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Abstract: Creep is a fundamental time-dependent pro-
perty of rock. As one of the main surrounding rocks of
underground engineering, layered siltstone is governed
by creep to a great extent because of special structure.
Based on the structural characteristics of layered silt-
stone, a viscoelastic—viscoplastic model was proposed
to simulate and present its creep property. To verify the
accuracy of the model, governing equation of the visco-
elastic-viscoplastic model was introduced into finite ele-
ment difference program to simulate a series of creep
tests of layered siltstone. Meanwhile, creep tests on
layered siltstone were conducted. Numerical simulation
results of the viscoelastic—viscoplastic model were com-
pared with creep test data. Mean relative error of creep
test data and numerical simulation result was 0.41%.
Combined with Lyapunov function, the radial basis func-
tion (RBF) neural network trained with creep test data
was adopted. Mean relative error of creep test data and
RBF neural network data was 0.57%. The results further
showed high accuracy and stability of RBF neural net-
work and the viscoelastic—viscoplastic model.
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1 Introduction

Safety construction is one of the main tasks to ensure
underground engineering. The continuous creep of dis-
turbed surrounding rock can lead to large deformation
and even space closure of underground chamber, which
must be taken into account in the design and stability
analysis of underground engineering. Creep is one of
the time-dependent properties of rock. To obtain creep
characteristics and instability mechanism of rock, scho-
lars are devoted to relevant research fields. Numerous
models applicable to their research objectives have been
established. The classical viscoelastic models can be
constructed by a series of springs, sliding blocks, and
damping elements in series or in parallel. The constitu-
tive law of this kind of model is to establish the variable
calculation relation between strain and stress and define
creep of rock through analytical expressions [1-6]. With
the deepening of researches, characteristics of rock in
different mechanical environment are discovered, and
the classical viscoelastic model shows its limitations. In
this case, a series of rheological models have been pro-
posed through in-depth studies and theoretical break-
throughs [7-11], which can simulate creep behaviors of
rock and have a wider range of application [12].

Firme et al. [13] used the multi-mechanism deforma-
tion creep model (MD model) to explore the creep beha-
vior of Brazilian rock salt, and the results showed good
consistency with the creep test data. Miura et al. [14]
proposed a creep failure prediction model for hard rock
based on microscopic mechanics, and it was believed
that the growth of subcritical cracks and the interaction
between cracks were the governing factors of creep
failure. Leite et al. [15] constructed a rock creep model
based on the power law of transient creep and deter-
mined the short-term creep parameters of rock. Bozzano
et al. [16] constructed a multi-model analysis method
based on morphological evolution simulation to study
the creep behavior and failure mechanism of rock slope.
Brantut et al. [17] studied the microscopic mechanics of
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brittle creep and proposed a microscopic mechanical
model that can describe brittle creep of rock under
triaxial stress.

Results of early creep tests have shown that creep
cannot be completely recovered even under minimal
stress [18—20]. Therefore, relevant scholars assumed that
the first, second, and third stages of creep curve were all
stages of partial reversible strain, and based on this, they
proposed models with different characteristics to evaluate
the long-term stability of rock [21-24]. In addition, many
scholars have carried out creep experiments on the visco-
plastic behavior of rocks, and many beneficial results
have been obtained [25,26].

Liu et al. [27] studied the creep behavior and char-
acteristics of saturated rocks under high stress in uni-
axial and cyclic loading modes, providing a basis for
the deformation control and disaster prevention of satu-
rated rock. Dubey and Gairola [28] studied the influence
of structural anisotropy on creep behavior by experi-
mental means and believed that structural anisotropy
has a strong control effect on the instantaneous strain,
transient strain, steady strain, and accelerated strain of
rock salt. Zivaljevic and Tomanovic [29] used the uni-
axial creep test method to analyze the creep character-
istics and behavior of marl and focused on the influence
of pre-consolidation level and loading time on the creep
parameters. Pellet and Fabre [30] carried out static,
quasi-static, and cyclic creep experiments on sedimen-
tary rock, and results showed that the content of clay
particles in sedimentary rock had a significant influence
on the creep behavior. Rahimi and Hosseini [31] carried
out a triaxial creep experiment on rock salt and studied
the influence of confining pressure, deviating stress, and
strain rate on the creep behavior of rock salt. Results
showed that the strain rate increased with increment
of deviating stress and confining pressure. Grgic and
Amitrano [32] studied the influence of water saturation
on rock creep and explained the important role of micro-
fracture in the creep process by analyzing monitoring
data of strain and acoustic emission.

With the enrichment of machine learning theory and
the deep optimization of neural network, artificial intel-
ligence is gradually applied to the study of mechanical
properties and simulation of large-scale engineering rock
body [33-35]. Deep learning has become a major part of
machine learning in the past few decades because of the
development of computing techniques and huge date
collection. At present, deep learning has entered a hot
stage in the study of mechanical properties of various
materials [36], and with the advent of new methods
[37,38], the deep learning has a broader application
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prospect. Mahdaviara et al. [39] adopted a state-of-the-
art machine learning algorithm to estimate permeability
of carbonate reservoirs. Saghafi et al. [40] established
adaptive network-based fuzzy inference system and
genetic programming models for the accurate assess-
ment of reservoir oil formation volume factor.

In the past, researches focused on the creep law and
mechanism of soft rocks and soils, but a few researches
studied creep property of hard rock with layered
structures. With increase of depth, hard rock gradually
becomes main surrounding rock in the underground
engineering [41]. In particular, the surrounding rock
with layered structure such as layered siltstone domi-
nates difficulty and progress of construction. Therefore,
it is necessary to study the creep property of layered silt-
stone to provide guidance for the construction projects
[42,43]. In this study, we proposed a viscoelastic—visco-
plastic model to simulate and present the creep property
of layered siltstone. Meanwhile, the radial basis function
(RBF) neural network method was adopted, and creep
tests on siltstone were conducted. Based on the creep
test data, error analysis was conducted to verify scientific
nature and accuracy of the proposed model.

2 Theoretical study on
viscoelastic-viscoplastic model

Constitutive relation is an important mean to study the
mechanical behavior of rock. The breakthrough in consti-
tutive relation theory is the key to establish constitutive
model. In this study, we focus on the rheological property
of rock, which is a nonlinear function of time. Therefore, it
is necessary to distinguish the aging part and the non-
aging part in the process of modeling [44,45]. The visco-
elastic—viscoplastic model consists of three components,
namely, elastoplastic component (EP), viscoplastic com-
ponent (VP), and viscoelastic component (VE), as shown
in Figure 1. The EP consists of a spring and a friction plate.
Parameters of the spring are represented by an elastic
modulus K., and starting stress of the friction plate is
represented by oy. The VP is composed of a viscous ele-
ment and a friction plate element in parallel. Viscosity
coefficient of viscous element is represented by r, and
starting stress of the friction plate is represented by op.
The VE is composed of a series of viscous elements and
elastic elements in parallel and series, which can simulate
the layered creep characteristic, for example, progressive
failure, of layered siltstone. In the VE, viscosity coefficient
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Figure 1: The viscoelastic—viscoplastic model.

isn; (i =1, 2,..., m), and elasticity coefficient of spring
element is K; (i = 1, 2,..., m). The three components are
combined in a series to construct the viscoelastic—visco-
plastic model. Many studies have shown that most rock
have hardening creep behavior when under stress. The
hardening model shows initial hardening envelope after
plastic yield starts, which leads to the plastic strain even
under low stress. Based on the structural characteristics
of layered siltstone, the viscoelastic—viscoplastic model
was constructed. The proposed model can simulate elasto-
plastic characteristic of instantaneous deformation and
elastoplastic viscosity deviation of hysteresis deformation;
in addition, this model can be well used to simulate stra-
tified deformation and damage characteristics of layered
siltstone.-

Total strain of the model is divided into three parts,
which can be presented as:

e(t) = e°P(t) + Ve(t) + eVP(t), 1)

where £°P(t) is the elastic strain and irreversible plastic
strain of the EP, £"¢(t) is the elastic strain and viscous strain
of the VE, and £"P(¢) is the irreversible viscoplastic strain of
the VP.

The £°P(t) and the £%(¢) can be presented as:

£°P(t) = £L(1) + £R(0), @
£%(t) = () + £(0), )

where gg(t) is the elastic strain of the EP, eJ(t) is the
plastic strain generated by friction plate in the EP, &£(t)
is the instantaneous elastic strain of Maxwell cell i, and
g (t) is the viscous damping strain of Maxwell cell i.
According to the intrinsic property of each compo-
nent, the stress—strain relationship can be presented as:

0y = Ke - £:(1), (4)
0;=K;- Sie(t), (5)

\4 d v V-
o; =1;- E[Si (B)] =n; - "(0), (6)
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where /() is the viscous strain rate of Maxwell cell i.

As three components of the viscoelastic—viscoplastic
model are in series, total stress of each component is
equal. Total stress can be determined by elements in
the VE, which can be presented as:

m
o) = Y K;-[e(t) - €P(t) — €°P(t) — £7(1)].  (7)
i=1
Equation (7) indicates that total stress of VE is obtained
by stress superposition of each parallel element. In addi-
tion, because elastic element and the viscous element in
each parallel element are in series, stress of each parallel
element is determined by elastic element or viscous
element.
Substituting equation (2) into equation (7), and
according to equation (4), o(t) can be obtained as:

K. - ZZIKI'

o(t) = ——=irt
® Ke + Y K;

-le(t) — eVP(t) — €P(t) — &"(8)]. (8)
For VE, elastic stress of the parallel element i is equal
to viscous stress. Therefore, we have:

oY = Ki[e(t) - £(t) - e0(¢) - &7(0)] = n, &) )

Substituting equation (2) into equation (9), we
can get:

o = K;[e(t) — eP(t) — €P(t) — &(t) — g¢(t)]
. 10)
=1; &'(t).

As equation (4) is equal to equation (7), it can be
written as:
g(t) — eVP(t) — P(t) — &'(t)
Ke : (11)
YK +1

&(t) =

By substituting equation (11) into equation (10), it
can be obtained that:

K.

m [e(t)-€P(t) —€P(t)—&' (1)]. (12)

rli v.

—&:(t) =

K ©
The below can be obtained after further calculation:

e+ TE K vy 4 vy

Ki . Ke (13)
= [e(t) - €P(t) - £5(0)].
Assuming 1; > 0, we can get:
m
7= M >0, (14)

K - Ke

where 7; is the relaxation time of the ith cell.
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Equation (13) can be simplified as:

£ + ~€(0) = Tle(t) - %) ~ f). (15)

T T
In equation (15), the Colonnetti criterion is adopted.
In addition, plastic strain can be transformed into
applied distortion strain, which is a known value.
Accordingly, the differential solution of equation (15)
can be obtained as:

&'(t) = [e(t) — €P(t) — &)(t)]
t
- f e 7 [e(F) - £7(F) - eD(P)dE.

-

(16)

Substituting equation (16) into equation (8), we
can get:

t
o(t) = I G(t - t)-[e(f) — €"P(F) - £$(f)]df, (17)
where G(t) is the relaxation function, which can be pre-
sented as:

Ke- Y1 Ki

t
- e T, (18)
Ke + Z;’;lKi

G(t) =
Equation (17) shows the relationship between total
stress and total strain. The total strain is usually a known

value, and the viscoplastic strain rate €'P(t) and elasto-

plastic strain rate £J(f) are unknown values that need to
be determined according to the plasticity theory.

Viscoplastic strain is obtained by integrating visco-
plastic strain rate within plastic history, and the for-
mula is:

t
evr(t) = '[ eVP(t)dt.

-0

(19)

According to the plasticity theory, the viscoplastic
activation function can be presented as:

®(0) = |o| - op. (20)

According to the plasticity theory, when @ < 0, stress
of VP is less than the start value of friction plate o}, and
so the component does not generate plastic strain. When
@ > 0, stress of the VP reaches or exceeds the start value
of friction plate, and at this point, viscoplastic strain fol-
lows the plastic flow law:
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ety = Q@) @) _ (@O o o
1y oo v

where {(D(0)) = (D(0) + |D(0)])/2.
The viscoplastic strain rate €'P(t) is determined by

equations (19)—(21). To obtain s$(t‘ ), the following assum-

ptions are proposed:

(1) Stress of the friction element in the EP does not
exceed oy.

f (o) = lol - oy. (22)
This formula is also known as the elastoplastic
yield condition.
(2) Assuming |o] - 0y < 0, then &)(f) = 0.
(3) If 0=0y>0, then el(f)=y=>0. If 0=-0y<0,

then e},’.(f) =-y<O.

Thus, the elastoplastic flow law can be obtained as:

s},"(t') =y sign(o). (23)

Partial derivative of stress on equation (22) can be
obtained as follows:

_ 9 of

f Ke(6 - el(0) = L Kt
o 60
5 (24)
- y—XK, sign(o).
6o
Since we know that
M = sign(o) > ﬂ = sign(og), (25)
o0 o
and [sign(o))? = 1. Therefore, we have:
f =023y =¢sign(o). (26)

Substituting equation (26) into equation (23), when
f(o) =0, f(o) =0, we can get:

eJ(t) = &. (27)

Equations (17)—(27) jointly determine and present the
viscoelastic—viscoplastic model. The calculation process
follows traditional discrete integral method, whereas evo-
lution relationship of change rate of viscoplasticity is
solved by the Euler difference method. In particular,
when the viscoelastic—viscoplastic model is used for
numerical calculation, model parameter identification
has been done to provide basis for comparative analysis
and verification.
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3 Construction and stability proof
of RBF neural network

3.1 Introduction to RBF neural network

Neural network has a certain advantage in model research.
At present, scholars in related fields have carried out in-
depth theoretical research [46,47], of which RBF neural
network is a forward network with good performance,
which can be presented in the following form [48]:

N
Yy = fn (Z) = ) wisi(Z) = WTS(2).

i=1

(28)

Structure of the RBF neural network is similar to
that of multilayer forward network [49], which is gen-
erally composed of input layer, hidden layer, and

output layer (Figure 2). The activation function
e Dy _lx=¢
1sRl(x)—exp[ 207 ]

3.2 Construction of the RBF neural network
and its stability proof

The RBF neural network has the ability to approximate
complex nonlinear functions through simple linear com-
posite mapping, which does not require specific mathe-
matical models. Construction and stability of the RBF
neural network are proved as follows.

According to universal approximation property of the
neural network, if f(x) is a continuous smooth function
about x(k), then an ideal neural network W*TS(x(k)) satis-

fies the following equation:
f(x) = W*TS(x) + g(k), (29)

where W* = [wy, ws,...,w]T € Rl is the ideal neural net-
work weight vector, S(x) € R! is the activation function

Input layer Hidden layer

Zi .
Z2 . w>

Output layer

Zn .

Figure 2: The structure of RBF neural network.
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of neural network, and (k) is an arbitrarily small approx-
imation error.
Suppose that there is an ideal constitutive model:

yk +1) = f(x), (30)

where f(x) is the nonlinear function of the ideal constitu-
tive model, which is approximated by an ideal neural
network: f(x) = W*TS(x) + (k).

As it is hard to idealize nonlinear function of the con-
stitutive model, a mirror model is constructed as follows:

Yk + 1) = f(x) = W (k)S(x), (31

where y(k) is the output value of the mirror model, f (x)is
the nonlinear function of the mirror model, and W(k) is
the estimated value of the ideal neural network weight
vector W'.

The model error is:

zk+1) =Pk + 1) - y(k + 1) = W (k)Sx) - e(k),(32)

where z(k) is the model error, and W(k) = W(k) - W*is
the estimation error vector of neural network.
The neural network update rate is:

Wk + 1) = W(k) - r(Sx)z(k + 1) + W(k)). (33)

It is necessary to select appropriate learning para-
meters r and 6 so that the mirror model can approach the
ideal model. The weight W(k) of the neural network is con-
verged toits ideal value W'. The proof process is as follows:

Based on a Lyapunov function method, we can get:

V(k) = 22(k) + %WT(k)W(k). (34)
Then the one-step forward difference is:
AV(k) = V(k + 1) - V(k)
=22k +1) + %WT(k FOWk+D (35

2k - %WT(k) Wik

Further
obtained as:

calculation of equation (33) can be

Wk +1) = W(k) - r(Sx)z(k + 1) + §W(k)).  (36)
Substituting equation (36) into equation (35), we can get:
AV(K) = 22(k + 1) — 22(k) - %WT(k)W(k)
+ (W(k) - r(S()z(k + 1)

(37)
+ 6W(k))T%(W(k) — H(SOz(k + 1)

+ SW(k))).
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Further calculation of equation (37) can be obtained as:

AV(k) = 22(k + 1) — 22(k) - 2W (k) (S(x)z(k + 1)
+ 8W(k)) + rST(x)S(x)z2(k + 1)
+ 2i6W (k) SO z(k + 1))
+ r8?2W (k) W (k).

(38)

Equation (39) can be obtained from equation (32) as
follows:

2k + 1) + z(k + Dek) = W kK)Sx)z(k + 1).  (39)

Substituting equation (39) into equation (38), we
can get:
AV(k) = -z2(k + 1) — z%(k) - 2z(k + 1)e(k)
—2WT ()W (k) + rST(x)S(x)z%(k + 1) (40)
+ 26W (k) SO z(k + 1) + r&?W' (k) W (k).
Based on the neural network activation function
and Young inequality, equation (41) can be obtained

(derivations of equations (41-44) are added into
Appendix):

ST(x)S(x) < 1, (41)

“2z(k + De(k) < r22(k + 1) + %sz(k), (42)

26W" (k) S() z(k+1) < rlz2(k +1) + r82W " (k) W (k), (43)

“26W () W(k) = SW*TW* — §W (k) W (k) )
~ W) W(k).

Substituting equations (41)—(44) into equation (40),
we can get:

AV(k) < -z2(k + 1) = z%(k) + rz%(k + 1) + %sz(k)
+ 2122k + 1) + 2r8?W () W(k)
+ SWTW* — sW ()W (k) - W' (k) W(k)
<—z2k) - (1 -r-2D)z%k + 1)
- W (k)W (k)
~ - 28 W W) + %ez(k)

(45)

+ SW* T,

Selecting appropriate learning parameters r and 8
satisfies the following conditions:

1 1
——, 0<b6< —.
+ 21 N2r

Then, equation (45) can be converted as follows:

0<r< (46)
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AV(k) < -z2(k) + %ez(k) + WTw, 47

When |z(k)|| > %sz(k) + 6 |W*2, AV(k) < 0. The

error z(k) converges to u, u > 4/%82(]0 + 6 |WH2.

According to the universal approximation of the neural
network, £(k) can be arbitrarily small, and y can also be
arbitrarily small by selecting a small learning parameter.
This shows that the mirror model error z(k) can converge
to small neighborhood of the origin, that is, the mirror
model can approach the ideal model.

The proof process of the neural network weight W (k)
converges to the vicinity of its ideal value W' is as fol-
lows:

Wk + 1) = (I - r8I — rS(x)ST(x(k))) W (k)
+ r(S(x)e(k) — 6W*(k)).

(48)

Based on equation (46), |[I - r6I — rS(x)ST(x)|| < 1
can be obtained, where (k) is an arbitrarily small value,
and r, S(x) are bound, so rS(x)g(k) is also arbitrarily
small. Supposing that there is a small correction para-
meter, then ré6W*(k) is also an arbitrarily small value.
Therefore, equation (48) can be rewritten as:

Wk + 1) = Ak)W(k) + d(k), (49)

where A(k) is the symmetric matrix and [|A(k)|| < 1. d(k) is
the small perturbation term.
The minimum form of equation (49) is:

Wk + 1) = A(k) W(k). (50)

According to the property of A(k), the state transition
matrix [|p(ki, ko)l = Hnﬁjglfl(k)H <1 in equation (50),
W (k) converges to the origin.

According to the Lyapunov inverse theorem, there
are positive definite symmetric matrices P and Q, which
satisfy AT(k) PA(k) + P = -Q.

Lyapunov function is constructed for equation (49):

Vk) = W (k) PW (k). (51)

Then the one-step forward difference of equation
(51) is:
AVa(k) = otk + 1) — Va(k) = W (k + 1)PW(k + 1)
~ T ~
-W PW(kz o 52)
=~ Mmin(Q W () W(k) ~ Amax(P)d" (k) d(k)
~ 2imax (AT (k) PYW" (k) W () d (k) (k).

So, | W(k)ll eventually converges to p,:
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dmax

Amin(Q)
+ A2k AT (OP) + Ain(Q) Amya (P)].

[Amax(AT (k) P)

>
1) 53)

As d max |d(k) lmax is relatively small, error vector
W(k) of the neural network converges to the small neigh-
borhood of the origin. Which means that estimation
vector W(k) of the neural network converges to the vici-
nity of the neural network ideal vector W',

It can be proved from the above process that the
mirror model can approach the ideal model, and the
neural network weight W(k) converges to the ideal value
W". Thus, the RBF neural network can be established, and
Lyapunov function is constructed to verify the conver-
gence and stability of the model. Training and learning
of the RBF neural network is arranged in Section 5.

4 Experimental setup and data
processing

4.1 Rock rheological test

The rock rheological test system is used in the creep test
(Figure 3). The calibration curve of the test system shows
that relationship between effective stress g, and applied
stress 0, is 0. = 0.2440, — 0.511, which meets the require-
ments of the study. The diameter and height of rock sam-
ples are 50.0 and 100.0 mm, respectively. The dip angle
between layered siltstone and horizontal plane is 87°

1
1
i
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approximately, and the number of rock samples is 6.
All rock samples are prepared according to ISRM (2014)
requirements. During the test, strain gauges and DD1
cantilever strain sensors were used to measure axial
strain and radial strain. In the test, six rock samples
(samples A-F) were compressed under static load, and
the loading stress was set as @ (0¢y is the crack initial

stress, ocp is the crack damage fracture stress). The stress
control method was used for loading, and the loading
rate was controlled at 0.01kN/s. In the initial, inter-
mediate, and the final stages of the creep test, 5.0 min,
1.0 h, and 5.0 min were used as time intervals to read and
record data. The input mechanical parameters were
obtained through creep tests (Table 1).

Creep curves of part rock samples are consistent with
the typical creep curves in morphology (Figure 4). The
failure modes of rock samples are mainly sliding failure
along structural plane and shear failure through struc-
tural plane. The average axial creep strain of rock sam-
ples in the first stage is 0.53% H (H is the height of test
samples). In the steady creep stage, the average axial
strain rate was 0.05% H/h, and the average creep dura-
tion was 42.7 h. The axial strain of the rock sample at the
time of failure remained at 0.59% H on average.

4.2 Numerical calculation experiment using
the viscoelastic-viscoplastic model

To analyze the performance of the viscoelastic—visco-
plastic model in simulating layered siltstone, we adopted

1 100 =
: @ lest sample
- | —— Fitted curve /0
: A
g ]
I 75 - ’,
! z @
i e 9
’; '
i s A
i ;
i Z 50 - A
I - s,
: k7 .9
]
; | omo24dceosu @
I 2 2y
: = R*=0.997 .
| 254 o
: &
> /,o
e
- 0 -P T T T 1
Specimen curing 0 100 200 300 400

equipment

Figure 3: The rock rheological test system.

Effective stress (ge)/ kKN
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Table 1: Mechanical parameters of rock
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Parameter  y (kN/m>) @ (°) C (MPa) ] K (MPa)

o; (KPa) Gy (MPa) nm (Pas) Gy (MPa) n« (Pas)

Value 24.6 29.0 0.89 0.28 833

36 522 6.37 x 10% 467 1.28 x 10

numerical simulation program based on two-dimensional
finite element method. Numerical samples were 100.0 mm
in height and 50.0 mm in diameter with a 2:1ratio of height
to diameter. The mechanical parameters assigned to the
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numerical samples were obtained through creep tests
(Table 2). To avoid the influence of stress reflection, 10
diameters of the model were designed from center to
boundary. Bottom displacement of the model was
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Figure 4: Creep test results of layered siltstone. (a) Sample A, (b) sample B, (c) sample C, (d) sample D, (e) sample E, (f) sample F.
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Table 2: Model calculation input parameters

DE GRUYTER

Parameter &o £k 1 Ha s Py Ky

K, KiK. K o, (MPa) 0, (MPa) ®

Value 0.3 21 38 2465 2691 3968 10.6

8.1 5.3 39.3 27.2 15.5 38.7 0.01

constrained. Stress boundary was set to reflect only the
gravity load, and grid was arranged radially outward
without influence of support.

4.3 RBF neural network training and output

A three-layer RBF neural network was adopted in this
part. At the input layer, load stress ¢ and layered struc-
ture angle a were used as nodes. The selected parameters
will make a difference to creep strain, which shows creep
behavior and property of layered siltstone. Therefore, the
output layer was set as creep strain €. MATLAB was used
to normalize the stress—strain data obtained from creep
test of rock samples. Then the processed data were used
as learning sample to train the RBF neural network. Error
of the training target was set as 10™*. When the training
steps reached 57,600, the model tended to reach a stable
state (Figure 5). Figure 6 shows the loss value and accu-
racy vs the training steps on all dataset. The output data
of RBF neural network were reversely normalized with
min-max normalization method and Z-score normaliza-
tion method based on the number of parameters.

5 Comparative analysis of the creep
test, viscoelastic-viscoplastic
model, and RBF neural network

To verify scientific accuracy of the viscoelastic—visco-
plastic model and stability of the RBF neural network,
comparison was made among output data of the visco-
elastic—viscoplastic model, RBF neural network, and creep
test. We processed the rock strain data from the RBF
neural network, creep test, and the viscoelastic—visco-
plastic model, and the mean values are 0.643, 0.679,
and 0.712, the median values are 0.709, 0.728, and 0.753,
respectively. We considered K-fold as the way to split
the dataset, and the dataset is split into two sub-data-
sets, which are training dataset and testing dataset. The
latter is not used for training, but for evaluation of the
model. Then, to solve the overfitting problem, a portion

of the training data is then set aside as validation data to
evaluate the training effectiveness of the model. The vali-
dation data split from training dataset is an unseen
dataset, which can be used to validate the model. R-
square and root mean square error for train data, test
data, and total database are calculated (Table 3).

Figure 7 shows the comparison of rock creep strain
predicted by RBF neural network, creep test, and the
viscoelastic—viscoplastic model (part of rock samples).
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Table 3: R-square and root mean square error of data

Parameter Traindata Test data Total database
R? 0.951 0.973 0.940
Root mean square 0.023 0.020 0.036

error

The average relative error can be used to evaluate the
accuracy of the RBF neural network:

1N
£ ==
v

where E; is the creep strain of rock samples obtained by
creep test, P; is the creep strain of rock obtained by RBF
neural network or the viscoelastic—viscoplastic model,
and N is the number of data collection points. It can be
seen from Figure 7 that average relative error of data from
RBF neural network and the viscoelastic—viscoplastic
model is 0.57 and 0.41%, respectively, based on the creep
test data, which shows a high degree of consistency. This
further shows that the RBF neural network has high accu-
racy and stability and also confirms that the viscoelastic—
viscoplastic model is scientific and accurate.

x 100, (54)

E; - P,
E;

6 Discussion

In this paper, we studied creep behavior of layered silt-
stone. Our studies established the viscoelastic—visco-
plastic model and trained the RBF neural network to
reveal the effect of layered structure on creep behavior
of layered siltstone, and the creep test results suggested
stability and accuracy of the model and the RBF neural
network. Overall, by means of combining constitutive
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—— the creep test
the RBF neural network
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model with RBF neural network and creep test, our stu-
dies propose an innovative approach to obtain creep
behavior of layered siltstone.

Many researchers devoted themselves to study the
mechanical behavior of rock and achieved useful results
[13,17,27]. Wang et al. [50] adopted 3D convolutional
neural network to realize voxel model of rock samples.
Shlyannikov and Tumanov [51] constructed creep damage
model for the fracture of the process zone using a
stress and ductility-based formulation. In addition, to
assess the mechanical behavior of rock salt under dif-
ferent pressure fluctuations, Han et al. [52] built a modi-
fied creep model for cyclic characterization of rock salt
considering the effects of mean stress, half-amplitude,
and cycle period. These studies used innovative methods
to obtain creep behavior and property of rock under dif-
ferent boundary conditions from macro to meso and then
to microscale, and part results were applied in practical
engineering. Although there are important discoveries
revealed by these studies, most of them focus on homo-
geneous rock. These studies neglect the critical effect of
primary structure, for example, layered structure, on
creep behavior of rock. Therefore, their stability and
accuracy cannot be guaranteed. Our study takes the pri-
mary structure of layered siltstone into consideration,
part component of the viscoelastic—viscoplastic model
is composed of a series of viscous elements and elastic
elements in parallel and in series, which can simulate
the layered creep characteristic, for example, progressive
failure, of layered siltstone. In addition, all training data
are obtained from creep test on layered siltstone. There-
fore, the established model and RBF neural network can
well reflect creep behavior of layered siltstone.

In the future study, we plan to build coupling model
of structure effect and frost heave effect to explore creep
property of layered siltstone in the low temperature and
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Figure 7: Strain comparison of the RBF neural network, creep test, and the viscoelastic-viscoplastic model. (a) Sample A, (b) sample B,

(c) sample C.
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provide application basis for rock engineering construc-
tion in the cold region. In addition, RBF neural network is
an alternative way to obtain mechanical behavior. Based
on the comparative analysis in Section 5, we ensure that
if there are plenty of train sets, its accuracy can be well
guaranteed. Accordingly, we need to make progress on a
new RBF neural network, which requires less training
sets but has higher accuracy in the future study.

As one of the main surrounding rocks of under-
ground engineering, layered siltstone is governed by
creep to a great extent because of special structure.
Therefore, our study on creep behavior, creep property,
and long-term mechanical mechanism has long-term the-
oretical significance and practical value.

7 Conclusions

(1) The viscoelastic—viscoplastic model was established
and theoretically analyzed to simulate and present its
creep property. Particularly, this model could simu-
late its progressive failure, elastoplastic characteristic
of instantaneous deformation, and elastoplastic visc-
osity deviation of hysteresis deformation.

(2) The RBF neural network was established and opti-
mized using creep test data; then, the Lyapunov func-
tion is constructed to prove its stability. Data valida-
tion showed that the RBF neural network had good
performance in predicting creep property of layered
siltstone.

(3) The mean relative error of creep test data and the
RBF neural network was 0.57%. The mean relative
error of creep test data and the viscoelastic—visco-
plastic model was 0.41%. This indicated that the
RBF neural network had high accuracy and stability
and also confirmed scientific nature and accuracy of
the viscoelastic—viscoplastic model.

Acknowledgments: The authors are grateful to China
Scholarship Council (CSC). A special thanks to Professor
Pinnaduwa H. S. W. Kulatilake, Department of Mining
and Geological Engineering, The University of Arizona,
Tucson, AZ, USA.

Funding information: This work was supported in part by
the Key National Natural Science Foundation of China
under Grant U1361206, in part by the China Scholarship
Council under Grant CSC[2018]3101.

DE GRUYTER

Author contributions: Yiran Yang: conceptualization,
methodology, and writing — original draft preparation.
Xingping Lai: supervision and writing — reviewing and
editing. Tao Luo: software and validation. Feng Cui: data
curation. Kekuo Yuan: visualization and investigation.

References

[1] Golshani A, Oda M, Okui Y, Takemura T, Munkhtogoo E.
Numerical simulation of the excavation damaged zone around
an opening in brittle rock. Int ] Rock Mech Min Sci. 2007 Sept
1;44(6):835-45.

[2] Zhifa 'Y, Zhiyin W, Luging Z, Ruiguang Z, Nianxing X. Back-
analysis of viscoelastic displacements in a soft rock road
tunnel. Int ] Rock Mech Min Sci. 2001 April 1;38:331-41.

[3] Kontogianni V, Psimoulis P, Stiros S. What is the contribution
of time-dependent deformation in tunnel convergence? Eng
Geol. 2006 Feb 1;82:264-7.

[4] Fahimifar A, Tehrani F, Hedayat A, Vakilzadeh A. Analytical
solution for the excavation of circular tunnels in a visco-elastic
Burger’s material under hydrostatic stress field. Tunn Undergr
Sp Technol. 2010 July 1;25:297-304.

[5] CuiF, Yangy, Lai X, Jia C, Shan P. Experimental study on the
effect of advancing speed and stoping time on the energy
release of overburden in an upward mining coal working face
with a hard roof. Sustainability. 2020;12(1):37.

[6] CuiF, ZhangT, Lai X, Cao ), Shan P. Study on the evolution law
of overburden breaking angle under repeated mining and the
application of roof pressure relief. Energies. 2019;12(23):4513.

[7] LiX, Qi C, Zhang P. A micro-macro confined compressive
fatigue creep failure model in brittle solids. Int | Fatigue. 2019
Sept 1;130:105278.

[8] Haghighat E, Rassouli F, Zoback M, Juanes R. A viscoplastic
model of creep in shale. Geophysics. 2020 Sept 2;85:1-47.

[9] Barral M, Chatzigeorgiou G, Meraghni F, Léon R.

Homogenization using modified Mori-Tanaka and TFA

framework for elastoplastic-viscoelastic-viscoplastic

composites: theory and numerical validation. Int ] Plast. 2019

Dec 1;127:1-22.

Lim H, Choi H, Zhu F-Y, Webbe T, Yun G. Multiscale damage

plasticity modeling and inverse characterization for particu-

late composites. Mech Mater. 2020 Aug 1;149:103564.

[11] Lin YC, Huang J, Li H-B, Chen D-D. Phase transformation and

constitutive models of a hot compressed TC18 titanium alloy in

the a + B regime. Vacuum. 2018 Nov 1;157:83-91.

Guan Z, Jiang Y, Tanabashi Y, Huang H. A new rheological

model and its application in mountain tunnelling. Tunn

Undergr Sp Technol. 2007 Aug 10;23:2008.

Firme P, Roehl D, Romanel C. An assessment of the creep

behaviour of Brazilian salt rocks using the multi-mechanism

deformation model. Acta Geotech. 2016 Mar 22;11:1445.

Miura K, Okui Y, Horii H. Micromechanics-based prediction of

creep failure of hard rock for long-term safety of high-level

radioactive waste disposal system. Mech Mater. 2003 Mar
1;35:587-601.

(10]

(12]

(13]

(14]



DE GRUYTER

(15]

(16]

(17]

(18]

(21]

(22]

(25]

(26]

(27]

(28]

(29]

(30]

Leite MH, Ladanyi B, Gill D. Determination of creep parameters
of rock salt by means of an in situ sharp cone test. Int ] Rock
Mech Min Sci Geomech Abs. 1993 June 1;30:219-32.
Bozzano F, Della Seta M, Martino S. Time-dependent evolution
of rock slopes by a multi-modelling approach.
Geomorphology. 2016 April 1;263:113-31.

Brantut N, Baud P, Heap M), Meredith P. Micromechanics of
brittle creep in rocks. ) Geophys Res (Solid Earth). 2012 Aug
1;117:8412.

Cristescu N. Time effects in rock mechanics. Society for
experimental mechanics (SEM) — annual conference and
exposition on experimental and applied mechanics (vol 2).
2009 Jan 1.

Taheri R, Pak A. Casing failure in salt rock: numerical investi-
gation of its causes. Rock Mech Rock Eng. 2020 June
3;53:3903-18.

Taheri R, Pak A, Shad S, Mehrgini B, Razifar M. Investigation of
rock salt layer creep and its effects on casing collapse. Int )
Min Sci Technol. 2020 May 1;30:357-65.

Malan DF. Time-dependent behaviour of deep level tabular
excavations in hard rock. Rock Mech Rock Eng. 1999 May
1;32(2):123-55.

Parsapour D, Fahimifar A. Semi-analytical solution for time-
dependent deformations in swelling rocks around circular
tunnels. Geosci J. 2016 Aug 1;20:517-28.

Tran-Manh H, Sulem J, Subrin D, Billaux D. Anisotropic
time-dependent modeling of tunnel excavation in squeezing
ground. Rock Mech Rock Eng. 2015 Mar 4;48:2301.

Isotton G, Teatini P, Ferronato M, Janna C, Spiezia N,
Mantica S, et al. Robust numerical implementation of a 3D
rate-dependent model for reservoir geomechanical simula-
tions. Int ) Numer Anal Methods Geomech. 2019 Sept
1;43:2752.

Li Y, Xia C. Time-dependent tests on intact rocks in uniaxial
compression. Int) Rock Mech Min Sci. 2000 April 1;37:467-75.
Zhang H, Wang Z, Zheng Y, Duan P, Ding S. Study on tri-axial
creep experiment and constitutive relation of different rock
salt. Saf Sci. 2012 April 1;50:801.

Liu L, Wang G-m, Chen J-h, Yang S. Creep experiment and
rheological model of deep saturated rock. Trans Nonferrous
Met Soc China. 2013 Feb 1;23:478-83.

Dubey RK, Gairola VK. Influence of structural anisotropy on
creep of rocksalt from Simla Himalaya, India: an experimental
approach. J Struct Geol. 2008 June 1;30:710-8.

Zivaljevic S, Tomanovic Z. Experimental research of the effects
of preconsolidation on the time-dependent deformations —
creep of marl. Mech Time-Depend Mater. 2015 Feb 1;19:43.
Pellet F, Fabre G. Damage evaluation with P-wave velocity
measurements during uniaxial compression tests on argillac-
eous rocks. Int ) Geomech. 2007 Nov 1;7:431.

Rahimi S, Hosseini M. Laboratory studies of creep behavior on
thick-walled hollow cylindrical salt rock specimens. Arab |
Geosci. 2014 Sept 24;8:1-9.

Grgic D, Amitrano D. Creep of a porous rock and associated
acoustic emission under different hydrous conditions.

) Geophys Res Solid Earth. 2009 Sept 1;114:B10201.

Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial
neural network methods for the solution of second order

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

Study on creep model of layered siltstone =— 83

boundary value problems. Comput Mater Contin. 2019 Jan
1;59:345-59.

Mahdaviara M, Rostami A, Shahbazi K. State-of-the-art
modeling permeability of the heterogeneous carbonate oil
reservoirs using robust computational approaches. Fuel.
2020 May 15;268:117389.

Chen D-D, Lin YC, Wu F. A design framework for optimizing
forming processing parameters based on matrix cellular
automaton and neural network-based model predictive control
methods. Appl Math Model. 2019 Dec 1;76:918-37.

Hongwei G, Zhuang X, Rabczuk T. A deep collocation method
for the bending analysis of kirchhoff plate. Comput Mater
Contin. 2019 Jan 1;58:433-56.

Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM,
Guo H, Hamdia K, et al. An energy approach to the solution of
partial differential equations in computational mechanics via
machine learning: concepts, implementation and applications.
Comput Method Appl Mech Eng. 2020 April 1;362:112790.

Lin YC, Liang Y-J, Chen M-S, Chen X-M. A comparative study on
phenomenon and deep belief network models for hot defor-
mation behavior of an Al-Zn-Mg-Cu alloy. Appl Phys A. 2016
Dec 22;123(1):68.

Mahdaviara M, Rostami A, Keivanimehr F, Shahbazi K.
Accurate determination of permeability in carbonate reservoirs
using gaussian process regression. ] Pet Sci Eng. 2021 Jan
1;196:107807.

Saghafi HR, Rostami A, Arabloo M. Evolving new strategies to
estimate reservoir oil formation volume factor: smart modeling
and correlation development. | Pet Sci Eng. 2019 Oct
1;181:106180.

Yi H, Zhou H, Wang R, Liu D, Ding J. On the relationship
between creep strain and permeability of granite:
experiment and model investigation. Energies. 2018 Oct
22;11:2859.

Muhammad N, Bresser JHP, Spiers CJ, Peach C. Creep
behaviour of bischofite, carnallite and mixed bischofite-
carnallite-halite salt rock. Geotectonic Res. 2015 Sept
1;,97:15-17.

Hashiba K, Fukui K. Time-dependent behaviors of granite:
loading-rate dependence, creep, and relaxation. Rock Mech
Rock Eng. 2016 Mar 17;49:2569.

Chen K. Constitutive model of rock triaxial damage based on
the rock strength statistics. Int ) Damage Mech. 2020 Nov
5;29:105678952092372.

Shi S, Zhang F, Feng D, Tang K. Creep constitutive model for
frozen soils based on hardening and damage effects. KSCE )
Civ Eng. 2020 Mar 11;24:1146.

Rostami A, Masoudi M, Ghaderi-Ardakani A, Arabloo M,
Amani M. Effective thermal conductivity modeling of sand-
stones: SVM framework analysis. Int ] Thermophys. 2016 June
1;37:59.

Lin YC, Li J, Chen M-S, Liu Y-X, Liang Y-). A deep belief
network to predict the hot deformation behavior of a
Ni-based superalloy. Neural Comput Appl. 2018 June
1;29(11):1015-23.

Yu Q, Hou Z-S, Bu X, Yu Q. RBFNN-based data-driven predictive
iterative learning control for nonaffine nonlinear systems. |EEE
Trans Neural Netw Learn Syst. 2019 June 25;31:1-13.



84

— Yiran Yang et al.

[49] Zhang P, Zhang ), Zhang Z. Design of RBFNN-based adaptive

(50]

sliding mode control strategy for active rehabilitation robot.
IEEE Access. 2020 Aug 24;8:1.

Wang Y, Teng Q, He X, Feng J, Zhang T. CT-image

of rock samples super resolution using 3D

convolutional neural network. Comput Geosci. 2019

Aug 1;133:104314.

(51]

(52]

DE GRUYTER

Shlyannikov VN, Tumanov A. The effect of creep damage model
formulation on crack path prediction. Frattura Ed Integr Strutt.
2019 April 1;13:77-86.

Han Y, Ma H, Yang C, Zhang N, Daemen J. A modified creep
model for cyclic characterization of rock salt considering the
effects of the mean stress, half-amplitude and cycle period.
Rock Mech Rock Eng. 2020 July 1;53:3223.



	1 Introduction
	2 Theoretical study on viscoelastic-viscoplastic model
	3 Construction and stability proof of RBF neural network
	3.1 Introduction to RBF neural network
	3.2 Construction of the RBF neural network and its stability proof

	4 Experimental setup and data processing
	4.1 Rock rheological test
	4.2 Numerical calculation experiment using the viscoelastic-viscoplastic model
	4.3 RBF neural network training and output

	5 Comparative analysis of the creep test, viscoelastic-viscoplastic model, and RBF neural network
	6 Discussion
	7 Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


