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Abstract:High field-strength elements have been regarded
as one of the most important discriminations in subduc-
tion zone magma. However, the spatial distribution of Nb
and Ta in subduction zone-related rocks has been rarely
studied; it is still unclear whether there is a quantitative
relationship between the Nb–Ta concentrations and
their subduction distance. In this paper, the Nb–Ta con-
centrations of mafic rocks in arc tectonic systems were
calculated from a statistical perspective based on the
combined geophysical model and geochemical database.
The results showed a typical spatial distribution pattern.
The threshold value of Nb (12.20 ppm) and Ta (0.796 ppm)
in arc settings was estimated by a cumulative distribution
function, which can be used to determine whether the
rock is generated in arc tectonic environment. A prob-
ability density function of Nb–Ta contents and related
subduction distance has been obtained using kernel
function estimation. The Nb–Ta concentrations are expo-
nentially correlatedwith the subduction distance (<700 km),
while the Nb/Ta ratios keep in the range of 12–19. We

proposed that the subduction depth, along with the degree
of partial melting, and possible crustal contamination
might be responsible for the Nb–Ta variation correlation
with subduction distances.

Keywords: mafic rocks, Nb–Ta, spatial distribution, geo-
chemical characteristics, subduction zones

1 Introduction

In the solar system, Earth is the only planet that does
have plate tectonics, which is the main process to trigger
magma evolution, differentiation, and elemental cycling.
As the main areas for plate demise and magmatism arise,
magmatism in subduction zones is closely related to the
exchange of matter and energy between the crust and the
mantle [1–8]. Meanwhile, many studies have focused on
the growth of continental crust (CC) and the role of arc
magmatism, modern subduction zone architecture, sys-
tematics, magma genesis, and geochemical variations
within the products of continental and island arc magmas
[8–20]. Geophysical studies (e.g., seismic wave, geomag-
netism, and geo-electricity) can offer the angle at which
the plate is being subducted and distance of the subduc-
tion zone from continental margins, and geochemical
studies reveal the composition of subducting material
and involved mechanism in subduction zones, both leading
to a better understanding of the subduction zone processes.
The inhomogeneity of elements in different layers of our
Earth is influenced by events such as oceanic ridge expan-
sion, plate subduction, and magma evolution under dif-
ferent physical–chemical conditions [21–24]. Therefore,
the elemental distributions in different Earth reservoirs
can be an effective probe to understand our Earth. Sub-
duction zone-related interplate and intraplate mafic rocks
are products of mantle sourced magmas that contain
the geochemical signature of crustal components. Several
groups of trace elements, such as large ion lithophile ele-
ments, light rare Earth elements, heavy rare Earth ele-
ments, and high field-strength elements (HFSE), have
been used to trace and decipher the subduction processes
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on account of their unique geochemical properties. Of
these trace elements, HFSEs (e.g., Th, U, Zr, Ti, Nb, Ta,
and Hf) are relatively stable and are immobile during
metamorphism, alteration, and weathering, and therefore
can serve as valid tracers for the magmatic process. These
elements were used to tracemagma sources and geological
process [16,25–39]. As typical HFSEs, element niobium
(Nb) and element tantalum (Ta) have long been regarded
as geochemical “identical twins,” as they have similar
ionic radius and electronic structures. They are linked
with the elemental balance of the Earth and the growth
mechanism of the CC [38]. Previous studies focused on
different Nb–Ta minerals occurrence state, the Nb–Ta con-
centrations in minerals and rocks, and the Nb/Ta ratios
[25,27,36,40–43]. However, the spatial distribution of
Nb–Ta concentrations and their ratios in subduction
zones has long been overlooked in previous studies. In
the past decade, the establishment and refinement of the
global geochemical databases have provided effective
means for big data analysis and statistics in Earth sciences
[44]. By analyzing the geochemical characteristic of global
rocks, patterns can be found in the distribution of ele-
ments in different tectonic settings [45–47].

In this study, based on the global geochemical data
set of mafic rocks (0–5 Ma) in typical arc-continent sys-
tems, the spatial distribution characteristics of Nb–Ta
were investigated, and cumulative distribution function
(CDF) was used to obtain the threshold value of Nb and
Ta in arc tectonic settings (12.20 ppm and 0.796 ppm). It
can be fitted that the Nb and Ta concentrations are expo-
nentially correlated with the subduction distance, with
the values of Nb/Ta ratios, however, stay stable. The
data characteristics implied that the subduction dis-
tance, which may be directly related to the subduction
depth, may provide a first-order explanation for the
observed distribution patterns for the Nb–Ta concentra-
tions in subduction zones.

2 Data and methods

The geochemical data used in the present study came
from EarthChem (Geochemical Databases for the Earth),
a well-known international scientific database system in
petrology [48,49]. Because the database is not expected
to arbitrarily generate from a bias for rocks of a particular
age, the geochemical data of igneous rocks from the
EarthChem database are representative of global magma-
tism throughout Earth’s history [16]. Therefore, such a data-
base is probably the best means currently for assessing the

spatial distribution of geochemical elements in worldwide
rocks.

2.1 Data compilation and filtering

The continuous plate tectonic activity on the Earth would
constantly change the location of igneous rocks; there-
fore, ancient rocks, which had been subjected to possible
multiple tectonic transformations, are unreliable candi-
dates to represent their geographical locations in subduc-
tion zones. The short history of the young rocks (≤5 Ma)
makes their occurrence locations reliable to stand for
the geographical locations of the geological settings.
Therefore, those mafic rocks (45–53 wt% SiO2) younger
than 5 Ma in subduction zones were selected to constrain
the Nb–Ta properties during plate subduction.

Rocks in the continental collision zone were dis-
carded first, as these rocks were related to continental
subduction processes, where the elements may behave
differently from those in the oceanic subduction zones.
Rocks from East African Great Rift Valley were not included
here for the same reason. The Ocean Island Basalts (OIB),
which are far away from subduction zones, are also removed
from the data sets. Because these rocks are believed to be
derived from mantle plumes [50–52], they are not suitable
for the present study. The mafic rocks in western North
America were also excluded because they were related to
mid-oceanic ridge subduction [53–56]. Such geological pro-
cess may induce complicated geochemical geodynamical
processes of mafic rocks.

2.2 Method

2.2.1 Subduction zone geometry model

Subduction zone model data come from the Slab 2 pro-
posed by Hayes et al. [57]. Slab 2 describes the detailed
geometry of more than 24 million square kilometers of
subducted slabs; the data for Slab 2 include data distri-
bution (X, Y) and slab depth models (Z) on a regional
level. It provides greater global coverage at a finer resolu-
tion than previous global subduction zone geometry models
[57,58]. We modeled the slab depth at individual nodes
over a grid for each subduction zone and then inter-
polated those depths onto a 3D grid, or surface (Figure 1).
According to the depth of subduction zone models,
we can get the direction that slab subducted and extract
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the data from the outermost beginning of the subduc-
tion zone as the boundary line of subduction zone. The
shortest distance frommafic rocks to the subduction zone
(trench), called “subduction distance” in this paper, is
calculated based on the inferior arc length of the great
circle from the sample location (longitude and latitude)
to the boundary line of subduction zone.

2.2.2 Statistical methods

As geochemical element concentrations are influenced by
many factors [59], individual elemental concentrations
appear to be random, but there is a clear statistical pat-
tern in the case of a large number of samples. In our
study, we used the kernel density estimation method
that can be used in probability theory to estimate an
unknown density function. The probability density fun-
ction (PDF) of the Nb–Ta concentrations corresponding
to subduction distances from 0 to 2,200 km was calcu-
lated using kernel density estimation method; the width
of the sample window is set at 200 km subduction distance,
while the step width is set at 100 km subduction distance.
Mean value and corresponding standard error for every

60 km subduction distance were obtained by calculating
the average value and standard deviation of those data sets.
The step width is set at 30 km subduction distance.

3 Results

3.1 Characteristics of spatial distribution

As shown in Figure 2, in East Asia and South America,
mafic rocks in arc tectonic systems hold relatively low Nb
concentrations, while the Nb concentrations of the intra-
continental mafic are higher (Figure 2a and b). It is also
noteworthy that intracontinental mafic rocks in East Asia
are significantly more Nb-enriched than those from South
America. Similarly, rocks in typical arc tectonic settings
(e.g., Sumatra Island and Vanuatu) have the low Nb con-
centrations (Figure 2c and d). A similar trend can also be
observed in Ta (Figure 2e–h). In arc mafic rocks, the con-
centrations of Ta are lower than in intracontinental mafic
rocks. These observations suggest a systematical differ-
ence of Nb–Ta concentrations between arc mafic rocks
and intracontinental mafic rocks.

Figure 1: Global subduction geometry models. Data obtained from https://www.sciencebase.gov/catalog/item/
5aa1b00ee4b0b1c392e86467.
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3.2 Threshold value of Nb–Ta in arc tectonic
systems

In Figure 3, the element contents (Nb–Ta) of the arc data
do not obey a normal distribution. These data points
should fall near the Normal CDF 2 (red line) in the figure,
but the actual data show that the distribution deviates
significantly from the normal distribution. As a result,
large biases and misinterpretations will be introduced
using traditional means and standard deviations. There-
fore, we used the empirical CDF to calculate the cumula-
tive probability of Nb–Ta concentrations of arc and intra-
continental mafic rocks. As shown in Figure 3a, 90% of
the arc samples have Nb concentrations below 12.20 ppm.
In contrast, more than 90% of the intracontinental sam-
ples have Nb concentrations above 12.20 ppm. Accord-
ingly, the 12.20 ppm for Nb concentrations was suggested
as an empirical reference threshold to distinguish the arc
and intracontinental settings. Mafic rocks (<5 Ma) with
Nb concentrations above this threshold are less likely to
be produced in arc settings, and based on the 95% lower

and upper confidence bounds of the empirical CDF,
we obtain the threshold upper and lower bounds of
9.20 ppm and 17.68 ppm for Nb concentrations, respec-
tively. In Figure 3b, the classified threshold of Ta in arc
systems is 0.796 ppm, and 90% of the arc samples have
Ta concentrations below 0.796 ppm, with upper and lower
bounds for Ta concentrations of 0.499 ppm and 1.096 ppm,
respectively. In general, future big data studies may use the
threshold value of Nb–Ta in arc tectonic systems as a refer-
ence standard for classifying the rocks from arc or intracon-
tinental tectonic systems preliminarily.

3.3 The relationship of Nb–Ta
concentrations and subduction distance

3.3.1 Probability density function

To investigate the relationship between geochemical
indicators (Nb–Ta) of mafic rocks and subduction

Figure 2: The characteristics of Nb–Ta concentrations of mafic rocks near subduction zone. (a–d) Locations and concentrations of Nb (ppm) of
mafic rock samples (0–5Ma ages, 45–53 wt% SiO2) in East Asia, South America, Vanuatu, and Sumatra-Java. (e–f) Locations and concen-
trations of Ta (ppm) of mafic rock samples (0–5Ma ages, 45–53wt% SiO2) in East Asia, South America, Vanuatu, and Sumatra-Java. (i–l) Depth-
distance compositional models in East Asia, South America, Vanuatu, and Sumatra-Java. The color bar means the depth of subduction (km),
color with yellow means relatively low depth of subduction, and color with blue means the relatively high depth of subduction.
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distance, we calculated the concentrations distribution
andmean-standard error distribution, probability density
distribution of Nb–Ta at different subduction distance
intervals (As shown in Figure 4a and b). It can be used to
visualize the distribution of data which is helpful to grasp
and summarize the distribution rules of geochemical ele-
ment contents of mafic rocks at different subduction dis-
tance. In different subduction distance intervals, Nb and
Ta concentrations of mafic rocks have different trends. All
the Nb and Ta concentrations varied over a small range
before ∼350 km. Such a region is dominated by arc mafic
rocks with the Nb–Ta concentrations. Both Nb and Ta
concentrations show a rapid increase in trends with sub-
duction distance from 350 to 700 km. A decrease in Nb and
Ta concentrations can be seen in subduction distances
between 700 and 1,200 km. After 1,200 km, Nb and Ta
concentrations keep at high values with relatively small
fluctuations. According to the depth-distance models
(Figure 2i–l), slabdepth (>700 km)and slab extenddistance
(>1,300 km) of subduction zone geometry models have few
reliable records [57,60–62]. When the distance from mafic
rocks to the boundary subduction zone is higher than

1,300 km, magmatism may play a lesser role in controlling
the concentrations of elements (Nb–Ta) of thosemafic rocks.

3.3.2 The regression equation of Nb–Ta and subduction
distance

The current slab models are not available after a certain
distance (>1,300 km) and depth (>700 km). There is a
difficulty in fitting the relationship with the whole data.
Therefore, the data from 0 to 700 km of subduction dis-
tance were extracted to establish a function of subduc-
tion distance. The results show that all the Nb and Ta
concentrations of mafic rocks increase as subduction dis-
tance increases from 0 to 700 km (Figure 5a and b). The
corresponding fit equations were obtained by regression
analysis (see equations (1) and (2)). The R2 values of the
Nb and Ta regression equation were 0.679 and 0.773,
respectively, which can be considered statistically signi-
ficant correlations. It suggests that the content of Nb and
Ta in mafic rocks increases as the subduction distance
increases during the subduction scenario.

Figure 3: The cumulative distribution function of Nb (a) and Ta concentrations (b) for arc-continent tectonic systems. The green (arc), red
(continent), blue (arc), and purple (continent) bands denote 95% lower and upper confidence bounds (CB) of samples. (a) The blue line
(normal CDF1) and red line (normal CDF2) denote the normal distribution of Nb concentrations in arc and continent systems, respectively.
(b) The green line (normal CDF1) and red line (normal CDF2) denote the normal distribution of Ta concentrations samples in arc and
continent systems, respectively. The fold line in bands denotes the cumulative probability of samples based on empirical CDF. Points with
green, blue, and red color means the lower limit values, threshold values, and upper limit values of Nb–Ta concentrations in arc tectonic
environments, respectively (90% probability).
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3.3.3 The Nb/Ta ratios

As an important element pair, the ratio between Nb and
Tb can be used as a geochemical indicator to trace source

materials for magmatic systems [38]. The change of Nb/
Ta ratios is an important research field for the formation
and evolution of CC [25,26,30,38,63]. Terrestrial major
geochemical reservoirs may have distinct Nb/Ta ratios,
such as CC has relatively low Na/Ta ratios at ∼12 [12,38]
while depleted mantle (DM) has relatively high Nb/Ta
ratios of ∼15 [27,64,65], and the Nb/Ta ratios from island
arc basalt in Kamchatka is 11.3 to 17.8 [66]. In this paper,
the Nb/Ta ratios are 12 to 19 in mafic rocks (<2,200 km),

Figure 4: Concentrations distribution, mean values distribution, and probability density distribution of Nb (a) and Ta (b) trends in mafic
rocks. The mean values are applied with the window width equal to 60 km, while the moving step width is 30 km. Error bars denote one
standard error of the mean (SEM). The light gray and dark gray bands are the PDF estimated using kernel density estimation method. The
window width is 100 km, and the moving step width is 50 km.

Figure 5: The regression relationship between Nb (a) and Ta (b) concentrations and the subduction distance. The black curve is the
regression curve.
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which show an increase in trend from ∼11 to ∼17 with
subduction distance in regions of 0–350 km but stayed
relatively stable at ∼15–18 when subduction distances
between 400 and 2,000 with occasional fluctuations
(Figure 6). It is worth noting that although the Nb and
Ta concentrations of mafic rocks increase rapidly with
the distances to subduction zones increase from 350 to
700 km (Figure 5a and b), their Nb/Ta ratios remain rela-
tively constant.

4 Discussion

Several factors may play parts in the Nb and Ta concen-
trations in mafic rocks, among which Nb–Ta contents of
source materials, the degree of partial melting, and pos-
sible crustal contamination are key processes that may be
responsible for the observed Nb–Ta variation trend with
subduction distances. Previous studies [27,67–69] have
demonstrated that the dehydration fluid of subducted
slab can dissolve little HFSEs such as Nb and Ta at low
pressure, while at higher pressure, where key accessory
minerals such as rutile start to dissolute in hydrous
melt or even supercritical fluids, more Nb and Ta can
be dissolved in the fluid and transported to the mantle
[30,31,33,34,38,43,70,71]. Therefore, deeper metasomatic
fluids would entrain greater Nb and Ta to their overlying
mantle wedge and induce partial melting, resulting in
higher Nb and Ta concentrations in the source. In a

typical modern subduction system, the subduction is in
direct proportion to the subduction depth, which pro-
vides a first-order explanation for the observed co-varia-
tion trends between the Nb–Ta concentrations in mafic
rocks and the subduction distances. It is also worth
noting that the Nb and Ta concentrations follow the
first flat and then gradually changed to steep increasing
trends with subduction distances. Such a pattern agrees
well with the behavior of HFSE partitioning in the sub-
duction zone fluid, which shows limited mobility at
low pressure and increase exponentially with depth at
high pressure where accessory minerals such as rutile
and Fe–Ti oxides start to dissolve into fluids [72], thus
releasing Nb and Ta to the mantle. The established trans-
form pressure for rutile to Ti-clinohumite is ∼8 GPa for
UHP eclogite, corresponding to the depth of ∼250 km,
suggesting a possible transform of HFSE mobility in the
subduction zone fluids. Experiment studies also indicate
that the HFSE contents of low-degree melts increase dra-
matically with pressures, and the enrichment of Nb and
Ta in some OIBs suggesting a partial melting that takes
place at depths of >300 km [73]. Therefore, the observed
covariation trends of Nb and Ta concentrations in mafic
volcanic rocks with their subduction distances may be
large because of the pressure difference of their sources.
Crustal contamination may also be capable of increasing
the Nb and Ta concentrations in the mafic magma, as
crustal rocks have significantly higher Nb and Ta concen-
trations than the mantle rocks [10,11,65,74–84]. However,
because the Nb/Ta ratios of crustal rocks are generally

Figure 6: The Nb/Ta ratios’ trends of mafic rocks. The yellow circles are mean values corresponding to distance ranging from 0 to 2,200 km
(the window width is 60 km and the moving step width is 30 km). Error bars denote one standard error of the mean (SEM).
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low [12,27], significant crustal contamination would result
in a co-variation trend in Nb vs Nb/Ta, with higher
Nb concentrations corresponding to lower Nb/Ta ratios.
When the subduction distance is between 350 km and
700 km, the Nb and Ta concentrations continue to increase,
but the Nb/Ta ratios are relatively similar, thus indicating
insignificant crustal contamination in most of the samples
investigated here. The degree of partial melting and frac-
tional crystallization of the studiedmafic rocks is unlikely to
systematically change with subduction distances, as mafic
magmas generally experience less degree of fractional
crystallizations.

In respect to Nb/Ta ratios, compared with a DM
(∼15–17), both CC and arc magmas exhibit low Nb/Ta
ratios ∼12. However, the exact mechanism for the arc
magma and CC to develop low Nb/Ta ratios is vague.
Fractionation of Nb and Ta during slab dehydration and
transport of hydrous fluid has been proposed to explain
the low Nb/Ta ratios in arc magmas [27]. However, others
suggest that arclogites with high Nb/Ta ratios (∼19) may
serve as a counterpart for the formation of arc magmas
and CC [85,86]. Nevertheless, a fractionation between Nb
and Ta during arc magma formation is observed. In the
present study, the Nb/Ta ratios in mafic rocks from arc
settings show an increasing trend with the subduction
distances (0–350 km), from ∼11 to ∼17, with relatively
low Nb and Ta concentrations. In contrast, in regions
dominated by intracontinental magmatism (350–700 km
and beyond), Nb and Ta concentrations rapidly increase
to high levels with relatively constant mantle-like Nb/Ta
ratios. Such a result suggests that, at low pressure,
although the releasing fluid has low concentrations of
HFSEs such as Nb and Ta, their Nb/Ta ratios seem lower
(maybe less than 11) at first with strong crustal signa-
tures. Such a fluid infiltrated and metasomatized the
mantle wedge, thus resulting in low Nb/Ta ratios (∼11)
and low Nb and Ta concentrations in mafic arc rocks that
are close to the subduction zones. The increase in Nb/Ta
ratios with subduction distances suggests that with the
increase in subduction depth, the increase in temperature
and pressure would result in smaller Nb–Ta fractionations,
and fewer continental crustal signatures. The relatively
constant high Nb/Ta ratios in mafic rocks that are far
away from subduction zones (distance >350–700 km) sug-
gest limited Nb–Ta fractionation during the slab–fluid
interactions at the region. Their Nb/Ta ratios are close to
the mantle values supporting the above-discussed idea.

Compared with the traditional geochemical analysis,
the numerical performance of Nb–Ta concentrations and
regression models in this paper was based on large data
and statistical methods. During the data process, we

found that data distribution has multi-peak characteris-
tics and does not conform to the normal distribution.
We introduced the kernel function estimation method
from statistics into the study of geochemical data and
propose PDF for data sets without removing the anoma-
lous data, so as to accurately grasp the distribution pat-
tern of the data. The Nb–Ta thresholds were estimated
using the CDF, which does not require grouping of the
data. Besides, this function will not lose any information,
and it is unique for given data sets. In future works, more
geochemical indicators can be statistically analyzed. Such
attempts and practices may bring new insights into the
studies of geochemical cycles and geophysical structures
in subduction zones.

5 Conclusion

In this paper, we analyzed the spatial distribution of
Nb–Ta in mafic rocks from a statistical perspective
by using geophysical models and geochemical data.
The upper limit values of Nb–Ta in arc tectonic environ-
ments were calculated by CDF. Based on the PDF of
Nb–Ta with subduction distance, a regression function
model was developed. The following conclusions were
obtained.
(1) There are obvious differences in spatial distribution

of Nb–Ta concentrations in mafic rocks. That is, arc
mafic rocks contain relatively low Nb–Ta concentra-
tions, while the intracontinental mafic rocks contain
high Nb–Ta concentrations.

(2) The new geochemical index values of Nb (12.20 ppm)
and Ta (0.796 ppm) were proposed to reflect the
upper limit of Nb–Ta concentrations in arc tectonic
systems based on the CDF. The threshold value can
be used as a basic standard for judging whether these
mafic rocks are produced by arc tectonic systems.

(3) Nb–Ta concentrations showed a correlation with
increasing subduction distance, and the coefficients
of R2 were determined to be 0.679 and 0.773, respec-
tively. As the subduction distance increased, the
concentrations of Nb and Ta increased. By contrast,
the Nb/Ta ratios do not change significantly, and
they remain stable in the range of 12–19.

(4) In our research, the observed covariation trends of
Nb and Ta concentrations in mafic rocks with their
subduction distances may be large because of the
pressure difference of their sources and crustal con-
tamination. However, the relatively similar Nb/Ta
ratios along with subduction distances between 350
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and 700 km thus suggest insignificant crustal con-
tamination for most of the samples here.
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