study area. According
to the number of observed points in spring, summer, and
autumn, k is defined as 10, 20, and 30, respectively. The
mean true density value of each active fire point is calcu-
lated by function (7) at these three neighbornumbers. Com-
bined with equations (6) and (7), the minimum value of
MISE shows the best bandwidth of KDE for active grassland
fire points.

4 Results

Using the analysis tool of Ripley’s K, the spatial distribu-
tion pattern of grassland fire events was investigated in
spring, autumn, and summer. The same distribution
characteristic of the fire points is found to be spatially
clustered in these three seasons (Figure 3). For the values
of ExpectedK greater than those of HiconfEnv, the statis-
tical tests show that the cluster distributions are signifi-
cant. The largest DiffK values, which indicate the most
pronounced distance of spatial processes promoting clus-
tering, are 99, 82, and 80 km in spring, autumn, and
summer, respectively. In this circumstance, half of the
value of maximum DiffK can be applied as the bandwidth
of KDE that represents the clustering characteristic of the
spatial distribution pattern of active grassland fires in the
three seasons.

Parameters related to the bandwidth calculations
and the values of the bandwidth calculated according
to the previous functions (2)–(4) with the grassland
active fires are presented in detail in Tables 2 and 3.
The differences among these bandwidth selectionmethods
are obvious. In all seasons, the bandwidths of the theore-
tical bandwidth method are largest, and the values of

RDmean are the smallest. The bandwidths of the other
two methods are mid-range. In high, medium, and low
concentration scenarios, the differences of bandwidth
values of RDmean and Williamson methods are greater
than those of the other two methods.

Using the bandwidth values of different methods,
seasonal KDE maps of continuous surfaces of fire events
were obtained (Figure 4). According to the seasonal KDE
maps, the densities of active grassland fire points show
different spatial distribution patterns, although all of
them show the clustering characteristic (Figure 4). In
all seasons, the density surfaces calculated by the RDmean

method have spikier than those calculated with other
methods. In contrast, the results calculated with the the-
oretical bandwidth method are the smoothest surfaces.
With Williamson and Ripley’s K methods, the degrees of
surface smoothness are medium. The difference of max-
imum density values of different methods is substantial
in all seasons. The method with the biggest density value
is RDmean, followed by Ripley’s K, Williamson, and The-
oretical bandwidths. The estimated density value nega-
tively correlates to the value of bandwidth, and the
surface smoothness is positively correlated with the
bandwidth value. Thus, with increasing values of band-
width, the density surfaces become smoother, and the
maximum density values become smaller.

An accuracy assessment approach is added to select
the surface which better expresses the fire occurrence
distribution. In the measurements of the density esti-
mator using MISE, the true density of each active grass-
land fire point was calculated by averaging the value
with function (7) at 10, 20, and 30 neighbor distances
of each fire event. The density estimation of each active
grassland fire point was derived from the density sur-
faces of the four methods in spring, autumn, and summer.
The MISE values of the four methods in all seasons are
shown in Table 4. The differences in MISE among the var-
ious bandwidths of the four methods are quite large. Rip-
ley’s K method for calculating bandwidth has the lowest
MISE values among the methods in spring, autumn, and
summer. The MISE shows that the kernel density with
Ripley’s K method gives the best density estimation of
grassland fires in high, medium, and low concentration
scenes.

Therefore, the continuous spatial density surfaces
of grassland fire in different concentration scenes were
obtained as shown in Figure 4(F5). These density surfaces
can be used in grassland fire management practice and
risk research.
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5 Discussion

Choosing the suitable bandwidth is very critical because
it determines the range of variation of the estimation in
KDE [21]. These four bandwidth selection methods show
different abilities in calculating the density values of

KDE. We found that the bandwidth selection of Ripley’s
K method performed better than the other methods in
high, medium, and low concentration scenes of our sam-
ples. The previous methods that considered the sample
and region size are reasonable because the amount of the
observed points has a relationship with the information

Figure 3: The curves of Ripley’s K function for active grassland fire events in spring (a), autumn (b), and summer (c) in the study area.
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content. If the amount of sample points is more, which
represents a large informative dataset, a smaller band-
width is more suitable for avoiding over smooth and loss
of the variability in the estimation. In contrast, if the
amount of sample points is small, which represents a
minor informative dataset, a larger bandwidth is more
proper because a smaller bandwidth will cause the esti-
mated density that has little contact with neighbor points
[32]. In essence, these bandwidth selection methods repre-
sent the concentrationof the samples in a specific area, and
the difference in spatial distribution pattern is neglected. In
spatial datasets, especially for wildland fire samples, the
clustering characteristic is the main distribution pattern,
and these samples have the characteristic of spatial auto-
correlation. The bandwidth selection method of KDE by
Ripley’s K can express the character of the distribution
pattern.

In this study, the boundary correction method in pro-
cess of applying Ripley’s K was not considered. In this
case, the neighbor number of samples near the edge was
underestimated. Increasing the number of samples out-
side the study area is one method to rectify this situation.
Another method is to reduce the analyzed area and make
some samples that occur outside of the reduced area. In
this research, the previous three methods of bandwidth
selection do not have the requirement of boundary cor-
rection. When applying Ripley’s K function, the boundary
correction was neglected to maintain consistency of the

area and the sample size with the other methods. When
using the bandwidth selection method of Ripley’s K in
other studies, the correction method should be consid-
ered to increase the accuracy of the estimated density
surface, especially at the edge of the study area.

The best bandwidth selection by the MISE method is
affected by the true density of samples. These two things
cannot be acquired exactly. For the expert, these two
things can also be presented by intuitive graphics in
Figure 4. Thus, the three-dimensional graph is an effec-
tive method to achieve the objective. In the measure-
ments of the accuracy of KDE using MISE, the neighbor
number or the radius size is a critical factor in the identi-
fication of the true density of the samples. To decrease
the deviation of true densities of active grassland fire
points, the mean densities of each sample at 10, 20,
and 30 neighbor distances, which are also subjective,
were applied in this study. The true density of samples
cannot be known, so expert knowledge of the study area
is needed.

It is a fact that the number of samples and the dis-
tribution pattern affect the degree of smoothing. In our
study, the sample points of fire filtered by grassland
represent a discontinued part of the area, and the distri-
bution characteristic is a cluster. If the samples are gene-
rated for the whole area, Ripley’s K function must be
used first for examining the distribution characteristic.
When the ObservedK of the specific distance is greater
than the ExpectedK and HiConfEnv, the distribution char-
acteristic is a significant cluster and the density of these
samples can be estimated by ourmethod. If theObservedK
values are less than the confidential envelopes (LwconfEnv,
HiconfEnv), a bias is generated between the samples and
our methods because the sample distribution is dispersed
or random. In this situation, the bandwidth selection
method of Ripley’s K may not be better for calculating
the kernel density surface. The previous bandwidth selec-
tionmethods, especiallyRDmean andWilliamson,mayalso
be used. However, it is important to apply this new band-
width selection method in many other studies because
clustering is one of the important characteristics of spatial
elements.

The effect of KDE is to calculate the density of sam-
ples for converting point data into continuous data.
When calculating the densities with our method, the
type of spatial distribution of points should be calculated
first. If the spatial distribution type of points is a cluster,
the optimal bandwidth (half of the DiffK) for the dataset
will be calculated with Ripley’s K. However, other methods
should be used to calculate the bandwidth of the KDE
map.

Table 2: Parameters related to bandwidth calculations for different
methods

Parameter Value

Total size of the study area (A) 252,948 km2

Total number of polygons 13
Mean polygon size 19,594 km2

Total number of active fire events in Spring (N) 2639
Total number of active fire events in Autumn (N) 1505
Total number of active fire events in summer (N) 406

Table 3: The values of bandwidths for different methods

Method Spring
(km)

Autumn
(km)

Summer
(km)

Theoretical bandwidth
(function 2)

197 197 197

RDmean (function 3) 10 13 25
Williamson (function 4) 71 79 103
Ripley’s K (function 5) 49.5 41 40
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Figure 4: The KDE maps in spring, autumn, and summer, according to different bandwidth selection methods (F2: Theoretical bandwidth,
function 2; F3: RDmean, function 3; F4: Williamson, function 4; F5: Ripley’s K, function 5).
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6 Conclusion

In this study, the eastern Inner Mongolia Autonomous
Region of China, one of the main regions in the Asian
grassland that was significantly disturbed by grassland
fires, was selected as the study area. The MODIS Terra
and Aqua daily active fire product data (MOD14A1 and
MYD14A1) belonging to this region were downloaded
from LP-DAAC. As a nonparametric method for obtaining
continuous surfaces from point observations, KDE has
been widely used to convert point-based data into den-
sity maps and to decrease the positional inaccuracy at the
same time. To find an adaptive bandwidth for fitting the
grassland fire events and the study area, a bandwidth
selection method on the basis of Ripley’s K function,
which considered the clustering characteristic of the
grassland fire events distribution pattern, was developed.
It demonstrated that the developed bandwidth selection
method is better than the previous methods in high,
medium, and low concentration scenes. Applying this
method can promote wildland fire management in areas
that are more prone to fire damage. Our approach pro-
vides a general bandwidth selection method for KDE in
different studies as long as the samples have the clus-
tering characteristics of a distribution pattern.
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