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Abstract: Remote-sensing satellite images provided rapid
and continuous spectral and spatial information of the
land surface in the Sougia River catchment by identifying
the major changes that have taken place over 20 years
(1995–2015). Vegetation indices (VIs) of normalized dif-
ference vegetation index (NDVI), enhanced vegetation
index (EVI) and leaf area index were derived for moni-
toring and mapping variations in vegetation cover. The
quantified decrease in NDVI was found to be 4% between
1995 and 2005, and further decreased by 77.1% between
2005 and 2015; it declined back to almost the initial status
of 1995. EVI results were inconsistent suggesting that
seasonal crops influence the temporal distribution of
vegetation cover. The temporal variations in the VIs
were important input parameters for the modelling and
management of the catchment’s hydrological behaviour.
Image classification found that the 4- and the 6-class
classifications between 1995 and 2005 were unstable
and produced, respectively, a 13.8% and 16.2% total
change between classes. Meanwhile, the 8-, 10- and the
12-class showed an almost horizontal line with a minor
fluctuation of less than 0.05%. The results of the post-
classification change detection analysis indicated a land
degradation in terms of natural vegetation losses with
sparser or even with no natural vegetation cover.

Keywords: change detection, enhanced vegetation index,
leaf area index, normalized difference vegetation index,
soil degradation

1 Introduction

In several Mediterranean countries, integrated catchment
management is further restricted by a lack of quality and
quantity of appropriate data as well as insufficient capa-
city in human resources [1,2]. Such issues create chal-
lenges and so it is even more important to develop tools
that could be used to define and apply the policies and
strategies at least at the regional scale to effectively deal
with catchment management problems. The main tool in
this regard is a catchment hydrological model [3,4] devel-
oped within the framework of the driving forces pressures
state impacts responses [5,6].

Catchment areas and their proper management have
become a major issue of concern for resource managers
worldwide. This growing level of concern was prompted
by an increase in the number of major catchment areas
being deteriorated by flooding and soil erosion [7–11].
These and other catchment problems are not only iso-
lated in solving water management issues but also include
engineering, biophysical, economic, social, environmental,
political and institutional issues. Resolving these problems
requires the integration of interdisciplinary organizations
for acquiring all necessary resources.

Satellite remote-sensing technology has come a long
way since the launch of the world’s first satellite, Sputnik,
in 1957. In 1972, Landsat Multi-spectral Scanner System, a
high spatial resolution satellite was launched and the use
of its data that became widely available enabled signifi-
cant advances in the field of earth monitoring [12]. In 1984,
spatial, geometrical and radiometric resolutions were sig-
nificantly enhanced with the launch of Landsat-4 and its
thematic mapper (TM) sensor. Since then, consecutive
developments of Landsat series kept on going ever since
until the existence of Landsat Operational Land Imager
(OLI)-8 and other sensors.
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Since the launch of Landsat and generally medium
spatial resolution satellites for monitoring vegetation, the
application of remote sensing in land use mapping has
increasingly gained recognition. Consequently, the remote-
sensing applications in land management and forest fire
mapping, which are achieved using various spatial resolu-
tions in more adequate environmental monitoring [13–16].

For land management, data on reflective, thermal and
dielectric properties of the Earth’s surface can be provided
using a variety of sensors [17,18]. On the other hand, in the
case of forest cover, remote-sensing techniques measure
vegetational variables indirectly; and hence, the electromag-
netic variables have to be related to the vegetation variables
empirically or with transfer functions. Additionally, in the
case of vegetation models that are not structured to receive
and directly analyse remotely sensed data, advanced com-
puter hardware and software have to be used for imagery
storage, analysis and interpretation [19,20].

Land degradation is a major concern due to the
degradation that undermines the productive capacity of
an ecosystem. Moreover, it affects the global climate
through alterations in the balance of water and energy
and disruptions in the cycle of carbon, nitrogen, sulphur
and other elements [21,22]. Through its impact on agri-
cultural productivity and environment, soil degradation
leads to political and social instability, enhanced rate of
deforestation, intensive use of marginal and fragile lands,
accelerated overland flow, runoff and soil erosion, pollu-
tion of natural waters and emission of natural greenhouse
gases into the atmosphere. In fact, land degradation affects
the mere activities of mankind [23,24].

Vegetation indices (VIs) are mathematical representa-
tions of band ratios conducted from remote-sensing data
on the pixel level that monitors a certain condition of the
vegetation condition, foliage, cover and phenology [25–28].
Consequently, the conducted VIs must be calibrated using
ground truthdata toensure thedatavalidity for the long-term
monitoringofnatural vegetationassessments integratedwith
the edaphic-related processes [29–31]. The different VIs were
extensively implemented in various vegetation parameter
estimationsuchas fractionalvegetationcover, leafarea index
(LAI), water supply vegetation index, crop water shortage
index, and drought severity index [25,32].

The objectives of the present research are to develop
a probabilistic vegetation loss model as well as the iden-
tification and spatial quantification of priority areas for
soil erosion protection and the finding of the optimal soil
conservation techniques to manage them. The land use
land cover (LULC) map reflects the forest degradation
process and its status aspect. Considering the conse-
quences cited above, land cover degradation is regarded

as a serious environmental issue and there is a need for
immediate action to stop and/or to reduce the processes
of land degradation. This can be done by assessment
followed by the management of degraded areas.

2 Materials and methods

2.1 Study area description

Greece is a Mediterranean country with serious soil erosion
problems related to land degradation. In Greece, based on
the Coordination Of Information On The Environment
(CORINE) data set assessment [33], high and moderate
actual soil erosion risks represent 20% and 38% of the total
area of the country, respectively [34]. Within Greece, the
land degradation processes are more active in the islands
because of the additional effect of overpopulation mainly
during the summer period [35].

The work reported was carried out in Sougia river
watershed located in the western part of Crete island
about 40 km south of Chania (Figure 1). The area covered
by thewatershed lies between Longitude 23°56′E and Lati-
tude 35°22′N. The climate is the sub-humidMediterranean
withmild to cold winters in the high altitudes. The annual
rainfall is about 955 mm,most of it falls in autumn, winter
and early spring,while the summers are quite dry. Themean
air temperature is about 17°C, with January and July being
the coldest and thewarmestmonths, respectively. Thedomi-
nant land use is rangeland and occupies about 42% of the
total study watershed [36]. It is divided into two sub-cate-
gories: open shrubs occupying 28% of them and a mixed
vegetation dominance ofmedium to ahighdensity of shrubs
occupying the rest. The second land use category is that of
the olive groves which occupy almost 14% of the total study
area. The forest cover is counted for 26% of the total desig-
nated study area and almost 23% of those forests are cate-
gorized as an open forest where the crown cover is ranging
from 10% to 40%. The latter is used as rangeland and
only the remaining (3%) represents coniferous forest with
medium to high density. The remaining 18%of the total area
represents bare rock (9%), riverine vegetation (2%), arable
land (6.6%) and urban (0.3%) areas [37].

2.2 Remote-sensing data

The cloud-free images were acquired from the earth
observation satellites in 10-year intervals, starting from
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1995 and lasting for three decades. In particular, images
were available from the Landsat series for land cover
mapping since they provide multi-spectral data at 30m
resolution and spatially enhanced 15 m resolution for
OLI-8. Besides, moderate resolution imaging spectroradio-
meter (MODIS) (MOD13Q1) images of 250m resolutionwere
selected to analyze the vegetation patterns deriving VIs.

2.3 Remote-sensing data pre-processing

Pre-processing of satellite images before image classifica-
tion and change detection is essential. This is due to the
inherent errors such as line dropout, stripping noise, distrac-
tion spatial and spectral, coordinate projections encountered
in the remote-sensing data acquisition process that change
digital values. If not corrected before classification or change
detection, misclassification can occur or even areas identi-
fied as “transformed” will not represent real changes.
Consequently, image processing systems and geographic
information system (GIS) could be used to correct these
errors by applying functions such as radiometric and geo-
metric, normalization, image registration and masking.

The radiometric correction of the time series images
was carried out following Song et al. [38]. The geometric
correction was carried out according to Singh [39]. A

relative calibration between image dates can be per-
formed by applying a band-by-band linear transforma-
tion to one image date to “calibrate” it to the second date
[40]. Accurate geometric registration of a multi-temporal
image set, with root mean square error (RMSE) of 0.25–0.5
pixels or 1 pixel at the most, is necessary for accurate
change detection [41–43]. Generally, atmospheric correc-
tion is performed to minimize scattering and absorption
effects due to the atmosphere. To facilitate these proce-
dures, several algorithms have been developed to correct
variations in atmospheric transmission. Dark pixel regres-
sion adjustment is the adopted method in the current
research and carried out according to Lu et al. [44].

The Terra MODIS images were first projected to UTM
WGS 84 North, for consistency with the Landsat data. Then
the images were corrected/adjusted for brightness with nor-
malization techniques, adjusting them for better correlation.
Sub-setting followed, focusing on the area of interest using
the catchment boundary to trim the images [45].

2.4 Conceptual framework and data
processing

To assess the LULC instabilities of the catchment, several
environmental phenomena need to be considered. These

Figure 1: Location of the Sougia catchment, Crete island, Greece.
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phenomena were derived from remote-sensing data to
comprehend inter-phenomena relationships.

2.4.1 Vegetation indices

The VIs such as normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI) and LAI were
derived from remotely sensed data to aid in under-
standing the vegetation cover impacts on the catchment
system. The NDVI [46] was derived from Landsat data,
and MODIS data were used as an optimized index. EVI
[47] was derived from MODIS time series data and were
used to map and identify vegetation changes in the catch-
ment. LAI [48,49] was derived using the Landsat NDVI
derivatives to categorize the study area vegetation cover.
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where NIR is the near-infrared atmospherically corrected
band, R is the red atmospherically corrected band, B is
the blue atmospherically corrected band, and C1, C2 and
L are coefficients to correct for the atmospheric condition
of MODIS EVI product, L = 1, C1 = 6 and C2 = 7.5.

The NDVI images for each of the Landsat images
acquired were created as illustrated in the schematic in
Figure 2 where the associated histograms show the NDVI
peak point for each year, respectively. The NDVI values
ranged from (−1) to (+1) and were coded to unsigned 8-bit

data to reduce the size of the data files and speed up the
processing time [50]. Therefore, the NDVI value of (−1) is
represented by 0 and the NDVI value of (+1) by 255 in the
new coded images (NDVI coded). This led to a reduced
image size compared to the original one. The NIR band
and the NDVI images were useful to distinguish the vege-
tated areas and the soil areas. The NDVI results are listed
in Table 1 and an explanation of the NDVI value range
was provided according to Riva et al. [51].

2.4.2 Land cover classification and accuracy

Land cover classification results depend to a great extent
on the number of classes selected. Fewer class numbers
with aggregated pixels of a wide spectral range represent
different land cover types that coexist in one class. Thus,
the resulted classes are a mixture of major land cover types
and such classification is very coarse. On the other hand, a
large number of classes can result in the same land cover
type being represented with more than one class. Support
vector machine (SVM) classification algorithm is the
adopted classifier in the current research. SVM is per-
formed according to Dong et al. [52] to the two-layer neural
net using the following inner product kernel:

( ) = ( + )K x x αx x β, tanhi j i
T

j

where ( )K x x,i j is the inner product kernel function, α is
the gamma term in the kernel function for all kernel types
except linear, and β is the bias term in the kernel function
for the polynomial and sigmoid kernels.

The classified areas on the produced land cover maps
were compared with the actual land cover categories

Figure 2: Hierarchical tree structure, showing the normalized difference vegetation index layer distinguished into vegetation and non-
vegetation.
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determined from CORINE maps. The classes that do not
match the ground truthing CORINE classes are consid-
ered inaccurate. The selected sample areas of each cluster
matched well with the associated land cover types in
the ground truth data. Khat statistics is an accuracy
measure agreement. This measure of agreement is based
on Congalton and Mead [53] findings. It is defined as
the maximum likelihood estimation from the multi-
nomial distribution. K̂ is calculated using the following
equation:
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where r is the number of rows and columns in the error
matrix, xii is the number of observations in row i and
column i (the diagonal elements), xi+ is the marginal total
of row i, x+i is the marginal total of column i, and N is the
total number of observations in the matrix.

2.4.3 Forests change detection

Post-classification comparison is one technique used for
change detection, where images are compared at the
pixel level [54]. Using this method, it is possible to see
directly which classes have changed into what class. This
method was used herein and the changes in images
between (a) 1995 and 2005, (b) 2005 and 2015 and (c)
1995 and 2015 were identified. The NDVI images derived
from the 1995 Landsat TM were used to map forest and
non-forest areas. The involved methodology is illustrated
in Figure 3 and consists of discriminating between vege-
tation and non-vegetation regions using the threshold
values on the NDVI images. Further discrimination of
non-vegetation into water and non-water areas was not
undertaken as the aim here was to detect and map forest
areas alone from the NDVI image.

2.4.4 Soil erosion potential

Different bare soil indices have been developed for multi-
spectral imagery using combination and relationships of
bands. The bare soil index (BSI) was satisfactorily devel-
oped and implemented by Nandy et al. [55]. An improved
BSI model was created as illustrated schematically in
Figure 4 and was applied to the Landsat OLI-8 imagery
acquired on 13 August 2015.

The values of the BSI model vary from 0 to 77. A
definition of threshold values was needed to successfully

apply the BSI based on a Structured Query Language
applied to the resulted images [56,57].

3 Results and discussion

3.1 Vegetation indices

Visual interpretation of the images shows that the 1995
NDVI image of Sougia catchment is much brighter (higher
values) than the 2005 NDVI image [58]. This indicates
that the 1995 image has more vegetation cover. A com-
parison between the 2005 and the 2015 NDVI images
shows again that the 2005 image has brighter values
than the 2015 image, but some darker areas appear as
well. These observations imply that vegetation has signifi-
cantly decreased between 1995 and 2005 and continued to
decrease in 2015, with some minor areas showing slightly
increased vegetation.

The results obtained from the NDVI analysis corre-
spond to the visual interpretation. It was found that the
1995 image has the highest NDVI value of 0.43, which
according to Table 1 represents dense vegetation canopy,
whereas the NDVI value of the 2005 image was slightly
lower at 0.38. This corresponds to a 12% reduction in
vegetation cover from 1995 to 2005. The NDVI value of

Figure 3: Schematic illustration of the created bare soil index model.
Where R0 = 13 August 2015 georeferenced and subset, R1, F1 = OLI-3
Float; R2, F2 = OLI-7 Float; R3, F3 = (OLI-7 – OLI-3) Float; R4, F4 =
(OLI-7 + OLI-3) Float; R5, F5 = 100 * (OLI-7 – OLI-3)/(OLI-7 + OLI-3) +
100.
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Table 1: Normalized difference vegetation index change detection between 1995 and 2005, 2005 and 2015 and 1995 and 2015

Year Land cover type LAI change % LAI change

1995–2005 Forest −0.11 −4.06
Agriculture +0.27 43.50
Scrub and or herbaceous associations +0.01 1.28

2005–2015 Forest +0.53 16.93
Agriculture −0.28 −45.16
Scrub and or herbaceous associations +0.02 2.50

1995–2015 Forest +0.42 13.42
Agriculture −0.01 −2.86
Scrub and or herbaceous associations +0.03 3.75

Minus and plus signs indicate, respectively, reductions and increases in vegetation cover.
LAI: leaf area index.

Figure 4: Normalized difference vegetation index (NDVI) derived from the temporal Landsat imagery (a–c) for the catchment and the
corresponding NDVI histogram for the acquisition dates of 1995, 2005 and 2015, respectively.
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2015 was further decreased to 0.27 which corresponds to a
29% reduction in vegetation cover.

The NDVI value by Chen et al. [59] is associated with
shrub and grassland but does not mean that the forests
have disappeared completely from the catchment and
only shrub and grassland exist but rather shows that
forests and dense vegetation have been reduced and
therefore the associated reduction in the mean NDVI
value. The decrease in NDVI values between the years
suggests a reduction in the vegetation cover in the catch-
ment. The expected results reinforce the allegations of
local people as well as enhance the deforestation issues
documented by different authors [28,60]. Deforestation is
an important change that has the potential to alter water
infiltration and runoff and should, therefore, be further
examined. Visual comparison of the three NDVI images
gives a good indication of the vegetation cover changes
from 1995 to 2015.

Figure 5 shows the EVI for December 2010 instead of
winter 2010, because data for January and February were
not available. The black pixels show no vegetation cover,
which increases in the greyscale to white, indicating the
highest vegetation cover. The winter images are notice-
ably darker than the spring ones; the autumn images are
likewise darker than the images acquired during the
summer season. This indicates that the brighter summer
images have higher vegetation cover in comparison with
the winter satellite images.

The respective EVI histograms illustrated in Figure 6
clearly show this. However, for a Mediterranean catch-
ment, a typical vegetation trend should have revealed
higher vegetation cover in winter and lower in the dry
summer period. This behaviour is satisfied with ancillary
information which reveals that the Mediterranean region
is an agricultural territory and farming practices are the
main source of employment [61,62].

The mean EVI results oscillate between 0.18 (winter)
and 0.48 (summer). During the summer, the mean EVI
values range from 0.36 to 0.48 and gradually decrease
during autumn to reach their minimum values in winter
(values range from 0.18 to 0.24). The values gradually
increase again during spring producing repetitive sea-
sonal cycles, with each set of seasons giving a similar
peak. The minor fluctuations recorded during the succes-
sive yearly cycles are due to the changes in weather con-
ditions [28,63].

These results suggest that in winter where the peak of
the precipitation occurs in the mountainous Mediterranean
catchment, the EVI is at its lower value which suggests very
low vegetation (large areas with bare soil). On the contrary,

summer EVI values are at its peak, suggesting dense vege-
tation canopy which could be justified by cultivated crops.

The seasonal variations in vegetation cover in the
catchment are observed to be comparatively similar for
the period 2010‒2013 (Figure 5), with the maximum
values reached in June. The exception is shown on the
2013 summer EVI maximum values which are reached
during July. From 2010 to 2013, no significant changes
occurred in the vegetation cover except for some small
fluctuations and a minor increase in the EVI values.

The results of the LAI analysis were illustrated in
Table 2. Typically, LAI values range from 0 for the bare
ground to 6m2 m−2 for dense forest. The highest LAI value
is 3.13 m2m−2 for mixed forests within the catchment area
during 2015. Mixed forests according to the LAI obtained
were decreased during the transition from 1995 to 2005
and then increased by 2015. A 77.1% increase in agricul-
ture was recorded between 1995 and 2005. By 2015, it
declined back to the status it used to be in 1995. The scrub
and or herbaceous associations show an almost constant
LAI value with small increments from 1995 to 2005 and
2015. A small decrease in the forest was noted between
1995 and 2005, and by 2015 a 20.4% increase is observed.
Pinty et al. [64] suggested that VIs reach a saturation
level with higher LAI values. Gitelson et al. [65] explain
that when LAI exceeds 2, NDVI is generally insensitive to
LAI not only in forests canopies with a dense understory
but also in grasses, cereal crops and broadleaf crops
[66,67]. They also report that the linkage between surface
reflectance and LAI is not straightforward and at present,
it appears that no satisfactory algorithm exists for remote
retrieval of moderate to high LAI (LAI > 2). If this is the
case, then the LAI results for the forest canopies might
have been affected.

3.2 Land cover classification

Land cover maps have been created for the catchment
from the classification techniques applied to the remote-
sensing data (Figures 7–9). The area of each land cover
class for all three maps was calculated (in km2 and %) and
is presented in Table 3. The results indicate significant
land cover changes between the different classes in the
catchment from 1995 to 2005 and 2015. In particular, the
reduction of the coniferous forests between 1995 and 2015
is evident and an increase in natural grassland for the
same period. The summary of the accuracy assessments
is shown in Table 4.
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Figure 5: MODIS seasonal enhanced vegetation index for 2010–2013, showing vegetation strength. (a) Spring 2010–2013, (b) Summer
2010–2013, (c) Autumn 2010–2013 and (d) Winter 2010–2013.
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The ground truthing based solely on CORINE LULC
maps would unavoidably encompass a degree of error.
This is because CORINE LULC maps were generated from
remote-sensing data/information; and consequently, some
generalization techniques would entail certain degree of
error which will unavoidably propagate through the ground
truthing of the land cover classification results [33,68].
Owing to this, further validation of the land cover

classification results was carried based on the knowledge
of the area after found control points collected within the
catchment and from the use of photographs and ancillary
maps of the area which aided in the identifying key point
areas. The comparison of image classes shows the spatial
improvement in the classification accuracy of the Landsat
images which resulted from proper pixel training and
cluster number optimization [69]. Ground truthing, given

Table 2: Leaf area index (LAI) results for the major land cover types in the catchment

Image acquisition date LAI (m2m−2) forest LAI (m2m−2) agriculture LAI (m2m−2) scrub and or herbaceous associations

10/09/1995 2.71 0.35 0.77
30/09/2005 2.60 0.62 0.78
13/08/2015 3.13 0.34 0.80

Figure 7: Land Use Land Cover classes of the catchment in 1995. Figure 8: Land Use Land Cover classes of the catchment in 2005.
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Figure 6: Variation in the 16-day mean enhanced vegetation index of the catchment spanning from 2010 to 2013.
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the time and equipment at the time, could have been con-
ducted based on a GPS, a task that would improve the
confidence levels in land cover classification results [70].

3.3 Forest change detection

A comparison between the 1995, 2005 and 2015 land
cover classes as can be seen in Table 5. It is quite
revealing that changes occurred during the study dura-
tion. Reductions in the first six classes and increases in
the remaining four classes can have an adverse effect on
the vegetation cover processes of the catchment in terms
of forest densities. From the first six categories, signifi-
cant reduction is observed in the coniferous forest cover
of the year 2015 compared to 1995 (−14%). Additionally, in
the latter four categories, a significant increase is observed
in natural grassland (between 1995 and 2015) which is
equivalent to approximately 7%.

3.4 Bare soil index

The different pixels were tested on known water and
vegetation areas and some approximate threshold values
were identified. The BSI values for the catchment were

Figure 9: Land Use Land Cover classes of the catchment in 2015.

Table 3: Land cover classes of the Landsat data series of the catchment and their associated area covered in square kilometres and
percentage values

Land cover 1995 2005 2015

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Broad-leaved forest 158.45 15.01 193.55 18.33 194.48 18.42
Transitional woodland shrub 92.52 8.76 105.38 9.98 104.73 9.92
Coniferous forest 281.09 26.63 285.49 27.04 135.60 12.84
Land occupied by agriculture 66.28 6.28 69.82 6.61 47.22 4.47
Mixed forest 141.54 13.41 121.47 11.51 161.28 15.28
Sclerophyllous vegetation 98.70 9.35 72.88 6.90 101.07 9.57
Sparsely vegetated areas 42.22 4.00 108.68 10.29 60.84 5.76
Natural grasslands 157.29 14.90 84.78 8.03 227.60 21.56
Bare rock 10.14 0.96 1.35 0.13 9.51 0.90
Water courses 7.45 0.71 12.28 1.16 13.37 1.27
SUM 1055.68 100 1055.68 100 1055.68 100

Table 4: Overall accuracies and Kappa statistics of support vector machine classification algorithm

Year of acquisition 1995 2005 2015

Classification algorithm Overall Kappa Overall Kappa Overall Kappa

Support vector machine 87.77% 0.8421 93.12% 0.9141 95.27% 0.9393
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between 0 and 40 water, shadows, between 40 and 80
for grass and vegetation and more than 90 indicates bare
soil types [71,72]. Nevertheless, because the threshold
values had not been calibrated at this point, the BSI
image in Figure 10 shows high vegetation in dark blue
areas while, the bare soils were expressed in light blue
and white. The catchment is between low and medium
erosion vulnerability. Approximately, the half eastern
part of the catchment has low erosion, whereas the other
part has medium erosion vulnerability.

Selecting an optimum number of classes in land
cover classification was crucial. Not only it would facili-
tate a better description of the catchment’s different land
cover classes but would also aid in giving better and
more detailed results in changes among classes between

the years in the post-classification change detection.
A small number of classes are more generalized as each
class can be a mixture of different smaller classes and
consequently, post-classification will result in large
changes that are not representative of the actual ones
and which cannot be discriminated. On the other hand,
many classes could result in a too-detailed situation
where changes would be quite small and unnecessary
and could result in time-consuming procedures [73,74].
Therefore, the sensitivity of 4, 6, 8, 10 and 12 classes was
tested on the 1995 and 2015 images and was found that a
10-class is optimum to be used for the catchment.

Spatio-temporal changes in the different land cover
classes were investigated with change detection analysis.
In the analysis, the actual Catchment area was decreased
by a small number of pixels. This was due to clouds cov-
ering some areas in the 2015 OLI image that were masked
before delineating land cover areas. Consequently, for
correct correlation and accurate comparison of the land
cover classes of the Catchment, the 1995 and the 2005
image were masked to the same area used on the
2015 image. The decreased total catchment area used
for change detection did not affect in any way the calcu-
lations. On the contrary, the area and the percentage of
each land cover class of the catchment were comparable
for all three images [75].

4 Conclusions and
recommendations

The Sougia river watershed was chosen because the
watershed is typical of many other upland areas of

Table 5: Change detection between the 10 land use classes of the catchment

Land use 1995–2005 2005–2015 1995–2015

Area diff. (km2) Area diff. (%) Area diff. (km2) Area diff. (%) Area diff. (km2) Area diff. (%)

Broad-leaved forest 35.09 3.32 0.93 0.09 36.03 3.41
Transitional woodland-shrub 12.86 1.22 −0.65 −0.06 12.21 1.16
Coniferous forest 4.40 0.42 −149.89 −14.20 −145.49 −13.78
Land used for agriculture 3.54 0.34 −22.60 −2.14 −19.06 −1.81
Mixed forest −20.06 −1.90 39.81 3.77 19.74 1.87
Sclerophyllous vegetation −25.82 −2.45 28.19 2.67 2.37 0.22
Sparsely vegetated areas 66.46 6.30 −47.84 −4.53 18.62 1.76
Natural grasslands −72.51 −6.87 142.82 13.53 70.31 6.66
Bare rock −8.79 −0.83 8.15 0.77 −0.63 −0.06
Water courses 4.83 0.46 1.09 0.10 5.92 0.56

Figure 10: Bare soil index of the designated study area.
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Crete in terms of topography, relief and land use; there-
fore, the information on land degradation assessment
would be useful for other similar watersheds of Crete.
Remote-sensing use was imperative for this study in
deriving VIs, mapping and characterizing the spatio-tem-
poral land cover distribution, mapping BSI and in identi-
fying the major changes which have taken place over 20
years (1995–2015) in the catchment. VIs of NDVI, EVI and
LAI were derived for monitoring and mapping variations
in vegetation cover. Three thematic NDVI maps and
their corresponding histograms were created. The NDVI
results suggest that a gradual decrease in vegetation
cover occurred in the Catchment from 1995 to 2015,
with 1995 having the highest mean NDVI value. The
quantified decrease was found to be 4% between 1995
and 2005 and 7% between 2005 and 2015. LAI values
were calculated for the forest, agriculture and scrubs
and/or herbaceous associations. It was found that between
1995 and 2005, the agriculture was increased by 77.1%,
and by 2015, it declined back to the status it used to be in
1995. Nevertheless, the LAI results obtained for the forest
cover are prone to variations due to the high LAI and its
linkage to surface reflectance. The NDVI becomes insen-
sitive to LAI when LAI exceeds 2 m2 m−2. The EVI-time
series of 16-day composites and the seasonal means
show a comparable repeated seasonal behaviour with
low winter values and higher values in summer. EVI
results are inconsistent suggesting that seasonal crops
influence the temporal distribution of vegetation cover.
The results have shed light on deforestation effects that
have contributed to the soil erosion and flooding pro-
blems in the catchment. The temporal dynamic changes
of the research findings are important input parameters
for the hydrological modelling and management of
the catchment. In particular, the impact of land cover
changes on the catchment runoff, which is of major
interest. Application of the Landsat images interpretation
and GIS can provide effective and efficient tools to reveal
useful information on forest conditions and its distribu-
tion across the landscape. Data on the LULCs are neces-
sary for further environmental studies and helpful for
applying policies such as watershed management.
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