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Abstract: Open Geospatial Consortium (OGC) Web Services
(OWS) are highly significant for geospatial data sharing
and widely used in many scientific fields. However, those
services are hard to find and utilize effectively. Focusing on
addressing the big challenge of OWS resource discovery,
we propose a measurement model that integrates spatio-
temporal similarity and thematic similarity based on
ontology semantics to generate a more efficient search
method: OWS Geospatial Data Semantic Similarity Model
(OGDSSM)-based search engine for semantically enabled
geospatial data service discovery that takes into account
the hierarchy difference of geospatial service documents
and the number of map layers. We implemented the
proposed OGDSSM-based semantic search algorithm on
United States Geological Survey mineral resources geospa-
tial service discovery. The results show that the proposed
search method has better performance than the existing
search engines that are based on keyword-based matching,
such as Lucene, when recall, precision, and F-measure are
taken into consideration. Furthermore, the returned results
are ranked based on semantic similarity, which makes it
easier for users to find the most similar geospatial data
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services. Our proposed method can thus enhance the per-
formance of geospatial data service discovery for a wide
range of geoscience applications.
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1 Introduction

Geographic information is widely used in many areas of
natural and social science research, such as environ-
mental protection, geological survey, land resource
security, disaster warning, emergency response and
population management, and urban economic research.
Over the past few decades, with the development of data
acquisition technology and sensor software and hard-
ware, billions of gigabytes of geospatial data can be
produced by various data producers and research institu-
tions through satellite remote sensing, ground measure-
ment, a variety of sensor acquisition, and other means. To
enhance the wide sharing and application of geographic
information resources and realize their maximum value,
a number of advanced techniques, such as geobrows-
ing [1], spatial web portal [2], distributed geographic
information processing [3], and volunteered geographic
information [4], have been developed to operationalize
the digital Earth concept. Meanwhile, some government
agencies and organizations have funded a number of
projects, such as Geospatial One Stop [5], Canada’s Geo-
Connections Plan [6], the Australian Spatial Data Infra-
structure [7], and the European Spatial Information Infra-
structure [8]. However, it is often difficult for users to find
and interpret the most appropriate web services to meet
their objectives without significant manual intervention
[9]. How to find the target geographic information data
service automatically, quickly, and accurately is still a
challenge. For example, Li et al. [10] highlighted the
datasets that are semantically related to a user’s query
but described differently from the query keyword will be
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considered irrelevant and excluded from the search
results. Hence, improving the effectiveness of a geospa-
tial search engine and making available datasets reach-
able by scientists is becoming even more significant.

At present, the query and retrieval engine oriented to
information service, whether based on Catalog Service
for the Web or other standards, is based on keyword-
matching search technology. Apache Lucene is used by
geospatial catalogs and Web portals, which is a full-text
keyword-matching technique such as GeoNetwork [11,12].
However, the use of different vocabulary in different
application domains might lead to semantic hetero-
geneity issues [13], which makes it difficult for a service
query based on keyword matching to satisfy the real needs
of users. The information description method in the ser-
vice may not correspond well with the query keywords
and leads to situations in which some information is con-
sidered irrelevant to the query but its semantic meaning is
actually related to the query words. For example, when
searching the geospatial services about mineral resources
of precious metals, the geospatial services of gold or silver
mineral resources, which are parts of precious metals, will
not be returned. Similarly, when using keyword queries,
the query words may be linked to many descriptive labels
in the geographic information service metadata, but these
labels cannot reflect the real content of the geographic
information services. Thus, unrelated results may turn
up in the search results. This may lead to low query recall
and precision, affecting the quality of the query results.

Fortunately, the emergence of semantic-based search
methods is a good solution to the above two issues that
adversely affect the quality of search results. Semantic simi-
larity measurement is a useful methodology for supporting
geographic information retrieval [14-16]. Similarity is
essential for handling data queries and is the basis for
semantic information retrieval [17]. The concepts of spatial,
temporal, and descriptive attributes could be used to mea-
sure semantic similarity between spatial objects by simu-
lating the knowledge acquisition process of humans based
on a knowledge base and artificial neural networks [18].
Improving geospatial data retrieval recall and precision
will benefit different domains by facilitating the interoper-
ability and sharing of geospatial data and knowledge.

In fact, different geospatial services contain various
map layers to publish the related geographic information.
The semantic similarity measure is also determined by
map layer attribute information as well as geospatial ser-
vice attribute description. However, existing research
mostly considers the attributes of map layers as impor-
tant as service description when calculating semantic
similarity without considering the number of map layers
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and the hierarchy differences between geospatial service
documents. Besides service description information, the
attributes of map layers are also included as child nodes,
which are very important parts for calculating semantic
similarity values in geospatial service metadata files. For
instance, the NASA Socioeconomic Data and Applications
Center (SEDAC)! map service published more than 240
Web Map Services (WMS) layers, which include many
themes, such as agriculture, climate, health, water, and
so on, whereas the World Copper Smelters? map service
only contains two layers. It cannot reflect the real simi-
larity between the query terms and the geospatial service
when aggregating the semantic similarity of each item of
all the map layers directly or expressing semantic similarity
simply by using the average values of all the map layers.

To solve these limitations, this study develops a
semantic similarity measurement model and presents a
workflow of the search engine for improving Open
Geospatial Consortium (OGC) Web Services (OWSs)
retrieval using a case study of geology and mineral
OWSs. This semantic similarity model calculates simi-
larity value at two granularity levels: geospatial service
and map layer. An ontology is utilized to implement auto-
matic processing and logical representation of knowl-
edge to support geospatial datasets retrieval. To validate
the feasibility and effectiveness of the proposed model, a
geospatial service prototype was built and implemented.
This system can automatically match the query condition
with geospatial data semantically and rank the similarity
according to the semantic measurement values.

The remainder of this article is structured as follows.
In Section 2, we present a literature review. Section 3
presents a domain ontology of geology and mineral
for undertaking queries via OGC geographic information
service and proposes an oriented OWS Geospatial Data
Semantic Similarity (OGDSS) model, whose essential
components include semantic distance, semantic struc-
ture, attribute information, and the importance of attri-
bute tags in OWS service scheme files. Section 4 presents
some experimental results and performs comparisons in
performances of discovery based on OGDSS and other
methods. Section 5 illustrates the experiments based on
the geology and mineral domain, and the results support
the feasibility of using semantic search and knowledge
reasoning to improve the discovery of geospatial service
records. The article ends with conclusions and future
research discussions.

1 http://sedac.ciesin.columbia.edu/geoserver/wms
2 https://mrdata.usgs.gov/services/copper-smelters
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2 Related work

As various data collection and sensing techniques devel-
oped, more and more Earth Observing Systems have been
established and deployed to observe the Earth for many
application fields. Consequently, a massive amount of
geospatial data has been captured, generated, and dis-
tributed to facilitate many research fields, such as
geoscience, environmental science, energy studies, and
many more. For instance, the NASA Earth Observing
System Data and Information System (EOSDIS) alone dis-
tributed data to end users amounting to approximately
2TB a day [19]. To make the enormous amount of geos-
patial data easy to share and maximize their value,
government agencies and organizations have developed
many standards and specifications to enable the broad
interoperability of geospatial datasets. The OGC initiated
and developed new geospatial web service specifications
to improve the sharing of the world’s geospatial data.
These standards include the WMS [20] that deliver geos-
patial data as georeferenced map images, the Web Fea-
ture Services [21] that provide geospatial data as geogra-
phical features, and the Web Coverage Services [22] that
respond to queries for coverage data in forms repre-
senting space/time-varying phenomena. For supporting
the ability to publish and search the metadata of geospa-
tial data, services and related information objects, the
OGC proposed Catalog Service for the Web [23] that spe-
cifies the web interfaces, bindings, and a framework to
locate and access digital catalogs of metadata for geos-
patial data, services, and related resource information.
If geospatial data cannot be discovered, accessed,
and made sense of by users, it has little value [24]. Devel-
oping methods for maximizing the values of geospatial
data service to accelerate related scientific research has
become a great challenge. Many agencies and organiza-
tions have developed systems, gateways, or clearing-
houses to collect and gather available geospatial datasets
published on the Web to improve accessibility. For
example, the NASA established EOSDIS as a distributed
system to make geospatial data easily accessible to users.
The United States Geological Survey (USGS) developed a
geoportal for searching and downloading geospatial data
sets interactively to support scientific research in many
areas, such as water resources, energy sources, and
environmental protection. The Intergovernmental Group
on Earth Observation [25] was founded to develop a
Global Earth Observation System of Systems to facilitate
easy access, search, and share of the global Earth Obser-
vation data to benefit the geospatial community. The
national spatial data infrastructures of the European
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Union, which is called the Infrastructure for Spatial Infor-
mation in Europe (INSPIRE), proposed to overcome major
barriers affecting the availability and accessibility of
geospatial data by the components of the INSPIRE project
including metadata to describe geospatial information
resources, harmonization of geospatial data, and policy
agreements on geospatial sharing and access [26,27]. The
NGCC (National Geomatics Center of China) established
and hosted the National Catalogue Service for Geographic
Information of China that is comprised of 2 main sites
(the NGCC site and the Land Satellite Remote Sensing
Application Center site), 31 subsites maintained by pro-
vincial bureaus of surveying and mapping geographic
information, and many sites hosted by the industrial
sector and geographic information companies. The pur-
pose of the National Catalogue Service is to facilitate the
ease of publishing catalogs, data discovery, and service
integration for big geospatial data resources [28]. These
work have greatly improved the ability to manage, access,
discover, and share geospatial data.

However, improving the effectiveness of data dis-
covery poses technical challenges for better accessibility
and precision of geospatial data and information. Almost
every existing geospatial catalog or web portal is imple-
mented using a geospatial search engine based on a
full-text keyword-matching technique [11]. In addition,
different geospatial web services have semantic problems
due to the lack of meaningful descriptions of the actual
content [29]. The geographic information that is seman-
tically related to a user’s query but described differently
from the query terms will be regarded as unrelated and
irrelevant because the knowledge hidden behind the
semantic relations is not taken into account by using
keyword-based search methods [18,30].

In recent decades, many researchers paid increasing
attention to this problem by aiming at improving search
effectiveness by using semantic techniques and ontology.
Besides, domain semantic knowledge graphs are used
for automatic concept extraction from big data [31]. For
overcoming the disadvantages of keyword-based match-
ing for Web-based information retrieval, semantics has
received much attention in many studies [32-39], where
the methods focused on the retrieval of contextual informa-
tion. In those studies, semantic relationships are neglected
when constructing semantic networks. For example, only
one semantic relationship is-a is considered for measuring
the similarity between two concepts in ref. [32]. How-
ever, OGC geospatial service retrieval contains not only
context retrieval but also spatiotemporal search. As to
geospatial search domain, Arpinar et al. [40] developed
the Geospatial Semantics Analytics framework to
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support queries and analysis using thematic, spatial,
and temporal ontologies. In order to improve the dis-
covery and use of Earth science data, the Semantic
Web for Earth and Environmental Terminology (SWEET)
[41] was developed to make the software available for
understanding the semantics of geospatial information
distributed over the Internet. Many studies integrate
the SWEET to enrich their knowledge base for improving
descriptive properties such as semantic retrieval and
matching, including water bodies [18], Arctic hydrology
[42], and climate hazards [13,17]. In addition, ontology is
very useful for semantic-based searching of geospatial
data/service. For instance, Li et al. [10] integrated ontology
techniques to develop a semantic search tool built on a
latent semantic analysis method, which can implement
and support the intelligent discovery of polar datasets. As
the Semantic Web emerges [43], similarity is combined
with semantic methods to improve information retrieval,
such as edge counting measures [44], feature-based simi-
larity assessment methods [45,46], information content
semantic similarity [47-52], and hybrid methods [53,54].
In geospatial information retrieval research, semantic simi-
larity is utilized to enhance geospatial data and service
search by ranking the measured similarity values between
query terms and geospatial datasets as well. For instance,
Bakillah et al. [55] employed a clustering algorithm with
semantic similarity to deal with the complex social graphs
extracted from Twitter to obtain spatial clusters at different
temporal snapshots and detect geo-located communities
within the discovered thematic communities. Zhang et al.
[56] used a semantic similarity matching algorithm based
on the ontology to measure the degree of semantic
similarity between the geo-event and related geospatial
resources. However, there are still some limitations in
these methods of semantic similarity computation. In
particular, the hierarchical relationships among geospa-
tial service and map layers are not included in semantic
similarity metrics.

3 OGDSS model: OGDSSM

Geospatial data contain three types of information: attri-
bute, spatial, and temporal information. For example, a
WMS metadata document? mainly includes the aforemen-
tioned three types of information in service granularity
and map layer granularity as shown in Figure 1. Here, we

3 http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xml
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integrate three equations into the proposed model: attri-

bute semantic similarity, spatial similarity, and temporal

similarity.

To implement geospatial service semantic retrieval,
an OGDSSM-based framework is established integrating
the techniques of ontology, Natural Language Processing
(NLP), and the semantic web into a unified workflow
(Figure 2).

The OGDSS-based framework is briefly described as
follows:

(1) OGC geospatial data service metadata are requested
and stored using GetCapabilities operation, which
contains descriptions and parameters of the geospa-
tial service, such as service description, temporal
dimension, and bounding box of the map layer.

(2) Once the service metadata are stored into the data-
base, the system will parse each text file, extract the
key metadata fields, and filter the stop words and
useless words using the WordNet lexical database
package to get the meaningful description words
(nouns) of the related OWS.

(3) Geographic extents are extracted when parsing
the metadata documents by the ISO19139 standard
tag pairs <BoundingBox>, </BoundingBox>, and
<EX_GeographicBoundingBox> </EX_Geographic-
BoundingBox>.

(4) Temporal information is parsed by the 1S019139
standard tag pair <Dimension name = “time”>,
</Dimension>.

(5) Based on the ontology of the knowledge base, geos-
patial service retrievals are implemented by mea-
suring the semantic similarity (including attribute
similarity, spatial similarity, and temporal similarity)
of the extracted information from metadata docu-
ments. It utilizes logical and hierarchical relation-
ships defined in the geographic ontology base, as
discussed in Section 3.1.

(6) The geospatial service whose semantic measurement
value is higher than certain threshold will be
returned to users and shown sequentially according
to the semantic similarity ranking.

3.1 Construction of a mineral resource
knowledge base

When constructing a mechanism to help users find the
most suitable data to perform automated analyses for
their study, we found some lexical ambiguities about
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Figure 1: WMS metadata document structure.

the semantic heterogeneity of the data and services.
Different terms can refer to the same concept in the
same or different services [57], which is a synonymic issue.
Also, the same term can be used to describe different con-
texts for different services [57], which is a polysemantic
issue. In addition to these issues, some terms inherently
have latent semantic relations. For example, the term
“fuel” may refer to the material for supplying an industrial

plant, vehicle, or machine. Users may describe the fuel
with detailed linguistic terms using “gas” (gaseous fuel)
or “gasoline” (liquid fuel), which have inherent relation-
ships with “fuel” but are described by different terms. To
solve this problem and advance geological research, we
developed a domain ontology to describe the knowledge
base and provided a semantic-enabled search model for
geospatial service.
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Figure 2: The workflow of the 0GDSSM-based framework for geospatial service data.

The ontology, defined as “an explicit specification of
a conceptualization” [58], can support semantic retrieval
and organization of related geospatial services and pre-
sent the logical definition of a group of concepts. It can
reveal the hidden relationships among concepts that are
not generally encoded in metadata XML files [59]. We

used the geospatial metadata sets from the USGS Mineral
Resources Program (MRP)* as our test corpus in this study.

4 https://www.usgs.gov/energy-and-minerals/mineral-resources-
program
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The ontology of the geology field is constructed using universal terminology as a top ontology. The continent is
Protégé editor, which was developed and published by divided into seven subclasses as shown in the left panel of
Stanford University [60]. Figure 3a shows the structure Figure 3a: Asia, North America, South America, Oceania,
of the place name keywords where the continent is a Europe, and Africa. The nodes in the trees are examples of
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Figure 3: Ontology construction. (a) Fragment of ontology and (b) sublevel ontology on the mineral.
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locations with semantic paths. For example, through the
ontology graph, it can be derived that the America contains
Alaska, which is a part of America, which is an individual
of North America, which is a subclass of Continent. And, we
constructed the ontology using the terminological classifi-
cation of geology and mineral resources based on the
national standard of China (GB/T 9649.32-2009) as the geo-
logical and mineral terminology in this study. As shown in
Figure 3b, the mineral class is a top ontology, which has
11 subclasses denoted with yellow circle as shown in TOC
(Table of Content): fuel resources, gaseous resources,
liquid resources, metallic resources, nonfuel resources,
nonmetallic resources, ordinary resources, resources for
energy sources, resources for industrial materials, solid
resources, and special resources.

Here, the place names in the descriptive information
of the OWS metadata are considered as the location
classes in the same way as any other keywords as shown
in Figure 3a. This will improve the flexibility and usability
of spatial taxonomy searches without drawing a bounding
box or inputting the geographic coordinates. Figure 3b
shows part of the ontology on the mineral resources, which
is an important division in the geology field.

Figure 3a shows a sublevel ontology on the place
name. The place names usually contain inherit and
potential relationships among each other. Here, America
is taken as an example to build the place name ontology
and embedded semantic relationship considering experi-
ment data. Alaska, North Carolina, and Hawaii have
is-Part-of relationships with America. When a query
containing the place term “America,” the geographic
information related to those three place names will be
returned according to their semantic relatedness. Figure
3b shows the ontological fragment of mineral, mainly
referring to metallic resources. Each subclass can be
further divided, such as into rare metal resources, rare
earth resources, radioactive metal resources, precious
metal resources, nonferrous metal resources, light metal
resources, heavy metal resources, ferrous metal resources,
disperse metal resources, and base metal resources. The
leaf nodes denoted with violet diamond in Figure 4 are
the descendant individuals of certain subclass.

For example, Precious_metals_resources subclass
has four individuals including palladium ore, platinum
ore, silver ore, and gold ore. Heavy_metals_resources
subclass has five individuals including gold ore, silver
ore, iron ore, zinc ore, and copper ore. It may happen
that some individuals belong to different subclasses.
For example, silver ore and gold ore are not only precious
metal resources but also heavy metal resources.
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In our ontology, there are four kinds of relationships:
is-a (hypernymy), is-parent-class-of (hyponymy), is-part-
of (meronymy), and equal-to (synonymy). The is-part-of
is customized to describe the relationship between two
entities, wherein entity A is a part of entity B, but is not a
subclass of B. The equal-to relationship denotes that two
concepts are equivalent. For distinguishing the difference
in the semantic distance among them, the distance weight
of each semantic relation is set by extending the method set
by Sycara et al. [61] and Zhang et al. [56], as shown in
Table 1.

3.2 Description term extraction

The metadata files are encoded in 1SO19115 (2003) in
XML format with unstructured text. Therefore, we need
to parse the metadata to extract and filter the attribute
and spatiotemporal information. In one metadata file,
there are on average 600 metadata tags in each meta-
data record [10], and there are many unnecessary
tags that do not describe the actual content, such
as “ContactInformation” or “AccessConstraints.” Only
“Name,” “Title,” “Abstract,” “Keyword,” “BoundingBox,”
and “Dimension name = ‘time’” were extracted from
each metadata file. These tags contain not only the geo-
graphic information of the service but also the map layer
information.

For eliminating meaningless terms, we integrated
WordNet [62] package into the processing framework to
filter the stop words such as “is” and “the.” WordNet is a
useful tool for computational linguistics and NLP [63,64].
After using WordNet, the geographic attributes, spatial
extents, temporal information of OWS, and map layer
are extracted and converted to structured words, which
are then stored in the database.

3.3 OGDSSM

After the extraction of the metadata file with their spatio-
temporal information, the related OWS is retrieved by
using an OGDSSM based on the ontology to calculate
the semantic similarities between the query terms and
geospatial service metadata. OGDSSM is composed of
three parts: attribute similarity, spatial similarity, and
temporal similarity. The final semantic similarity is the
sum of the weighted results.
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Figure 4: Fragment of mineral ontology.

Table 1: Distance weight of each semantic relation

Semantic relations Characteristic Weight
Equal-to Symmetric, transitive 0

Is-a Monodirectional, transitive 4/15
Is-part-of Monodirectional, transitive 2/5
Is-parent-class-of Monodirectional 1/3

3.3.1 Attribute similarity

Attribute similarity is utilized to reflect the matching
between service themes and query terms. The similarity
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of two concepts is mainly determined by the distance
between them in the knowledge base. Many studies
have discussed and measured semantic similarity using
different methods from a perspective of ontology con-
cepts and their relationships [30,65-68]. The directed
graph is generally used to represent ontology, and the
distance of two concepts is calculated by the edge of
the graph.

In most previous studies, the distance between two
concepts was measured using the shortest path without
considering the weight of the semantic relationships
between the child node and parent node. To address
the difference between two concepts in the ontology,
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weighted semantic distance is a good solution to express
different semantic relationships [61]. In our work, we
proposed our own method that different semantic rela-
tionships of two concepts are set to the corresponding
weights that can describe the real parent—child relation-
ship and the real distance between the two concepts.

Considering the relationships between a pair of con-
cepts, the equation of semantic distance can be expressed
as follows:

n
Dist (01, 05) = (k + 1) x ) W, 1)
i=1
where W, is the weight of the edge i in the path, Y}, W
indicates the weighted sum of the path between concept
nodes O; and O,, and k is the number of interruption
times of transitive relationships in the path between con-
cept nodes O; and O,.

While using distance to calculate semantic similarity,
we not only consider the maximum semantic distance
between any pair of nodes in the ontology but also con-
sider the weighted distance from the lowest common
ancestor (LCA) [69] node to the root node. The equation
of semantic similarity can be expressed as follows:

Sim(0s, 02)
1o Dist(0s, 05) b
Max{Dist(0;, 0;)} + Dist(root, LCA(O;, 0)’

where Dist(0y, 0,) is obtained from equation (1); Max
{Dist(0;, 0;)} is the maximum semantic distance between
any pair of nodes in the ontology with a fixed value for
the knowledge base of a certain domain. Dist(root,
LCA(O,, 0,) is the weighted distance from the lowest joint
ancestor node to the root node. LCA(O;, O,) denotes the
LCA between two nodes O, and O,.

To illustrate how to use equation (2) for calculating
the attribute similarity, let the ontology of Figure 4,
denoted by Cg, C,, and Cs the concepts “graphite ore,”
“aluminum ore,” and “silver ore.” By applying equation
(2) measure, the similarity value is calculated as follows:

Sim(Og, O;) = 1

(1+1)x(i+i+i+l+l+lj
B 5 15 15 3 3 3 -0

1)

36+0
Sim(0,, Os) =1
(1+1)x(i+i+l+lj
15 15 3 3
4
15

= 0.38.
3.6 +
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The values obtained by equation (2) measure show
that the neighboring concepts C, and Cs are more similar
than the concepts C; and C; located in the same
hierarchy.

The final attribute similarity equation is

aSim = maX{SimaService(qu Os_i),
SimaLayer,-(qu O}, 3)
i=12,...m;j=12,.,n; k=1,2,...,p,

where Oy is the ontology of the query term; O;_; is the
ontology of the attribute term describing the service; O_x
is the ontology of the attribute term describing one layer;
m is the number of attribute concepts describing the
service theme; n is the layer count in the geospatial ser-
vice; and p is the number of attribute concepts describing
layer j. In addition, Simggervice(Oq, Os_i) is the attribute
similarity between query terms and service attributes;
SimaLaye,}.(Oq, Op_x) is the attribute similarity between
query terms and layer attributes.

3.3.2 Spatial similarity

A metadata file of geospatial service data usually con-
tains the spatial extent of the service and several spatial
extents of its map layers. Each spatial extent is defined by
the <BoundingBox> tag in the metadata file. The simi-
larity of two spatial areas is a scalar. Therefore, the spa-
tial similarity can be expressed by using bounding boxes
of query condition and service as follows:

Area(Rq N R) Area(Rq N R)

$Sim(Rg, Ry) = — e > ok, @

where Ry is the query spatial condition, Rs is the target
data spatial extent, and Rq N R; is the overlapped area of
R, and R;. Spatial similarity is calculated from two ratios
of the overlapped area to the area of Ry and R.

As to geospatial service metadata, it contains many
spatial extents including the bounding box of the service
and the bounding boxes of its map layers. Considering
the two categories of spatial extents, the final spatial
similarity equation is as follows:

sSim = max{sSim(Rq, Rs), sSim(Rq, R;)} 5)
i=1,2,.,n,
where R; is the bounding box of the map layer i and n is
the layer count in the geospatial service.
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3.3.3 Temporal similarity

Besides thematic and spatial property, temporal property
is also a very important dimension in geospatial services
and includes the timestamps or timelines of the service.
The dynamic change of spatiotemporal trends can be
analyzed according to the time series of the geospatial
service data.

Temporal information in the geospatial service can
be categorized into two types: time point and time period.
In fact, the time point is one special kind of time period
with the same start time and end time. In the temporal
similarity calculation, all time formats comply with
ISO 8601:2004 “yyyy-MM-ddThh:mm:ss,” i.e., 2004-05-
03T17:30:08. Thus, temporal similarity can be calculated
as follows:

D(TyN Ty)
D(Ty)

D(T,N Ty
D(Ty)

(6)

tSim =
2

where T, is the temporal condition of query, T; is the
temporal value of the geospatial service, and D(T; N T)
is the duration of the overlapped time between T; and T;.

3.3.4 Final semantic similarity

OGDSSM contains the weighted sum of attribute, spatial
and temporal similarities, and the final semantic simi-
larity is expressed as follows:

totalSim

aSim # 0, sSim # O, tSim + O
7)

aSim =0 or sSim = 0 or tSim =0,

w; X aSim + w,

x sSim + w3 x tSim
0

where w,, w,, and ws indicates the weights of the attri-
bute, spatial, and temporal similarities, respectively, and

Table 2: Selected queries for evaluating search effectiveness
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the weight for each similarity is normalized to a value
between 0 and 1, w; + w, + w3 = 1. For indicating the
same significance of each similarity, w;, w,, and ws are
set the same value 1/3. The weights can be adjusted
accordingly to indicate which subsimilarity is empha-
sized. For example, when focusing on the spatial simi-
larity, w, could be increased.

4 Experimental results

In the experiments, we selected the mineral subset (114
OGC: WMS) to be our test geospatial service for the fol-
lowing reasons. First, the USGS MRP is a special project
for a comprehensive understanding of mineral resource
potential, production, and consumption, and it is easy to
build a domain knowledge base for mineral resource pro-
jects especially. Second, it is simple to identify the actual
amount of geospatial service data related to the defined
query condition from a small corpus. Therefore, using
mineral resources as the domain area, it will be easy to
verify the availability and feasibility of the OGDSSM-
based search method.

Seven queries, listed in Table 2, were conducted on
the sample data. All queries were performed on a stan-
dard laptop Intel Core i7-7500U CPU-2.70 GHz with 8 GB
RAM and the Windows 10 (64-bit) operating system.
Here, we use their parameters to measure the effective-
ness of the retrieval method: precision, recall, and F-
measure. Precision is the ratio between the number of
relevant records retrieved from a query and the total
number of records retrieved. Recall is the ratio of the
number of relevant records retrieved from a query to
the total number of relevant records within the corpus.
The F-measure is the weighted harmonic mean of preci-
sion and recall. The precision and recall rates of the seven
queries from our proposed model OGDSSM were

Query Query condition
Attribute terms Spatial extent Temporal property
Q1 Heavy metal resources — -
Q2 American mineral - -
Q3 Copper mineral — -
Q4 — Rect (24.5, -25, 49.4, -66.9) -
Q5 - — [1980, 1989]
Q6 Mineral deposits Rect (24.5, 25, 49.4, —-66.9)
Q7 Mineral deposits Rect (24.5, 25, 49.4, —66.9) [1980, 1989]
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compared with those obtained from LSATTR [10], a geos-
patial semantic search method and GeoNetwork with
Lucene-based search engine, one of the most popular
catalog applications of metadata management.

For Q1, one query expects to retrieve all the heavy
metal-related geospatial service data by inputting “heavy
metals resources.” In the ontology base, heavy metal is
one subclass of metal resources other than a certain
metal. So, even though geospatial service metadata do
not contain the aforementioned keywords, the service is
still considered to be relevant if the subject is related
to the instance of heavy metal. The results show that
GeoNetwork and LSATTR got O response and 10
responses on Q1 separately. LSATTR method retrieved
all relevant eight records in the corpus, and has 100%
recall rate and 80% precision rate. However, our OGDSS
method yielded eight records. By examining the returned
metadata, we found that seven of these eight records are
relevant to the query. The other metadata returned by the
proposed method is on the subject of “A compendium of
previously published databases and database records
that describe PGE, nickel, and chromium deposits and
occurrences.” This metadata includes terms such as “nickel
and chromium deposits” that are related to “heavy metal.”
However, this metadata subject focuses on the “database”
instead of “metal” and so it is considered irrelevant. Other
response metadata include copper/nickel/chromium/
silver/lead/mercury deposits and resources that are cate-
gorized to heavy metal. By examining the test geospatial
services, we identified that 8 of the 46 records are relevant
to Q1 query totally where the OGDSS method did not get one
metadata which is really related to Q1 query. That is because
a compound word “zinc-lead deposits” is used to describe
the metal term. Currently, the OGDSS method cannot

Table 3: Spatial similarity ranking based on OGDSS
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identify compound words beyond the WordNet dictionary.
So, the precision and recall rates of OGDSS are both 87.5%,
whereas these rates for GeoNetwork are 0%. A significant
reason for the different performance of the proposed
method and GeoNetwork searching is that “copper/
nickel/chromium/silver/lead/mercury” are instances of
“heavy metal” (query words) class, but the query words
are not present in the metadata file. The OGDSS model
is able to find these instances based on this semantic
relationship, whereas the keyword-based search of
GeoNetwork cannot.

For Q4, a spatial query expects to find out all the
geospatial services related to the conterminous US by
setting its spatial extent with WGS84 minx = “24.5”,
miny = “-125”, maxx = “49.4”, and maxy = “-66.9”.
LSATTR method returned 65 records including all the
relevant 39 metadata with 100% recall rate and 60% pre-
cision. And, the results show that GeoNetwork obtained
39 responses that are arranged randomly and these
responses intersect with the input spatial extent.
However, the OGDSS method also obtained the same 39
records, but they are aligned orderly. The higher the simi-
larity is, the higher the ranking is. In this experiment,
three records are listed first with the same similarity value
1 as shown in Table 3. As well known, the higher the
similarity value is, the greater the relatedness is. The
most relevant record to the user’s query will be listed in
the forefront. It will be very helpful for users to find the
most similar or equal geospatial service easily. It will be
very helpful for users to find the most similar or equal
geospatial service easily. As to recall rates of Q4, all three
methods OGDSS, LSATTR, and GeoNetwork achieve a
rate of 100%. As to precision of them, only LSATTR did
not reach 100%, which is 60%. For Q6, GeoNetwork

Id  USGS mineral resources WMS BBOX of WMS Spatial similarity
1 State_Geologic_Map_Compilation (24.5, -125, 1
49.4, —66.9)
2 Soil_Geochemical_Landscape (24.5, -125, 1
49.4, —66.9)
3 Geology of the conterminous US (King and Beikman) (24.5, -125, 1
49.4, -66.9)
4 Prospect- and mine-related features from US Geological Survey 7.5 and 15 min topographic (29, -125, 0.89
quadrangle maps of the western United States 49.1, —65)
5 1998 assessment of undiscovered deposits of gold, silver, copper, lead, and zinc in the (24, -165, 0.65
United States 73, —66)
39 Mica deposits of the Blue Ridge in North Carolina (35, -83, 0.5

37, -81)
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Figure 5: (a) Recall comparison among OGDSSM-based method, LSATTR-based method, and GeoNetwork. (b) Precision comparison among
0GDSSM-based method, LSATTR-based method, and GeoNetwork. (c) F-Measure comparison among OGDSSM-based method, LSATTR-
based method, and GeoNetwork. (d) E-value comparison among OGDSSM-based method, LSATTR-based method, and GeoNetwork.
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maintains a higher precision rate than the proposed
method and LSATTR because it returns fewer records
and all of them are relevant.

Many geospatial service data contain temporal pro-
perty to describe the time dimension of map layers. For
example, one geospatial service can collect the mineral
resource distribution developed from 1970s to 1990s.
GeoNetwork can search the date when the geospatial
services were produced and the date when metadata
records were created in GeoNetwork. However, it cannot
search the time dimension in geospatial data, which is a
very important component of geospatial service, espe-
cially in the earth observation field. Besides thematic
and spatial searching abilities, our OGDSS model also
can perform temporal queries to prompt the applications
of geospatial data service in related research fields. To
implement temporal search experiments, simulated tem-
poral information is appended to each Getcapabilities
XML file by <Dimension name = “time” units = “ISO8601”
default = “ 7> </Dimension> fragment description.

Figure 5a shows the comparison of overall recall rate
for our OGDSS model, LSATTR, and the keyword-based
search using GeoNetwork. It is apparent that the recall
rates of LSATTR-based algorithm reach 100% except for
Q5 and Q7, as it did not support temporal query. The
recall rate by using the OGDSSM-based method is higher
than that by using GeoNetwork. Only three of the seven
queries returned relevant records in GeoNetwork search.
Each recall rate by the OGDSSM-based method is higher
than 80%, which means that the most relevant metadata
was retrieved. Sometimes, GeoNetwork has a higher pre-
cision rate than OGDSSM-based search as shown in
Figure 5b (e.g., Q4, Q6). The main reason is that fewer
records returned by GeoNetwork are relevant. To evaluate
the effectiveness of the three methods, F-measure and
E-value are computed as shown in Figure 5c¢ and d, which
demonstrates obviously that the OGDSSM-based method
has better performance than LSATTR and GeoNetwork.

5 Conclusions and future work

This article discussed an integrated measurement model
of spatiotemporal similarity to improve the effectiveness
of geospatial data service discovery for supporting
semantic-based search from massive geographic cata-
logs. The experiments show that the OGDSSM-based
method significantly improved geospatial service dis-
covery. For the seven queries, almost all of the F-mea-
sures are closer to 1. Although the precision of the
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OGDSSM-based method for Q6 is lower than that of
GeoNetwork, the OGDSSM-based method returned all
the records discovered by GeoNetwork with a 100% recall
rate. Although the recall rate of OGDSSM-based method
for Q1 and Q2 is lower than that of LSATTR-based
method, the OGDSSM-based method has higher preci-
sion. Besides the ability to respond to thematic and
spatial queries, the proposed method can also handle
temporal queries by measuring temporal similarity.

Utilizing the proposed methodology in geospatial
service discovery has the following advantages: (1) con-
ducting semantic analysis to discover relevant records
instead of keyword-based matching; (2) enabling tem-
poral queries as well as spatial and thematic queries
simultaneously; and (3) ranking the returned results
according to the semantic similarity between geospatial
service and query condition.

There are several areas that call for future research,
and they might promote additional improvements in
geospatial service discovery, access, and usage, includ-
ing the following aspects. First, multiple granularities of
the descriptive terms should be further considered and
implemented when parsing OWS metadata files. In the
current method, besides keywords are parsed as a phrase
in <Keywords> tag, the granularity is still a single word
when parsing <Name>, <Title>, and <Abstract> tags. In
the future, the parsing method and the vocabulary data-
base should be improved for handling phrase-based attri-
bute information extraction by extending the multiple
granularities of domain lexicon.

Second, the relationship between place name and
spatial extent can be constructed to improve the effective-
ness of the region name-oriented search. In the proposed
model, the region/place name or spatial taxonomy is
identified as attribute terms for implementing attribute
queries. That is why Q2 in Figure 3 returns a wrong record
with the phrase “outside the United States.” In the future,
the linkage between each region/place name and a bound-
ing box [10] needs to be integrated into our method to
improve the subject-based search containing region/place
name by performing a spatial query.

Third, the ontology base to integrate the existing
ontologies, such as SWEET, needs to be extended. Our
current ontology is based on the National Standard of
China. The ontology should not be limited to the stan-
dard. Otherwise, some professional terms cannot be dis-
tinguished. For example, a combined term “zinc-lead
deposits” cannot be returned when executing a query
with “heavy mineral” search. Definitely, zinc-lead deposit
is one kind of heavy mineral. Integrating the existing
knowledge base into the current ontology not only can
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improve OGDSS-based query recall and precision but also
can benefit more related research domains of the geospa-
tial community.

Fourth, a large number of queries need to be sup-
ported when using OGDSSM-based method. Massive
volume is a characteristic of geospatial data. We plan to
develop a middleware integrating Ajax and distributed
geospatial computing techniques to facilitate OGDSSM
model to respond to massive queries automatically.
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