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Abstract: Classification is the science that arranges
organisms in groups according to their similarities and
differences. In plant science, there are many aspects of
classifications. For instance, there is morphological, ana-
tomical, palynological, molecular, and chemical classifi-
cation. All these types consume time, effort, and money.
In this research, new technology is tested to identify the
differences between plants. Spectroradiometer will help
in classifying Prosopis juliflora (Sw.) DC in Bahrah region
in Saudi Arabia. Spectroradiometer technology is applied
to a sample of 40 taxa of P. juliflora in two different sea-
sons. Within each sample site, measurements were taken
at a high sun angle from 10:00 am to 2:00 pm. Results showed
that spectroradiometer indicated the existence of significant
differences among P. juliflora taxa. Correspondingly, the
spectroradiometer engenders the spectral responses of
the targeted species in the region between 400 and
2,500 nm wavelength. The spectral behavior of P. juliflora
in four seasons was demonstrated as season dependent.
The variance-based principal component analysis divided
the investigated samples into two groups, either positively
correlated or negatively correlated according to the sea-
sonal data collection. Sample number 5 in the quantile’s
slicing analysis maintained a stable behavior when it was
exposed to 100% wavelength. P. juliflora behavior was
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stabilized in the infrared (IR) samples (4,5), the shortwave
IR (SWIR) (3,4,5), and thermal IT (TIR) (3,4,5,6) at the
quantile range of >75. While in the quantile range
<25, we found the stability behavior in the IR samples
(2,8,10), the SWIR (2,7,8,10), and in TIR (2,7,8,10).
Therefore, this approved that the spectroradiometer is
useful as the first classification process. More studies
are needed to support this finding, such as chemical
and molecular investigations.

Keywords: arid environments, overlapped taxa, phenology,
Prosopis juliflora, spectral classification, spectroradiometer

1 Introduction

Remote sensing plays a role in understanding these phe-
nomena. Remote sensing gives a lot of information about
plants, and the definition illustrates the finding or measuring
plant physical, biological, biochemical, or phonological attri-
butes that denote a plant’s functional acclimatization, which
otherwise reveal the underlying plant ecophysiological
processes [1,2]. Other numerous features are pertinent to
any discussion of identifying vegetation function with
remote sensing, including spatial, spectral, temporal, and
biological scopes.

Imaging spectrometers (instruments that gather hyper-
spectral data) breakdown the electromagnetic spec-
trum into sets of bands that categorize objects through
their spectral properties on the surface of the earth.
Hyperspectral data consist of various bands, approxi-
mately hundreds of bands, which also include the electro-
magnetic spectrum [3-5]. Hyperspectral remote sensing,
also referred to as imaging spectroscopy, is recently inves-
tigated by researchers and professionals to find and identify
the terrestrial flora [6—8]. Several ecological applications can
benefit from hyperspectral remote sensing, for instance,
measuring chlorophyll, leaf water, cellulose, pigments,
lignin along with other uses in agriculture, astronomy,
chemical imaging, remote sensing [9-11].
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Components of biodiversity, which are widely varied
in vegetations cover form related biological systems
in the Saudi Arabia welfare structure. Studies have
indicated contrasts in plants of one physical category
because of the distinction of substance and physical
properties inside the plant [12,13]. The vegetation struc-
ture gave a few contrasts in its spreading conduct in
various places in the Kingdom, which can be related to
climatic condition changes, water sources, and anthro-
pogenic weights along the rising slope, as reported by
Hegazy et al. [14].

Hyperspectral remote sensing applications were con-
tinuously developed over the past four decades to add
more insights into the natural vegetation behaviors and
agricultural practices [15]. Recently, significant scholarly
works describe in detail the concept of the ground-based
and handheld remote sensing platforms that improved
natural vegetation mapping [16-20]. Moreover, data
dimensionality and data redundancy are not limiting
factors in using hyperspectral data as it was before
which led to swift enhancements in hyperspectral
remote sensing applications [21,22]. Band selection in
hyperspectral data mining is an essential prerequisite
to optimize data efficiency and reduce the computa-
tional timing [23,24].

Several publications had discussed the hyperspectral
sensors on different platforms and their applications.
Specifically, handheld spectroradiometers such as analy-
tical spectral devices (ASD) were used extensively in nat-
ural vegetation mapping, among other several applications
[18,25,26]. ASD spectroradiometers operate generally from
400 to 2,500 nm in a very narrow range of 1 nm bandwidth
interval (high-resolution ASD) up to 100 nm bandwidth
intervals (low-resolution ASD). Detailed and accurate map-
ping of natural vegetation and plant taxonomical models
was achieved using the thermal infrared (TIR) spectrum
[27,28]. The new generation of the hyperspectral sensors
such as spatially enhanced broadband array spectrograph
system will expand the resources and the interpretation of
the hyperspectral remote sensing data [29,30].

In line with Alfarhan [31] and Thomas et al. [32],
vegetation species in Saudi Arabia are divided into three
general categories, namely, species of the Sudano—Dec-
canian zone, Saharo-Sindian zone, and Tropical Indian—
African categories. The annual average rainfall in the
northwestern regions of Saudi Arabia differs from
30 mm in the northern areas to 90 mm in the northeast.
Rainfall records in the central region of the Kingdom,
mainly in the Riyadh region, indicate that rainfall is
increasing from South to North and from East to west,
ranging between 100 and 85 mm annually. Generally, the
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annual average rainfall is less than 100 mm and most of it
is in December, January, February, and March and con-
siderably helps for the growth of short-lived vegetation.

Many scholarly works had been published on the
flora of Saudi Arabia. According to El-Sheikh and Yousef
[33], Mandaville and Mandaville [34], and Thomas et al.
[35], the most comprehensive works are two flora books:
the first is Flora of Saudi Arabia written by Migahid et al.
[36] and published four times. The second is the Flora of
the Kingdom of Saudi Arabia written by Chaudhary [37].
Several studies were conducted in different regions of
Saudi Arabia such as Batanouny [38] and Aldhebiani
et al. [39] who studied the vegetation and floras of the
sabkhas, hillocks, and other prominent mountains of the
Najd region, such as Tuwaiq, Aja, and Salma. Consider-
able efforts have also been made toward the elucidation
of vegetation—environmental relationships in the ecosys-
tems “raudhas” or depressions [40-42]. The plant com-
munities of Wadis have been addressed in some studies
such as Wadi Al-Ammaria [43] and Wadi Hanifa [44]. The
Prosopis juliflora species, in the Kingdom of Saudi Arabia,
is endangered due to their limited genetic range and geo-
graphical variety, minor population size, short density,
threatening ecological conditions, and unselective tree
cutting, regardless of the truth that these species have a
great reproductive ability [45-47].

In the study area considered in this research, Bahrah,
west of Saudi Arabia, no studies have been endeavored to
classify P. juliflora species using different wavelengths.
The current study addressed the consideration of hyper-
spectral data in intraspecific variation in P. juliflora (Sw.)
DC, Saudi Arabia, to identify the significance of different
responses of the P. juliflora taxa to different spectral
wavelengths such as visible spectrum, short-wavelength
IR, long-wavelength IR, and TIR. The study goal is to
investigate the impact of different wavelengths on dif-
ferent leaf samples collected from different P. juliflora
taxa to study their spectral signature behavior and to
appraise the impact of these different wavelengths on
these species’ occurrence.

2 Materials and methods

2.1 Study area description

The climate of Saudi Arabia is classified as an “arid cli-
mate” within Thornthwaite’s global climatic classification,
and as “dry climates” in Koppen’s classification [48,49].
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According to Juneidi and Huss [50], relative humidity
is normally low excluding the coastal areas, where it
touches above 90%. The annual average temperature is
virtually 33.4 and 14°C in summer and winter, respec-
tively. Hot weather describes the Kingdom’s climate
for the larger part of the year. The north winds move
from the eastern Mediterranean in the direction of the
Arabian Gulf with some extensive variations [51]. Spec-
tral data are gathered in the Bahrah region, 21.392245°N,
and 39.472352°E. Bahrah is located on Tihama plateau
closer to Wadi Fatima between Jeddah and Makkah
(Figure 1). The climate in Bahrah Dafi is mild in summer
and rainy in winter. The average summer temperature
is reported as 33°C and the average rainfall is 520 mm.
The greatest amount of rainfall is in January and the
lowest amount is in July [52]. Inside the study region,
different sites have been chosen as samples in an
exploration tour preceding the beginning of the arena
campaign for the gathering of spectral data. The arena
campaign commonly has a multitemporal framework,
gathering spectra from diverse sorts of plants at diverse
phenological periods and different periods of the
year [39].
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2.2 Field sampling

The spectroradiometer is plugged into the Ethernet cable
and ends with a pistol to measure the spectrum and wave
oriented. The Spectralon® White Reference panel [53] is
installed for utilization and handling of the diverse seg-
ments, and the panel is in black to decrease the scattering
of the related radiance (Figure 2).

The leaves of P. juliflora were cut from several trees in
different seasons where the tree is about 2 m long. More
than 40 samples in every sample site were calculated at a
high sun angle, from 10 am to 2 pm by spectroradiometer
technology. The following are the fundamental steps fol-
lowed in undertaking two experiments on P. juliflora species:
(1) P. juliflora leaves were collected from 10 trees of
which two samples were taken at different seasons.
Other samples were collected from the plant to che-
mically measure them in addition to the soil.

Leaves of the plant were weighed in the wet content
and then dried. After drying, the leaves were weighed
in dry wax to determine the water content.

Dry leaves were measured by spectroradiometer, and
data collected from the files of spectral data were
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Figure 1: The location of the study area sampling site disclosed Bahrah area.
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Figure 2: Pictures showing the mechanism of work (1) plant leaves, (2) black plate, (3) spectroscopy, (4) white reflector, (5) measured by

pistol, and (6) transfer of data to the laptop.

transferred as a format of ASCII text by applying the
software of ASD ViewSpec Pro.

2.3 Hyperspectral data processing

Spectral varieties with extreme noise at the final point of
the spectrum, from 2,350 to 2,500 nm, and with obvious
robust climatic intervention, that is 1,351-1,449 nm and
1,801-2,029 nm, were discarded from the investigation.
Accordingly, the spectral data were modified for steps,
i.e., sudden alterations of the noted reflectance that
took place in the spectral signatures at 1,000 nm, which

is typical for the instrument utilized, as a result of the
instrument sensitivity drift. The shortwave IR (SWIR) por-
tion of the spectrum, ranging from 1,000 to 1,800 nm,
was considered as a corrections’ reference since it is con-
stant to the instrument’s sensitivity drift [54,55]. To con-
clude, the spectral data are saved with the auxiliary
metadata in a uniform, accessible to track method [56].
Figure 3 shows the behavior of the natural vegetation
to different electromagnetic wavelengths. For the visible
spectrum, that is, from 1 to 395, the plant taxa do not
reveal any significant difference. For the long-wavelength
IR, that is from 442 to 1,079, the taxa reveal a significant
difference among the species. In its response to the SWIR,
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that is, from 1,128 to 1,569, the plant taxa reveal only one
sample differs from others. For the TIR, that is, from 1,618
to 2,108, the trees reveal that two of the samples are
similar in their behavior to the TIR and one sample differs
from them in its response to the TIR wavelength.

2.4 Principal component analysis (PCA)

The PCA is used to transform a set of likely correlated to
unlikely correlated variables. The principal component
number is less than or equal to the variables’ original
number. According to Lorenz [57] and Jolliffe and Cadima
[58], the PCA’s fundamental equations are described as
follows:

W) = arg max {z (tl)(z,-)} = arg max {z () w)z} (1)
i lwil=1 i

Iwli=1

To maximize variance, the first weight vector w,
thus has to be satisfied equivalently, and writing this in
matrix form gives

w = arg max {|Xw|?} = arg max{(w'X"Xw} ()
lwl=1 lwll=1

Since w(;y has been defined to be a unit vector, it also
equivalently satisfies to be calculated as follows:

3

wiXTXw
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The Kaplan—Meier estimator, also known as the pro-
duct-limit estimator, is a nonparametric statistic used to
estimate the survival function from lifetime data, survival
estimates, exploratory plots with optional parameter esti-
mates, and a comparison of survival curves when there is
more than one group, using designated sample data table
[59,60]. The summary report gives estimates for the mean
survival time as follows:

-3
i: <t n;

St =]

With ¢; is the time when at least one event happened, d;
the number of events that happened at time ¢;, and n; the
individuals known to have survived (have not yet had an
event or been censored) up to time ¢;.

(4)

2.5 Statistical functions

Quantile analysis is a binary form of spectral data classi-
fication, which Khan et al. [61] used to improve the algo-
rithm performance as a functional gradient descent (FGD).
The generic form of the FGD is valid to analyze high spec-
tral data precisely throughout a direct data interpretation.

Q.(Y) = arg min Ey[p (Y - ¢)] (5)
Where

Q- (Y) is the tth quantile of Y,
pr (r) is the conditional function

Water content

Figure 3: Vegetation behavior subjected to a different spectrum of a different wavelength.
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Figure 4: The wavelength vs reflectance of Prosopis juliflora, (a) result collected in Feb. 2019, (b) result collected in Sep. 2019, (c) result

collected in Nov. 2019, and (d) result collected in Feb. 2020.

While the 7th conditional quantile of Y given x be f(x)
for a given quantile estimation:

n

[0]
| 0 -argmine- ¥ ut o ®)
i=1

The functions with Col prefix compute statistics for
a column of numbers or expressions which specifically
includes the mean, quantile, range, maximum, and
minimum. The Col quantile functions of Bassett Jr and
Koenke [62], represent the quantile percentage divided
by 100. The 25% quantile, also called the lower quartile,
corresponds to p = 0.25, and the 75% quantile, called the
upper quartile, corresponds to p = 0.75. In general, to
define the quantile that corresponds to the fraction p,
linear interpolation between the two nearest pi is used.
According to Ashkar and Ouarda [63], if p lies as a frac-

tion of f from pi to pi*', then pth quantile is defined as:

Q) = (1 - /HQP) + fQpi*)

As special cases, define the median and quartiles by:
Median: Q (5)
Lower quartile: Q (25)
Upper quartile: Q (75)

The function Q defined in this way is called the quan-
tile function.

(Row() - 1)
" (NRow() — 1)

age (NRow() — Row())
> (NRow() - 1)

Col Quantile(age J Col Quantile

@)

3 Results and discussion

In the current study, the ASD spectroradiometer illus-
trates the different spectral signatures over the visible,
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near infra red (NIR), and SWIR spectral bands [64]. Corre-
spondingly, the spectroradiometer engenders the spectral
responses of the targeted species in the region between
400 and 2,500 nm wavelength. Figure 4 shows the spectral
behavior of P. juliflora in four seasons and different periods
in terms of wavelength against reflection by ASCII text
accompanied by the software of ASD ViewSpec Pro.

The results of the PCA were illustrated in Figure 5.
Principally, Figure 5a shows the variance-based PCA of
the ten different sample indicators where the analysis
was divided into two groups. The first group involves
the positive samples of S4-S5-S6-S7-S9, and the nega-
tive group involves the samples S1-S2-S3-S8-S10. While
Figure 5b shows the variance-based PCA collected in
summer. The ten different sample indicators were divided
into two groups: the first group involves the positive sam-
ples of S1-S5-S4, and the negative group involves the
samples S2-S3-S6-S7-S8-S9-S10. Figure 5c¢ shows the

DE GRUYTER

variance-based PCA where the ten different sample indi-
cators were also divided into two groups. The first group
involves the positive samples of S1-S3-S4-S5-S6, and
the negative group involves the samples S2-S7-S8-S9-S10.
Finally, Figure 5d shows the variance-based PCA col-
lected in winter 2020, and the ten different sample indi-
cators were divided into two groups according to the
correlation coefficient value [65].

Spectral information collected from the vegetative
covers is generally indicated as a difference in the mole-
cular character of the designated targets. Divergence data
were a gradually changing wavelength function; there-
fore, it gives data that are not likely interconnected with
any spectral calculations carried out in a system [66,67].
The analysis of the hyperspectral image, during the pre-
vious decade, had developed into one of the best potent
and wildest rising technologies in the area of remote sen-
sing [68,69].
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Figure 5: Principal component analysis. (a) Result collected in Feb. 2019, (b) result collected in Sep. 2019, (c) result collected in Nov. 2019,

and (d) result collected in Feb. 2020.



DE GRUYTER Hyperspectral data in intraspecific variation in P. juliflora, Saudi Arabia =—— 287

Table 1: Quantiles slicing analysis of Prosopis juliflora

(a) Result collected in Feb. 2019

T S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
100.0%  Max 0.75998 0.65156  0.81047 0.90976 0.95114 0.80032 0.69253 0.64990 0.73011 0.62004
99.50% 0.75986  0.64914 0.80926 0.90113  0.94337 0.79788 0.69114  0.64752  0.72403 0.61734
97.50% 0.75751  0.63724 0.80447 0.86081 0.92110 0.79377 0.68352 0.63778 0.70568 0.60085
90.00% 0.74176 ~ 0.62384  0.78557  0.82587 0.89004 0.78389 0.66912 0.62448 0.67442 0.59059

75.00%  Quartile 0.68538 0.57103  0.68073 0.69554 0.77031  0.72146  0.59955 0.56141  0.56621  0.53662
50.00% Median  0.50901 0.43752 0.59829 0.58616 0.68110  0.55920  0.45518  0.41819  0.43792 0.4469%4
25.00% Quartile 0.27738 0.23438 0.34390 0.33800 0.39047 0.35005 0.23090 0.20595 0.27646 0.24444

10.00% 0.10298 0.06157  0.09557  0.08594  0.14111 0.06420 0.04543 0.04423 0.07407 0.05090
2.50% 0.05642 0.03849 0.06217 0.06146 0.06687 0.04089 0.02963 0.02855 0.04530 0.03594
0.50% 0.04618 0.03064 0.05156  0.05295 0.05663 0.03183  0.02248 0.02212 0.03889 0.02796
0.00% Min 0.04553  0.02985 0.05081 0.05233 0.05564 0.03116  0.02163 0.02136  0.03823  0.02685

(b) Result collected in Sep. 2019

T2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
100.0%  Max 0.85986  0.74088 0.82104 0.87244 0.90438 0.80695 0.79689 0.75318  0.76183  0.74386
99.50% 0.85618 0.73629 0.81603 0.87002 0.90112 0.80318 0.79209 0.74861 0.76152  0.74307
97.50% 0.83777  0.71558  0.79027 0.85714  0.88149 0.77987 0.77022  0.72552  0.75886  0.73995
90.00% 0.81402  0.69792 0.76500 0.84262 0.86035 0.75707 0.75066  0.70841 0.74938 0.73010

75.00% Quartile 0.76526  0.65510  0.70466 0.80040 0.80343 0.70779 0.70554 0.66460 0.69998 0.67204
50.00% Median  0.53300 0.53123  0.55533  0.62498 0.63333  0.56750 0.57015  0.52076 0.53018  0.52696
25.00% Quartile 0.26287 0.29614 0.29430 0.33539  0.36001 0.34301  0.31755 0.28662  0.29306 0.29006

10.00% 0.09844 0.07719  0.06424 0.08227 0.09017 0.07800 0.07326 0.06695 0.06972 0.06493
2.50% 0.04116  0.04605 0.04242 0.05441 0.05710  0.04742 0.04468 0.04469 0.04062 0.03314
0.50% 0.03790 0.03979 0.03490 0.04422 0.04892 0.03970 0.03770 0.03614 0.03420 0.03029
0.00% Min 0.03778 0.03934 0.03376 0.04273 0.04826 0.03862 0.03695 0.03514 0.03365 0.03015

(c) Result collected in Nov. 2019

3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
100.0%  Max 0.70374 0.73011  0.81047 0.81435 0.95114 0.90370 0.79675 0.67049 0.90976 0.78604
99.50% 0.70338 0.72403 0.80926 0.81014 0.94337 0.89480 0.78988 0.66374 0.90113  0.77687
97.50% 0.70129  0.70568 0.80447 0.79981 0.92110 0.86173  0.75803 0.63576 0.86081 0.74285
90.00% 0.68940 0.67442 0.78557  0.77506 0.89004 0.82969 0.73032 0.60741 0.82587 0.71325

75.00%  Quartile 0.65968 0.56621 0.68073 0.68779 0.77031  0.72237  0.64245 0.50801 0.69554  0.64945
50.00% Median  0.52984 0.43792 0.59829 0.61097 0.68110 0.62747 0.55300 0.40682 0.58616  0.54060
25.00% Quartile 0.30735 0.27646 0.34390 0.38138 0.39047 0.37521  0.32332 0.24635 0.33800 0.30468

10.00% 0.10666  0.07407 0.09557  0.11010  0.14111 0.12386  0.12237  0.07546 0.08594 0.08705
2.50% 0.06388 0.04530 0.06217 0.07043 0.06687 0.07701  0.06541 0.05327 0.06146 0.06216
0.50% 0.05347 0.03889 0.05156  0.05549 0.05663  0.06555 0.05936 0.04695 0.05295 0.05353
0.00% Min 0.05279  0.03823 0.05081 0.05310 0.05564 0.06495 0.05911  0.04650 0.05233  0.05281

(d) Result collected in Feb. 2020

T4 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
100.0%  Max 0.69234 0.58137 0.75280 0.81979  0.88688 0.76428 0.75530 0.57925 0.71348 0.60727
99.50% 0.69011  0.58013 0.74885 0.81572  0.88415 0.75961 0.75159  0.57562  0.71106  0.60582
97.50% 0.67469  0.57537  0.72466  0.78957 0.86611  0.73158  0.72878 0.55663 0.69281 0.59762
90.00% 0.66113  0.56421 0.70432 0.76716  0.84874 0.71266  0.70832 0.54513  0.67646 0.58834

75.00%  Quartile 0.63442 0.53596 0.65837 0.71827  0.79102 0.68320 0.63876 0.52099 0.64133  0.56869
50.00% Median  0.53035 0.41207 0.53566 0.61162  0.64247 0.57004 0.54949 0.38933 0.52360 0.44741
25.00% Quartile 0.29460 0.21123  0.29788 0.37216  0.34893 0.32017 0.31377  0.19212  0.29187  0.23656

10.00% 0.13727  0.07522 0.08810 0.12950  0.12334  0.11725 0.10230  0.07843 0.10932  0.11082
2.50% 0.07223  0.05043 0.06347 0.08409 0.07496 0.07966 0.07260 0.05448 0.07742 0.05723
0.50% 0.06632 0.04378 0.05006 0.07126 0.06707 0.06780 0.06573 0.04855 0.07085 0.05441

0.00% Min 0.06620 0.04354 0.04908 0.06992 0.06689 0.06697 0.06553 0.04842 0.07060 0.05424
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Table 2: Spectral signature stability behavior of Prosopis juliflora

Quantiles Infrared SWIR Thermal IR  Stability

range behavior
1 >75 4,5 3,4,5 3,4,5,6 4,5

75>x<25 1,3,6,7,9 16,9 1,9

<25 2,8,10 2,7,8,10 2,7,8,10 2,8,10
T2 >75 1,4,5 4,5 4,5 4,5

75>x<25 3,6,7,9 1,3,6,7 3,6,7,9

<25 2,8,10 2,8,9,10 1,2,8,10 2,8,10
T3 >75 4,5,6,9 4,5,6,9 4,5,6 4,5

75>x<25 1,3,7 1,3,7 1,3,7,9

<25 2,8,10 2,8,10 2,8,10 2,8,10
T4 >75 4,5 4,5 4,5 4,5

75>x<25 1,3,6,7,9 1,3,6,7,9 1,3,6,7,9

<25 2,8,10 2,8,10 2,8,10 2,8,10

The first group involves the positive samples of
S1-S4-S5-S6, and the negative group involves the sam-
ples S2-S3-57-S8-S9-S10. PCA is a statistical process
that aims to increase the interpretation of information
by using JMP Statistical software.

Classification of different indicators was possible
because of PCA, which identifies the similarities and dif-
ferences in all samples [70]. The abovementioned sample
(a—d) represents the grouping to different indices accord-
ing to PCA on covariance [71,72]. The samples were cate-
gorized into two positive and negative groups, but it was
not precisely determining the behavior; and to ensure
that a quantitative segmentation analysis of the samples
was performed for further clarification [2].

Table 1 shows the quantiles’ slicing for the four per-
iods (T1, T2, T3, and T4.) where the data was extracted by
equations 5-7. The table was divided from 0.00% (min
value) to 100% (max value), while the median specifies
the 50% of the recorded reflection values. Interpreting
the data in the tables maintained the stability behavior
of the tested sample when it was exposed to different
wavelengths reflecting from O to 100%; while between
75 and 25%, the targets had other interpretations that
will not be further addressed.

Table 2 shows the spectral signature stability beha-
vior of P. juliflora as clarified in the previous tables, since
the spectrum behavior was stabilized in (T1) in the IR
samples (4,5), the SWIR (3,4,5), and TIR (3,4,5,6) at the
quantile range >75. While in the quantile range <25,
we found that the stability behavior in the IR samples
(2,8,10), the SWIR (2,7,8,10), and in TIR (2,7,8,10).

In (T2) in the IR samples (1,4,5), the SWIR (4,5), and
TIR (4,5) were at the quantile range of >75. In the quantile
range of <25, the stability behavior in the IR samples was
(2,8,10), the SWIR (2,8,9,10), and TIR (1,2,8,10). In (T3) at
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the quantile range of >75, the IR samples were (4,5,6,9),
the SWIR (4,5,6,9), and TIR (4,5,6). In the quantile range
of <25, the stability behavior in the IR samples was
(2,8,10), the SWIR (2,8,10), and TIR (2,8,10). In (T4) at
the quantile range of >75, the IR samples were (4,5),
the SWIR (4,5), and TIR (4,5). In the quantile range
of <25 the stability behavior in the IR samples was
(2,8,10), the SWIR (2,8,10), and TIR (2,8,10).

This explains the significance of the difference in the
chemical content, leaf content, or water content. This is
confirmed by a study carried out by Hoshino et al. [73]
and Vidhya et al. [71], which showed that the NIR reflec-
tance of the P. juliflora leaves correlated significantly with
a leaf content.

The common factor between wavelengths and reflec-
tances is the stability behavior that was established in
two groups: the first group >75, the samples were (4,5),
and the second group <25 the samples were (2,8,10).
These results confirm that the P. juliflora, under different
ranges of wavelengths, exhibited different spectral beha-
viors, although there is a great similarity in the external
appearance of the plant. This also confirms that the
hyperspectral spectroradiometer is an effective device,
as it gave a good result, and, therefore, it can be effec-
tively used in plant classification [74].

The implementation of the FGD algorithm extended
to a robust and reliable classification function of two
overlapped plant samples. The plant materials under
investigation belong to two different classes along the
broad spectral wavelengths. The temporal analysis con-
firms the designation of the two groups (4 and 5, 2 and 8,
and 10) which is a solid finding of the current research of
P. juliflora spectral classification. The classification algo-
rithm was performed based on labeling the class vari-
ables and the corresponding class quantiles to attain
equality.

This is consolidated by the findings of the study car-
ried by Suleiman et al. [75] which confirmed that the
hyperspectral spectroradiometer is an effective device
as the wavelength of numerous IR absorption bands is
a definite category of chemical bonds in the leaf samples
of plants [76,77] (Figures 6 and 7).

4 Conclusions and
recommendations

The extended use of remote sensing concepts in the form
of hyperspectral data analysis plays an important role
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Figure 6: (a) The flower of Prosopis juliflora number 10, (b) the fruit (legume), (c) the leaf (compound), (d) the leaflet (compound), and
(e) the tree of sample 4.

Figure 7: (a) The flower length of Prosopis juliflora number 5, (b) the fruit (Legume), (c) the leaf (compound), (d) the leaflet (compound), and
(e) the tree of sample 5.



290 —— AmalY. Aldhebiani et al.

in plant taxonomy. The overlapped plant species are
usually distinguished in more complicated gene-level
classification to retain their separability. In the current
research study, the hyperspectral data of P. juliflora col-
lected by temporal screening using the functional gra-
dient decent classification algorithm, which successfully
distinguished two separable groups based on the spectral
reflectance obtained from different wavelengths.

Prosopis trees play a vital part in the ecology and the
economy of many arid and semi-arid zones. They play an
integral part in several sustainable lands while pre-
venting further soil degradation and assisting land recla-
mation use systems that are improving the livelihoods of
rural desert populations. Most of the silvicultural con-
straints to arid zone development have already been
overcome, particularly in plantation and establishment
nursery, making the most of the best genetic material
available, with so many Prosopis trees already planted
and often spreading widely by natural regeneration.

P. juliflora is one of the rare wood-producing plant
species capable of developing in the Arabian Peninsula.
The following are some recommendations stated by
the researcher in this study. It is the tree best recom-
mended for reclaiming sand dunes in Saudi Arabia in
sandy areas. It is a natural source of wood, fuel, and
coal. It contributes to regulating bowel movement and
helps preventing constipation because it absorbs water,
which causes the intestine to normally work. Finally, it is
recommended that more research is performed to study
about this very important tree, focusing on other aspects
such as the medicinal values of the seeds, fruits, flowers,
and leaves.
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