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Abstract: Paleoenvironmental research is critical for under-
standing delta evolution processes and managing delta sus-
tainability, particularly for delta experiencing significant
recent fluvial sediment discharge. Based on other pre-
viously reported optically stimulated luminescence (OSL)
data, Holocene environmental changes of the Yangtze
River delta in response to climate fluctuations and human
activities were reviewed on the basis of grain-size analyses
of core YZ0O7. The results of grain-size and end-member
analysis (EMA) provide a detailed history of East Asian
monsoon variability and environmental changes since
~10,000 cal year B.P. The lower median values (Md) and
sand content reflect relatively cool and dry climate condi-
tions between 10,000 and 9,570 cal year B.P. During the
early Holocene (9,570-7,630 cal year B.P.), the highest Md
values and sand contents and the lowest end member 2 (EM2)
contents suggest the Holocene transgression. The increased
Md values and sand contents indicate that the climate condi-
tions were warm and wet during the mid-Holocene thermal
optimum. From 4,690 to 4,150 cal year B.P., the climate was
cool and dry, corresponding to the cool event, as indicated
by the finer grain size. Subsequently, between 4,150 and
2,850 cal year B.P., the grain size derived from the Md value
and sand content increased, which reflect a wet and warm
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episode. The climate, which shifted from warm and wet to
cool and dry between 2,850 and 1,020 cal year B.P., may
have caused a reduction in the sand contents and Md
values. After 1,020 cal year B.P., the lowest values of Md
and Standard deviation (Sd) and the highest contents of
EM2 and clay suggest that the Yangtze River delta has
been severely affected by anthropogenic activity. The varia-
bility of the East Asian monsoon intensity in the Yangtze
River delta strongly correlates with other East Asian mon-
soon paleoclimate records in China. These results are impor-
tant for investigations into the interactions between regional
systems and global change in monsoonal climatic regions
and can provide an example of the evolution of a large scale
geomorphic feature resulting from river-sea interaction.

Keywords: Yangtze River delta, grain size, end-member
modeling analysis, East Asian monsoon

1 Introduction

Yangtze River delta is located in eastern China (122°30’
N-120°N, 32°30’E-29°30’E), and the elevations of Yangtze
River delta range from 3 to 5 m above average sea level [1,2].
Yangtze River delta is highly vulnerable to typhoons,
flooding, and high tides. The current dominant climate of
the Yangtze River delta is the widespread East Asian mon-
soon (EAM), which is characterized by cold and dry during
the winter and hot and wet during the summer. The EAM is
a significant part of the global climatic system and plays an
important role in the global hydrologic cycles [3]. The
research of past monsoonal climatic history is necessary
for predicting the climate changes in monsoonal areas in
the near future.

Since the 1970s, a large number of research projects
have been conducted in the reconstruction of the strati-
graphic framework in Yangtze River delta to elucidate the
relationships between the delta’s evolution and paleo-
environmental change [4-15]. Grain-size distributions can
be used to infer the sedimentary processes and the prove-
nance and determine the paleo-depositional environment
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and the sediment transport pathways [16—-29]. Many grain-
size proxies including sorting coefficient (or standard devia-
tion), median grain size, kurtosis, skewness, and grain-size
ratios have been shown to reflect different transport dynamics
[30-34]. For example, median values (Md) are usually
related to the average strength of the transport mechanics.
Standard deviation (Sd) is often used as the quantification
of the grain-size populations. Skewness (Sk) is a slanting
asymmetry in the abnormal distribution that reflects the
changes of the grain-size distribution. Kurtosis (Kg)
describes the shape of a probable distribution reflecting
the changes of sedimentation dynamics. However, all these
grain-size parameters are not solely associated with a single
process, but always represent a mixture of different trans-
port and sedimentation dynamics.

Generally, two methods can be applied to differ-
entiate the mixing of different processes. The first method
is based on the visual particle-size distribution curves
(histograms). However, the analysis of multimodal distri-
butions is qualitative and is only useful when they are
sufficiently different from individual subgroups [35]. The
second method is end-member analysis (EMA). EMA does
not require any specific assumptions, which suggests
that the numbers and shapes of end members also are
not specified, so it should be especially well suitable for
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separating the grain-size distributions based on principal
component analysis, factor rotation, a nonnegative least-
square estimation, and variable data scaling [36—39].

In this study, based on the previously reported opti-
cally stimulated luminescence (OSL) data, we systemati-
cally investigated the basic grain-size proxies and the
EMA results of Holocene sediments in Yangtze River
delta. First, we report variations in the grain-size para-
meters with age. Then, we discuss the responses of the
sediment grain size to the climate fluctuations and human
activities since 10,000 cal year B.P. We also address the
possible driving forces of the variability of the Holocene
monsoon intensity. The results can reveal the provenance
and sedimentary dynamics of different sediments types
since 10,000 cal year B.P. and understand the paleoenviron-
mental information from the sediments.

2 Regional setting

The Yangtze River originated from the Qinghai-Tibet
Plateau and flowed to the East China Sea at approxi-
mately 31.5°N (Figure 1). The Yangtze River delta
with approximately 51,800 km? has a funnel-shaped
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Figure 1: Distribution of Holocene deposits over the eastern China sea region (modified from ref. [69]) (left), the location of the study core
YZ07, and the correlation core CM97, HQ98 in the Yangtze River delta (right).



DE GRUYTER

topography and is characterized as a typical tide-domi-
nated delta [41-45].

The current climate of the Yangtze River delta is
humid subtropical climate and is largely dominated by
the EAM. The annual average temperature is 15.6°C. The
area is dominated by a subtropical high pressure system
during the summer and experiences warm, moist condi-
tions with a monthly average daily maximum tempera-
ture of 28.9°C. The region is under the influence of the
Mongolian high pressure system during the winter and
experiences cold, drought conditions with a minimum
temperature of approximately 2°C. Average precipitation
is approximately 1,100 mm/year, and approximately 40-45%
of falls occur in the summer [40,45].

During the Last Glacial Maximum, the coastline was
about 130 m below the current sea level, and most of the con-
tinental shelf in the East China Sea was subaerial [2,56].
A huge incised river valley formed in the modern Yangtze
River delta during the Last Glacial Maximum [41-43].
However, with the rising of the sea level, the incised
valley was submerged and then formed a tide-dominated
estuary [46]. When the Holocene transgression reached
the maximum during 8,500-7,000 cal year B.P., a funnel-
shaped paleo-Yangtze River estuary formed in the incised
valley. This river mouth was 60-90 m deep and 60-70 m
wide extending from Zhenjiang—-Yangzhou to the modern
estuary [41,44]. Subsequently, most of the incised river
valley was filled, and the current Yangtze River delta
sediments were washed into the estuary. The incised
valley-fill sequence after the Last Glacial Maximum con-
sists of deltaic facies, estuarine, and fluvial in descending
order [42-44].

3 Materials and methods

Core YZ0O7 (32.08°N, 12.601°E) was taken from the Yangtze
River delta (Figure 1). The total penetration depth of core
YZ07 is 150 m, and the recovered length is 143.44 m. The core
was split into archive and working halves. In this study, we
discuss the grain-size characteristics with a segment of the
core between 0 and 46.45 m. According to OSL dates of Gao
et al. [47,48], the deposits between 0 and 46.45m were
accumulated since the early Holocene (Figure 3).

For grain-size analyses, a total of 484 sediment samples
were collected at vertical intervals of ~10 cm between 0 and
46.45m. All samples were pretreated by adding H,0, to
remove organic matter and HCl to remove carbonate, and
then were measured after dispersion with 10% (NaPOs)¢
with an ultrasonic treatment [49]. Grain size was measured
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using a Malvern Mastersizer-S laser particle-size analyzer
with 100 bins ranging from 0.02 to 2,000 pm. Loss-on-igni-
tion (LOI), which was expressed as a percentage, was deter-
mined by the weight of the samples after ovendrying at
110°C for 4 h, annealing at 550°C for 3 h, and then the sam-
ples were reweighed. Magnetic susceptibility of the samples
was measured using a Bartington MS2 Magnetic Suscept-
ibility Meter. All measurements are conducted at the State
Key Laboratory of Lake Science and Environment, Nanjing
Institute of Geography and Limnology.

4 Results

4.1 Sedimentary units of core YZ07

Gao et al. [47,48] have recognized three sedimentary
facies including intertidal flat, lower intertidal to subtidal
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Figure 2: The lithology characteristics of typical sedimentary facies
of core YZ07.
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Figure 3: Values of magnetic susceptibility (b) and loss-on-ignition (c) of core YZ07, which was dated using the (a) optically stimulated

luminescence method [65].

flat, and flood plain (Figure 2). In this study, according to
differences in lithology, biological indicators, magnetic
susceptibility (y), and LOI, we have identified seven units
for better studying the changes of grain size. Magnetic
susceptibility (y) was determined by the overall concen-
trations of magnetic minerals, and LOI is an index that
reveals an enrichment of organic matter in the sediment
sequence. Unit 1 (46.45-45.15m; 10,000-9,570 cal year
B.P.) is dominated by olive grey silty sand (Figure 2). Values
of y range from 26.87 to 44.49 x 10~® m?/kg with a mean of
28.91 x 108 m?/kg. Values of LOI range from 1.42 to 2.41%
with a mean of 1.78%. Unit 2 (45.15-42.17 m; 9,570-7,630 cal
year B.P.) mainly consists of grey sandy silt (Figure 2).
Values of y range from 25.16 to 81.14 x 10 ®m’/kg with a
mean of 42.93 x 10~ m?/kg. Values of LOI range from 1.60
to 3.36% with a mean of 2.23%. Unit 3 (42.17-34.47 m;
7,630-4,690 cal year B.P.) is made up of dark grey sandy
silt and silty sand (Figure 2). Values of y range from 26.73
to 249.96 x 10°®m’/kg with a mean of 62.53 x 10~ m’/kg.
Values of LOI range from 2.05 to 4.93% with a mean of 2.93%.
Unit 4 (34.47-32.40 m; 4,690-4,150 cal year B.P.) is domi-
nated by light brown silty sand (Figure 2). Values of
X range from 25.37 to 56.75 x 10 ®m’/kg with a mean of

35.79 x 10~8m?/kg. Values of LOI range from 2.06 to
5.43% with a mean of 3.23%. Unit 5 (32.40-24.64 m;
4,150-2,850 cal year B.P.) mainly consists of light brown
silty sand and sandy silt (Figure 2). Values of y range from
26.70 to 221.33 x 107 m?/kg with a mean of 56.78 x 10~8 m?/kg.
Values of LOI range from 1.67 to 4.17% with a mean of 2.79%.
Unit 6 (24.64—4.99 m; 2,850—-1,020 cal year B.P.) is made up of
light brown clayey silt, sand silt, silt, silty sand, and sand
(Figure 2). Values of y range from 22.29 to 297.97 x 10 ® m’/kg
with a mean of 40.79 x 10 m>/kg. Values of LOI range from
139 to 6.06% with a mean of 3.47%. Unit 7 (4.99—0 m;
1020 cal year B.P.-present) is dominated by light olive grey
silt (Figure 2). Values of y range from 25.49 to 38 x 10" m’/kg
with a mean of 32.65 x 10" m?/kg. Values of LOI range from
2.17 to 5.26% with a mean of 3.44% (Figure 3). The results
of y and LOI supported the seven units of the core YZ07
between 0 and 46.45 m.

4.2 Grain-size parameters

The mean Md value in core YZ07 is 52.66 pm (Figure 4).
The highest and lowest values occurred at depths of
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Figure 4: Grain-size parameters including Md, Sd, SK, Kg and the contents of clay, silt, and sand against age for each unit (black lines are
the original values, with red lines smoothed by a 5-point running average).

42.17-45.15m (mean, 94.28 pm) and 0-4.99 m (mean,
23.78 pm), respectively. The mean Sd, Sk, and Kg values
are 1.93, 0.41, and 1.08, indicating medium sorting, posi-
tive skewness, and medium kurtosis. The mean clay con-
tent (0—4 pm) is 11.07%. The highest and lowest contents
occurred at depths of 0-4.99m (mean, 14.73%) and
24.64-32.40 m (mean, 9.14%), respectively. The mean
silt content (4—63 pm) is 52.07%. The highest and lowest
contents occurred at depths of 0-4.99 m (mean, 76.51%)
and 42.17-45.15 m (mean, 38.00%), respectively. The mean
sand content (>63 pm) is 36.23%. The highest and lowest
contents occurred at depths of 42.17-45.15 m (mean, 52.36%)
and 0-4.99 m (mean, 8.77%), respectively (Figure 4, Table 1).
Sedimentary facies from the results of grain size were con-
sistent with the y and LOL

The typical grain-size distributions of core YZ07 are
illustrated in Figure 5. The curve shapes of the grain-size
distribution of units 1, 2, 3, and 5 show two peaks and are

clearly shifted to the sand side, with the main peaks
occurring at 100, 250, 160, and 158 pm, respectively.
The curve of Unit 6 shifted to coarse silt and shows two
peaks occurring at 55 and 12 pm. The curves of units 4 and
7 show a single peak. The main peak occurred at 45 and
11 pm, respectively. All those show the sediments of unit
1, 2, 3, and 5 are coarest, and the sediments of unit 4 and 7
are finest.

4.3 Grain-size end-member analysis

Using AnalySize Software as proposed by Paterson and
Heslop [50] to demonstrate the applicability of EMA, we
calculated the squared linear correlation (R?) and angular
distance in degrees (theta) by assuming two to seven end
members. Figure 6a and b show that the grain-size data

Table 1: Comparison of the range and mean value of grain-size parameters during different units

Sample Values Md (pm) Sd () Sk (¢) Kg () Clay (<4pm/%) Silt (4-63 pm/%) Sand (>63 pm/%)

Unit 1 Range 27.08-106.03 1.63-2.35 0.18-0.58 0.77-1.52 6.04-14.20 25.14-72.59 14.36-68.81
Mean 55.32 1.93 0.44 1.07 9.15 48.45 42.40

Unit 2 Range 23.70-173.89  1.72-2.51 0.17-0.69 0.76-1.17 6.84-14.96 19.69-70.31 19.05-73.11
Mean 94.28 2.25 0.46 0.91 9.63 38.00 52.36

Unit 3 Range 16.23-109.60 1.81-2.40 0.10-0.62 0.77-1.75 6.13-17.35 19.97-73.32 11.04-73.61
Mean 64.31 2.11 0.46 0.93 10.72 40.76 48.52

Unit 4 Range 24.22-95.44 1.59-2.18 0.19-0.60 0.86-1.43 7.62-13.14 28.52-78.66 8.65-62.38
Mean 40.03 1.85 0.40 1.14 10.92 63.25 25.83

Unit 5 Range 12.97-140.66 1.54-2.57 0.03-0.63 0.74-1.76 4.53-20.38 18.15-73.13 6.49-76.33
Mean 73.69 2.06 0.45 1.02 9.14 39.33 51.53

Unit 6 Range 8.35-140.91 1.15-2.45 0-0.59 0.83-2.46 3.03-27.52 10.68-83.61 0.29-86.16
Mean 40.30 1.83 0.37 1.17 11.84 59.69 28.47

Unit 7 Range 8.01-48.57 1.25-1.82  0.20-0.47 0.96-1.70 6.31-28.20 59.54-83.24 0.02-33.99
Mean 23.78 1.69 0.39 1.14 14.73 76.51 8.77
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Figure 5: Grain-size distribution frequency curves of the represen-
tative samples from the core YZ07 in the Yangtze River delta.

can best be explained by a 5-end-member model. More
end members will not provide a better explanation of the
dataset as R* does not increase much. Adding more end
member will increase noise [51,52].

Each end member (EM) has a dominant peak and
presents normal grain-size distribution curves for the
five EMs (Figure 6¢). With the increasing of the grain
size of the dominant peak, the sorting improves toward
coarse grains from EM1 to EM5. EM1 has a mode of 14 pm,
with a majority in the finer silt range, indicating that EM1
is typically transported as suspension. EM2 has a mode of
35um, with a majority in the coarse silt range, which
show that EM2 could behave as either semi-suspension
or bedload depending on hydrodynamic conditions. So
EM2 can be more sensitive for hydrodynamic conditions
caused by climate changes. EM3 has a mode of 71 pm,
with a majority in the very fine sand range. The mode
of EM4 is 142 um, and it is mainly distributed in the fine
sand. EM5 has a mode of 252 um, most within the sand
range. The sub-peaks of EM3, EM4, and EM5 are lower in
the range of fine silt, indicating that EM3, EM4, and EM5
can be transported by saltation [39,41].
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Figure 7 and Table 2 show the distribution of the
relative contents of the five EMs, which range from 0 to
100%. The mean content of EM1 is 27.26%. The highest
and lowest values occurred at depths of 0-4.99 m (36.05%)
and 42.17-45.15 m (21.59%), respectively. The mean content
of EM2 is 21.23%. The highest and lowest values occurred
at depths of 0-4.99 m (50.28%) and 42.17-45.15 m (8.43%),
respectively. The mean content of EM3 is 23.28%. The
highest and lowest values occurred at depths of 45.15-
49.93m (31.57%) and 0-4.99 m (11.10%), respectively. The
mean content of EM4 is 20.60%. The highest and lowest
values occurred at depths of 34.47-42.17 m (39.97%) and
0-4.99m (0.46%), respectively. The mean content of
EM5 is 7.09%. The highest and lowest values occurred
at depths of 42.17-45.15 m (33.87%) and 0—4.99 m (0.02%),
respectively.

5 Discussion

Grain-size analyses from sediments of core YZ07 from the
Yangtze River delta provide the detailed paleoenviron-
mental evolutional history since 10,000 cal year B.P.

5.1 Unit 1 (10,000-9,570 cal year B.P.)

Data from the 8C record of the Hani Peat from the
Northeast China [53], the 8'®0 record of Dongge Cave
from the eastern China [54], and the redness record of
Qinghai Lake from the Northwest China [55] have been
attributed to a relatively cool and drought condition from
10,000 to 9,570 cal year B.P. (Figure 8), and the pollen
assemblages from the Yangtze River delta also suggest
dry and cool conditions [8,9,25]. In core YZ07, the lower

ce (%)

Fractional abundan,
s o

Figure 6: EMA results of the grain-size data from YZ07 in the Yangtze River delta. (a) The squared linear correlation (R?). (b) The angular
distance in degrees (Theta). (c) Grain-size distribution for each end-member.
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Figure 7: Temporal distributions of the relative contents of the five EMs of the sediments from core YZ07 in the Yangtze River delta.

Table 2: Comparison of the range and mean value of EMMA results during different units

Sample Values EM1 (%) EM2 (%) EM3 (%) EM4 (%) EM5 (%)
Unit 1 Range 9.50-36.50 0-44.68 5.43-58.73 0-53.42 0-22.66
Mean 21.50 15.85 31.57 26.01 3.77
Unit 2 Range 3.32-42.70 0-27.75 0-40.54 0-44.81 0-72.25
Mean 21.59 8.43 14.86 17.58 33.87
Unit 3 Range 13.79-58.30 0-35.35 0-48.43 0-71.70 0-23.86
Mean 28.17 8.83 17.57 39.97 5.45
Unit 4 Range 9.40-35.15 0-61.03 3.27-53.86 0-57.16 0-24.87
Mean 23.35 37.77 24.35 11.11 3.42
Unit 5 Range 7.40-66.96 0-31.57 0-51.79 0-59.64 0-50.60
Mean 23.30 8.91 19.46 34.78 13.56
Unit 6 Range 0-95.88 0-67.87 0-80.71 0-85.03 0-76.93
Mean 29.14 26.19 29.01 11.88 3.77
Unit 7 Range 0-9.71 0.55-71 0-45.72 0-7.74 0-0.51
Mean 36.05 50.28 11.10 0.46 0.02

Md values, higher EM2 contents, and lower Sd values
indicate that the grain size of sediments decreased in
this section. During 10,000 to 9,570 cal year B.P., rainfalls
in the Yangtze River valley decreased leading to weaker
hydrodynamic conditions [58]. Weak hydrodynamic condi-
tions brought the fine-grained sediments to the study area.

5.2 Unit 2 (9,570-7,630 calyear B.P.)

At around 9,570-7,630 cal year B.P., the highest values of
Md and Sd suggest strong hydrodynamic conditions,
which is also supported by the lowest EM2 contents.
The previous studies indicate that the Holocene trans-
gression reached the maximum in 7,000-8,500 cal year
B.P. [41-44]. The Holocene transgression has made the

study area to be depocenter [5]. More and coarser sedi-
ments were brought to the study area. These resulted in
the rapid increase of Md and Sd values and the decrease
of EM2 contents.

5.3 Unit 3 (7,630-4,690 cal year B.P.)

The grain-size records of this period show a mean Md
value of 64.31pm and a mean clay content of 10.72%.
These data indicated that from 7,630 to 4,960 cal year
B.P., the East Asian monsoon remained strong in the
Yangtze River delta region. The pollen assemblages are
comparable to those found in various parts of China
which were interpreted as reflecting mid-Holocene hypsi-
thermal conditions. In other palynological studies in the
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Figure 8: (a) EM2 values, (b) Sd values, and (c) Md values smoothed by 5-point running averages for core YZ07. (d) The changes of evergreen
of core CM97 from Yangtze River delta [8,9] (e) The changes of evergreen of core HQ98 from Yangtze River delta [8-10] (f) Stalagmite 320
record from Dongge Cave [49]. (g) NH summer solar insolation at 450N [66]. (h) Cellulose d,3C record from Hani Peat [55]. (i) Redness data

from Qinghai Lake [50]. (j) Sea surface temperature reconstructed on
western tropical Pacific [63].

lower reaches of the Yangtze delta region, the average
temperature during 7,630-4,960 cal year B.P. was 2-4°C
warmer than that of today [44].

The grain-size data suggested that the climate of
most areas in the northeastern and central China was
wetter and warmer than that at the present [58]. The
wet and warm conditions in the central and northeastern
China suggested the increasing influence of the mid-
Holocene Pacific monsoon [59]. From 7,632 to 4,837 cal
year B.P., the pollen assemblages in the Yangtze River
delta, the §'®0 record of Dongge Cave from the eastern
China [60], the 8C record of the Hani Peat from the
Northeast China, and the redness record of Qinghai Lake
from the Northwest China all reached the highest levels
since the Holocene, indicating that climate in these regions
is warmest and wettest. An concluded that the optimal
climatic conditions in the middle and lower reaches of
the Yangtze river were found at about 6,000 cal year B.P.
using the numerical simulation of east Asian monsoon
season cycle [3].

5.4 Unit 4 (4,690-4,150 cal year B.P.)

A cool and dry climate was shown from 4,690 to 4,150 cal
year B.P. by an abrupt reduction in Md and a rapid
increase of EM2 contents. The cool and dry climatic con-
ditions caused weak hydrodynamic conditions. Climatic
cooling events between 4,700 and 3,500 cal year B.P.
have been reported in many parts of the world [61,62].

the Mg/Ca ratio of Globigerinoides ruber from MD81 core in the

In China, Liu et al. [56] reported that the lower reaches of
the Yangtze River began to become cool after approxi-
mately 4,400 cal year B.P. followed by a warmer and
wetter low temperature event in the middle Holocene.
Ice wedges found in Yitulihe of the northeastern China
that formed between 4,500 and 3,000 cal year B.P. indi-
cate a bitterly cold Neoglacial period [64,65]. A similar
cooling trend was shown in many areas of China, where
pollen data during the middle and late Holocene were
recorded [8,9,66,67]. The cool and dry climatic period
recorded by core YZ07 is different from the above results.
The reason for this may be that chronological uncertain-
ties such as differences of dating methods are likely to
have affected the recorded patterns of climatic change on
a multi-millennium time scale.

5.5 Unit 5 (4,150-2,850 cal year B.P.)

The increase of Md value, sand content, and the decrease
of clay and EM2 content indicated the arrival of warm and
humid episodes. However, this time period belongs to
the Neoglacial period, which is also suggested by the
increase of deciduous trees and subtropical evergreen such
as Quercus (Lepidobalanus), Quercus (Cyclobalanopsis),
Morus, Ulmus/Zelkova, and Castanopsis/Lithocarpus from
cores HQ98 and CM97 in the Yangtze River delta. The low
frequencies of conifers from cores HQ98 and CM97 also sug-
gested that the climate conditions were warm and humid
during this period [8,9,67].
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5.6 Unit 6 (2,850-1,020 calyear B.P.)

As shown by an increase in EM2 and clay contents, a cool
climatic stage occurred during 2,850-1,020 cal year B.P.
A cool climatic phase occurred at this time, as suggested
by an increase in the occurrence of conifers including
Pinus and Fagus along with rare subtropical broadleaved
evergreen and deciduous broadleaved trees from cores
HQ98 and CM97 in the Yangtze River delta [44]. The shift
from warm and humid to cool and dry climate may result
in a decrease of the sand contents and Md values. Chen
et al. [69] have reviewed the historical document of China
and recorded that the climatic conditions in the lower
reaches of the Yangtze river during the Northern and
Southern dynasties (about AD 350-580) were so cold
that rivers and lakes were frozen in the winter. Based
on a study of peat cellulose, Hong et al. [55] recognized
a significant decrease of the temperature from about
1,800 to 1,600 cal year B.P. This cooling process is con-
sistent with the Kofun cooling period recorded in Japan
(AD 240-732) [68-69]. The redness record of northwest
part of Qinghai lake [57] and the declining abundance
of Pulleniatina obliquiloculata in the northwest Pacific
Ocean [70] can also be used to infer cold and dry periods.

5.7 Unit 7 (1,020 cal year B.P.-present)

During this period, the grain size shows the lowest Md
values and the highest EM2 and clay contents. The lowest
values y and the highest LOI values also imply a signifi-
cant increasing of aquatic productivity [71]. We hypothe-
sized that those could be influenced by the enhancement
of human impacts such as industry, agriculture, defores-
tation, and soil erosion. Human activities resulted in
strong agitations of land surface, which can lead to a
sharp decrease in the Md value and abrupt increase in
the EM2 and clay contents.

6 Conclusion

Based on the grain-size parameters of core YZ07 from the
Yangtze River delta and a time control provided by a
number of OSL ages, past changes of the EAM climate
and sedimentary environment have been deduced using
sediment grain-size analysis method of end-member model.

Between 10,000 and 9,570 cal year B.P., the climate
of the Yangtze River delta was cool and dry as indicated
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by the lower Md values and sand contents. During the
early Holocene (9,570-7,630 cal year B.P.), the highest
Md value and sand content and lowest EM2 contents sug-
gest a Holocene transgression. The climate during the
mid-Holocene thermal optimum (7,630-4,690 cal year
B.P.) was warm and wet. The strong East Asian monsoon
with low seasonal variation encouraged the increase in Md
and sand. From 4,690 to 4,150 cal year B.P., the climate
was cool and dry, corresponding to the cool event, as
indicated by the finer grain size. Subsequently, between
4,150 and 2,850 cal year B.P., the grain size derived from
the Md value and sand content increased, reflecting a
warm and wet episode. A cool climatic phase occurred
between 2,850 and 1,020 cal year B.P., as suggested by
an increase in EM2 and clay contents. The climate shifted
from warm and wet to cool and dry, which may have
caused a reduction of the sand contents and Md values.
After 1,020 cal year B.P., the lowest values of Md and Sd
and the highest contents of EM2 and clay suggest that the
Yangtze River delta has been severely influenced by
anthropogenic activity. The variability of EAM intensity
in the Yangtze River delta is strongly consistent with other
EAM paleoclimate records in China. This study not only
provides a basis for Yangtze River delta paleoenvironmental
reconstruction by integrating detailed logs of grain-size
parameters, but also provides constraints for exploring the
land-sea interactions recorded in the sediment cores as a
part of the earth system, and thus, demonstrates the effec-
tiveness of this approach.
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