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Abstract: Nighttime light remote sensing images show
significant application potential in marine ship mon-
itoring, but in areas where ships are densely distributed,
the detection accuracy of the current methods is still
limited. This article considered the LJ1-01 data as an
example, compared with the National Polar-orbiting
Partnership (NPP)/Visible Infrared Imaging Radiometer
Suite (VIIRS) data, and explored the application of high-
resolution nighttime light images in marine ship detec-
tion. The radiation values of the aforementioned two
images were corrected to achieve consistency, and the
interference light sources of the ship light were filtered.
Then, when the threshold segmentation and two-para-
meter constant false alarm rate methods are combined,
the ships’ location information was with obtained, and
the reliability of the results was analyzed. The results
show that the LJ1-01 data can not only record more
potential ship light but also distinguish the ship light
and background noise in the data. The detection
accuracy of the LJ1-01 data in both ship detection
methods is significantly higher than that of the NPP/
VIIRS data. This study analyzes the characteristics,
performance, and application potential of the high-
resolution nighttime light data in the detection of marine
vessels. The relevant results can provide a reference for
the high-precision monitoring of nighttime marine ships.

Keywords: LJ1-01, NPP/VIIRS, nighttime light remote
sensing, marine ship detection

1 Introduction

With the accelerated development and utilization of
marine resources, marine vessels sail more and more
frequently. In addition to the existence of reefs on the
sea, there are also a large number of oil and gas
extraction platforms, small icebergs, etc., and hence, the
navigation of marine ships faces many hidden safety
risks. Although there are many methods for monitoring
ships at sea, such as optical and synthetic-aperture radar
(SAR) remote sensing images [1–3]. However, the optical
remote sensing image cannot detect the ship at night.
While the SAR image has the characteristics of all-
weather and all-day imaging, the method has large data
volume and high cost, which makes it lack of universal
ship recognition capabilities in large-area sea areas [4,5].
Therefore, there are still many limitations in the
monitoring of marine vessels, especially the lack of
monitoring means for marine vessels at night. Based on
the current research, the search for more diverse
methods of marine vessel extraction is of great sig-
nificance for the safety monitoring of marine vessels.

With the development of nighttime light remote
sensing data study, researchers have generally found
that it can effectively reflect the characteristics of the
human spatial activity [6,7]. It has been widely used in
urban time and space dynamic analysis, population
spatialization, power consumption, and GDP spatializa-
tion [8–11]. In addition, nighttime light data also show
strong application potential for ship identification and
fishery resource management. In the early days, night-
time light data obtained by the US Air Force’s Defense
Meteorological Satellite Program Operation Line Scan-
ning System (DMSP/OLS) provide the lighting informa-
tion about the fishing fleet [12,13]. However, due to the
limited resolution of the data, its identification for ships
can achieve only a rough estimate. Recent studies have
found that nighttime light data obtained by the Visible
Infrared Imaging Radiometer Suite (VIIRS) equipped
with the Suomi National Polar-orbiting Partnership
Satellite (NPP) enables the management of fishery
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resources and the identification of marine vessels [14–17].
Compared to DMSP/OLS data (resolution 2.7 km), SNPP/
VIIRS nighttime light data (resolution 740m) have a higher
resolution and can more accurately identify the light
generated by the fishing activity of the ship [18,19].
However, the accuracy of these data onto independent
ship detection is still limited. In the sea area where ships are
densely distributed, it is difficult to meet the more precise
nighttime distribution monitoring of ships. Besides, the
Automatic Identification System of ship positions provides
real-time position dynamic information of ships at sea,
which provides a significant guarantee for ship safety
monitoring. However, for ships that do not have the system
installed, such as offshore fishing vessels, illegally invaded
ships, and small transport ships, monitoring cannot be
achieved [20–22]. Therefore, exploring more efficient and
more refined monitoring methods for nighttime marine
vessels has become the current main goal [23,24].

On June 2, 2018, the LJ1-01 nighttime lights remote
sensing satellite developed and produced by the team of
Wuhan University of China was successfully launched
and operated stably. The LJ1-01 is capable of imaging the
entire world in 15 days with a resolution of 130m. These
data show a higher application potential compared to the
existing nighttime light data. Jiang et al. [25] analyzed the
LJ1-01 nighttime light data to investigate the potential for
light pollution and found that the LJ1-01 data can detect a
higher dynamic range and capture finer details of the
artificial nighttime light. Li et al. [26] used the LJ1-01
nighttime light data for mapping urban extent and found
that the data can greatly improve the accuracy of urban
extent extraction. Zhang et al. [27] analyzed the potential
of LJ1-01 nighttime light data to model socioeconomic
parameters and compared it with VIIRS data and found
that the former data provided better socioeconomic
parameter modeling potential. High-resolution nighttime
light images have shown excellent development potential
in many fields, but there is still a lack of relevant research
in the detection of nighttime marine ships.

This study applies LJ1-01 nighttime light data for
detection of ship and analysis in Beibu Gulf. It aims to
explore the application of high-resolution nighttime
light data in the detection of marine ships at night by
comparing the characteristics of high-resolution and
traditional nighttime light images (VIIRS data) in marine
ship monitoring. This article first introduces the research
materials and methodology in Section 2 and then
analyzes the results of data preprocessing and ship
detection in Section 3, and finally discusses and
summarizes in Sections 4 and 5. The results of this
research will help to solve the problems of safety

monitoring at night in high-density areas of ships, as
well as navigation planning, illegal fishing fleet tracking,
and illegal intrusion monitoring of sea areas.

2 Materials and methodology

2.1 Research area and data

2.1.1 Research area

This study selected the northeastern part of the Beibu Gulf
as the study area (19.40° N-21.92° N, 107.92° E-110.16° E)
(Figure 1). It is located between China and Vietnam,
surrounded by land on three sides, with an average water
depth of 42 m and a maximum depth of more than 100m.
Affected by tropical and subtropical climates, the average
annual temperature is above 20°C (68°F). The northeastern
part of the Beibu Gulf forms a semi-enclosed sea area,
which facilitates the accumulation of fish stocks, making a
large number of fishing fleets in the area [28]. Also, the
Beibu Gulf area contains many large ports and shipping
routes, and it is a gateway for cargo to the southwest and
south China. Among them, Fangcheng Port is the shortest
voyage port frommainland China to Southeast Asia, Africa,
Europe, and Oceania. It is one of the China’s major coastal
ports and has navigation to more than 100 countries and
regions in the world [29]. Therefore, there are often a large
number of different types of ships in the Beibu Gulf area.
Selecting this area as a research area can avoid the
contingency of ship detection results and facilitate the
comparison of experimental results.

2.1.2 Research data

The research data mainly include LJ1-01 and VIIRS night-
time light remote sensing images. LJ1-01 nighttime imagery
is provided by the Hubei Province High-resolution Earth
Observation System Data and Application Network (http://
59.175.109.173:8888/app/login_en.html). The VIIRS imagery
is downloaded from the National Oceanic and Atmospheric
Administration (NOAA) Comprehensive Large Array-Data
Stewardship System (https://www.avl.class.noaa.gov/saa/
products/welcome). As presented in Table 1, the main orbit
parameters of the two satellites are shown.

In the currently published data set, we collected
data for three different dates in the study area. For each
image on a different date, the LJ1-01 and VIIRS images
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were taken on the same night. The reason for choosing
these image data is that they all contain a large number
of densely distributed ship lights, which is conducive to
determine the reliability of ship detection results. We
have numbered them according to the source of the
image data and the release date (for example, the image
number of LJ1-01 on September 4, 2018, is LJ_20180904)
for easy distinction (Figure 2).

2.2 Data preprocessing methods

2.2.1 Radiation value correction

Due to the differences in sensors, the radiation values
in the original nighttime light images of VIIRS and

LJ1-01 were saved in different ways. Among them,
the original VIIRS data adopted a very small value (1E-
9) to record more faint lights. Therefore, to facilitate
the use of data, the radiation values in the VIIRS
images need to be enlarged first and calculated as
follows:

= ×R DN 10V V
9 (1)

where DNV is the original pixel value of the VIIRS image,
and RV is the radiation value of the corrected VIIRS
image; the unit is nW/(cm2 sr).

Similarly, when the LJ1-01 satellite collects nighttime
light data, to facilitate storage, it adopts a method of
enlarging the floating-point pixel value by 1E10 times
and then converting it to an integer type for storage.
Therefore, it is necessary to correct the data before using
it as follows:

Figure 1: Schematic diagram of the study area.

Table 1: LJ1-01 and NPP-VIIRS satellite orbit parameters

Satellites Orbit type Orbit height (km) Orbit inclination (°) Orbit period (min) Descending node time (UT)

NPP-VIIRS Solar synchronous orbit 824 98.70 102 13:30 pm
LJ1-01 Solar synchronous orbit 645 98.04 98 2:30 am
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= ×

/ −L DN 10L
3 2 10 (2)

where DNL is the original pixel value of the LJ1-01 image;
L denotes the corrected LJ1-01 image radiation value and
the unit is W/(m2 sr µm).

Comparing the corrected image radiation values of
VIIRS and LJ1-01, it can be found that the units of the
two are not consistent. To unify the radiation value units
of the LJ1-01 and VIIRS images, the radiation value of the
LJ1-01 image is converted as follows:

= × ×L L B 10V
9 (3)

where B is the LJ1-01 satellite bandwidth and the value is
5.2 × 10−7 m [30], LV is the converted to LJ1-01 image
radiation value, and the unit is the same as the VIIRS
image radiation value (nW/(cm2 sr)).

2.2.2 Masking nearshore lights and filtering gas flares

Generally, there are three types of light sources on the
sea, one is ship light and the other two are islands and

offshore oil and gas extraction platforms [31]. Because
architectural lights on islands or near shores and light
sources generated by offshore oil and gas exploitation
are very similar to ship lights, to avoid the effects of the
two kinds of stray light on ship detection results,
corresponding methods need to be used to filter them.

For offshore oil and gas platform light sources (gas
flares), the detailed location of these light sources is
recorded in the daily global VIIRS night-fire detection
data provided by NOAA/NCEI (https://www.ngdc.noaa.
gov/eog/viirs/download_viirs_fire.html). These data will
be used to filter the combustion source (gas flares) in the
LJ1-01 and VIIRS images detection results. The specific
filtration process of the combustion source is shown in
Figure 3. First, the grid with the largest radiation value
near it was searched based on the position of the light
source point (Figure 3a) and marked as the center of the
light source (Figure 3b). Then, grids near the light source
center that are larger than the gas flare threshold are
searched and assigned the radiation values of to 0
(Figure 3c) to achieve the effect of filtering the gas flare.

Figure 2: LJ1-01 and VIIRS nighttime light data. (a) LJ1-01 image on September 4, 2018; (b) LJ1-01 image on September 20, 2018; (c) LJ1-01
image on February 15, 2019; (d) VIIRS image on September 4, 2018; (e) VIIRS image on September 20, 2018; and (f) VIIRS image on
February 15, 2019.
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Since the radiation value of the gas flare is very similar to
that of the ship lights, the setting of the gas flare
threshold is consistent with the ship light threshold.

Besides, due to the overglow effect of the light [32],
architectural lights on islands and city lights near the
coast will extend 0–2 km to the sea surface. This part of
the light will seriously affect the judgment of the ship
lights, and hence, before the experiment, a buffer is built
on the original land vector boundary to cover the
nearshore lights and island building lights.

2.2.3 Marking valid ships

Based on the preprocessed images, the effective ship’s
position in the images is manually marked for the accuracy
verification data of the ship detection results. The spatial and
radiance resolution of the LJ1-01 and VIIRS images are
different, resulting in differences in the number of ships
recorded in these two types of images. Therefore, the ship
lights in the aforementioned two types of images are marked
separately to achieve a fair comparison of the detection
results. These manually marked ships will be used as
verification data for ship detection results. Through the
appearance and radiation characteristics of the lights in the
LJ1-01 and VIIRS images, the ship’s target can be effectively
judged [15]. Figure 4 shows the ship’s lights characteristics of
LJ1-01 and VIIRS nighttime light images. It can be seen that
the appearance of the ship lights in the LJ1-01 image (Figure
4a) has a clear outline and is significantly different from
noise. Therefore, the combination of the appearance of the
ship’s lights and the characteristics of the radiation value
(Figure 4b) can completely identify the ship in the image. On
the contrary, the appearance of a small number of ship lights
in the VIIRS image (Figure 4c) is relatively blurred, but it can

be still effectively identified in combination with the
characteristics of the radiation value (Figure 4d).

2.3 Ship detection methods

2.3.1 Threshold segmentation (TS) method

The TS method is the most commonly used target
detection method, which is easy to implement and has
certain practicability [33]. This article regards it as one of
the ship detection methods. On the one hand, it can be
used to compare the effects and characteristics of the
aforementioned nighttime light images in different ship
detection methods. On the other hand, the threshold
value obtained by the TS method will also be used for
the filtering of offshore gas flares (see Section 3.1.2).

Before using the TS method for ship detection, it is
necessary to define the threshold of the division. After a
preliminary analysis of the radiation values of the LJ1-01
nighttime light images, we determined that the threshold
is between 0 and 20. The threshold was then tested using
the dichotomy. After comparing the large amount of data,
the segmentation threshold of ship lights in the LJ1-01
images was finally determined to be 7.2 nW/(cm2 sr)
(Figure 5a). According to the aforementioned method, it
is determined that the segmentation threshold of ship
lights in the VIIRS images is 18.6 nW/(cm2 sr) (Figure 5b).

2.3.2 Two-parameter constant false alarm rate (TP-
CFAR) method

Among the many methods of marine ship detection,
CFAR is a relatively excellent and commonly used

Figure 3: Gas flare light source filtering process. (a) Gas flare radiation intensity and light source coordinates; (b) mark light source center;
and (c) filter gas flare light.
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algorithm [34–36]. With the development of research,
the CFAR algorithm is gradually combined with machine
learning methods such as convolutional neural networks
and support vector machines, which further optimize the
detection results [37–39]. According to the characteris-
tics of the detected data, many scholars have also
designed CFAR detectors based on cell averaging,
greatest-of selection, smallest option, ordered statistics,
etc. [40–43]. However, due to the interference of clouds,

aurora, moonlight, and other light, the noise character-
istics in nighttime light images vary greatly. Therefore,
for large-scale and even worldwide images, the afore-
mentioned CFAR ship detection method based on the
global analysis cannot meet the demand.

As a classical algorithm, the TP-CFAR method is
widely used in the research related to ship detection.
This article combines it with nighttime light data to
explore the application of high-resolution nighttime

Figure 4: Characteristics of ship lights. (a) Appearance of ship lights in LJ1-01 image; (b) radiation value of ship lights in LJ1-01 image;
(c) appearance of ship lights in VIIRS image; and (d) radiation value of ship lights in VIIRS image.

Figure 5: The TS method of ship lights. (a) Horizontal view of ship lights in the LJ1-01 image and (b) horizontal view of ship lights in the
VIIRS image.
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light remote sensing images in marine vessel detection at
night. The method assumes that the background noise
conforms to the Gaussian distribution model and uses
three independent windows to accommodate the change
in noise (Figure 6) [44,45]. The protection window is also
called a hollow window. The purpose of setting this
window is to separate the target from the background
noise and to ensure that the area (background window)
used for statistical background noise characteristics does
not contain a valid target. There is also a target window
in the protection window, and the target window is used
to traverse the grid inside the protection window to
detect the target. The size of each window depends on
the size of the ship’s lights target in the image. The width
of the target window is generally the width of the
smallest ship, the width of the protection window is
slightly larger than the width of the largest ship, and the
width of the background window is twice the width of
the protection window [46].

In the target window, the radiation value is
compared with the threshold to determine whether the
radiation value is a valid target. The size of the threshold
can be determined by the probability density function of
the background noise and the false alarm rate.

∫− = ( )P f x x1 dt

T

0

(4)

where Pt is the false alarm rate, T is the detection
threshold, and f(x) is the background noise probability

density function. The background noise in the nighttime
light data usually conforms to the log-normal distribu-
tion [47], and the method is shown in equations (5)–(7):
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where μb is the background noise mean, σb is the
background noise standard deviation, and N is the
number of pixels in the protection window.

Among the aforementioned parameters, Pt requires
artificial settings. Generally, when the TP-CFAR method
is used for ship detection in SAR images, Pt is set to be
between 1 × 10−3 and 1 × 10−6 [48,49]. Because of the
difference between nighttime light images and SAR
images, this article tested the two types of nighttime
light images using the TP-CFAR method, and finally, the
false alarm rate is set to 1 × 10−5. Then, the target is
determined according to the detection threshold:

=

( ) − ≥

<

R
x μ

σ
T
T

ln ¯ ,SHIP
,NOISE

i b

b





(8)

where R is the detection result and x̄i is the average
radiation value in the ith target window.

3 Results

3.1 Results of nighttime light images
preprocessing

3.1.1 Comparison of radiation value characteristics

After the radiation value correction process, the LJ1-01
and VIIRS nighttime light data have a unified unit. This
is conducive to the fair comparison of the aforemen-
tioned two types of data to analyze the characteristics of
high-resolution nighttime light data in ship detection.
This article categorizes all the radiation values in the
corrected LJ1-01 and VIIRS images and arranges them
from small to large. On this basis, after analyzing the two
data, it is found that the LJ1-01 image not only has a
higher radiation range than the VIIRS image but also has
a higher resolution of the radiation value (Figure 7). In

Figure 6: Working principle of the TP-CFAR method.
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the image taken during the same time, the radiation
values in the VIIRS data are mainly distributed between
3 and 7 nW/(cm2 sr), while the radiation values in the
LJ1-01 data are mainly distributed between 0 and 3 nW/
(cm2 sr). In addition, in the same radiation value
interval, there are 46,723 kinds of radiation values of
different sizes in the VIIRS image, while there are
3,06,850 kinds in the LJ1-01 image, which is 6.57 times
the former. The analysis shows that, compared with the
VIIRS image, the radiation value in the LJ1-01 image is
concentrated at a lower level and has a more detailed
spatial distribution, which is more conducive to distin-
guish ship lights and background noise.

3.1.2 Analysis of filtering results of nearshore lights
and gas flares

From the VIIRS night-fire detection data provided by
NOAA, we found that the study area contains five
offshore oil and gas exploration combustion sources.
Related location information is presented in Table 2.

According to the coordinates of these gas flares and the
corresponding threshold values, the results of filtering
the gas flare light in the LJ1-01 and VIIRS images are
shown in Figure 8a and b. Figure 8a shows two very
close gas flare light sources, and the coordinate positions
correspond to points 4 and 5 in Table 2, respectively. As
shown in Figure 8b, the method provided in this article
can effectively filter the radiation value of the gas flare
and has little effect on other light sources.

Besides, as shown in Figure 8c, after being covered
by the land mask, a few nearshore building lights are
still exposed. By setting the nearshore and island buffer
zones, these light radiations can be effectively covered,
and the results are shown in Figure 8d.

3.1.3 Valid ship marking results

The effective ship marking results are shown in Figure 9,
where the green vector dots represent the position of the
vessel. Figure 9a–c represents the distribution of ships in
LJ1-01 images on different dates; and Figure 9d–f shows
the distribution of ships in VIIRS images on different
dates. It can be seen from the figure that the ship’s
distribution in the two images on the same date is very
similar, indicating that most ship lights can be recorded
by nighttime light images with different resolutions.
However, in the LJ1-01 images, the number of valid ships
is more than the VIIRS images, with an average of 108
more ships per image.

According to the data analysis results (see Section
4.1.1), the LJ1-01 image has a stronger light recognition
ability than the VIIRS image. Therefore, the LJ1-01 image
can record more ship lights, and these lights are very

Figure 7: Radiation value distribution characteristics. (a) VIIRS image and (b) LJ1-01 image.

Table 2: Related parameters of gas flares in the study area

Points Lat Lon T (degrees K) RHI (W/m2)

1 20.678520 108.681686 1649 1.1723
2 20.814327 108.711853 1778 0.9948
3 20.821079 108.712738 1763 1.3482
4 20.817251 108.895042 1648 13.9078
5 20.814484 108.895042 1710 12.4793

Note: T is the IR-source temperature assuming blackbody source;
RHI is the IR-source radiant heat intensity.
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weak or invisible in the VIIRS image. The aforemen-
tioned analysis unilaterally shows that more potential
ship lights can be identified in the high-resolution
image, but it cannot represent that the image has better
detection accuracy in the automatic detection method.
Based on this, the valid ship marking results shown in
Figure 9 will be used as the standard data to verify the
accuracy of different nighttime light data in the ship’s
automatic detection methods.

3.2 Ship detection results

By using the corrected LJ1-01 and VIIRS nighttime light
images and standard ship marking results (Figure 9),
this section analyzes the detection characteristics of
these two nighttime light images in different ship
detection methods. Figure 10 shows the detection results
using the TS method. Figure 10a and c shows the
detection results of ship lights in LJ1-01 and VIIRS
images, respectively. It can be seen that the coverage
area of the ship light detection results of the LJ1-01
images is significantly smaller than that of the VIIRS

images, but the ship lights of the LJ1-01 images show
richer details. The main reason is that the LJ1-01 data
have a higher resolution, and the coverage area of a
single-pixel is smaller, making the detection result more
detailed. Besides, Figure 10b and d shows the classifica-
tion of the ship detection results. It can be seen that the
number of correct detected ships (green dots) in the LJ1-
01 images is significantly more than that in the VIIRS
images; the number of missed detection ships (yellow
dots) is equivalent. However, compared with the VIIRS
images, there are also more false detection results (red
dots) in the LJ1-01 images.

Figure 11 shows the results of the ship detected using
the TP-CFAR method. Judging from the detection results
of ship lights, the results in the LJ1-01 images (Figure 11a)
are significantly smaller than the VIIRS images
(Figure 11c), which is consistent with the TS method
detection results. However, it can be seen from the
classification of the results that there is a significant
difference in the detection accuracy between the two
types of images. In the LJ1-01 images detection results
(Figure 11b), a large number of correct detection results
(green dots) and a small number of missed detection
results (yellow dots) can be observed, but there are also

Figure 8: Filtering results of nearshore lights and gas flare. (a) Location of gas combustion source; (b) filtering results of gas flare light;
(c) nearshore lights; and (d) nearshore buffer zone.
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a small number of false detection results (red dots). In
the VIIRS images detection results (Figure 11d), except
for a small number of false detection results, the correct
detection results are significantly less and are accom-
panied by a large number of missed detection results.

Combined with the aforementioned, Figure 12 and
Table 3 present the quantitative evaluation results of the
ship detection accuracy of the two types of images using
the TS and TP-CFAR methods. Analyzing the detection
results of the TS method, it is found that the correct
detection rate of ships in the LJ1-01 images on different
dates is all higher than that of the VIIRS images, and it
has a lower missed detection rate, but the false detection
rate is slightly higher than that of the VIIRS images. In
addition, by comparing the detection results of the TP-
CFAR method, it can be found that the correct detection
rate of the ship in the LJ1-01 images is significantly
higher than that of the VIIRS images, and it has a lower
false detection rate. The aforementioned results indicate
that no matter which method is used, the accuracy of
ship detection using the LJ1-01 data is higher than that of
the VIIRS data (Table 3). Among them, when using the
TS method, the correct detection rate of the ship in the

LJ1-01 images is 10.59% (mean) higher than the VIIRS
images; when using the TP-CFAR method, the former is
19.38% (mean) higher than the latter.

Besides, Figure 12 shows that using the TS method to
detect ships in the VIIRS images seems to have a better
effect than using the TP-CFAR method, while the LJ1-01
images are the opposite. The main reason is that the TP-
CFAR method requires a certain number of pixels to fitting
the relevant parameters of the distribution function when
detecting ships. In low-resolution images, there are far fewer
pixels available for detection between adjacent ships than in
high-resolution images, resulting in lower accuracy of the
fitted parameters. Although there is no such problem when
using the TS method to detect ships, this method will also
bring a higher false detection result while ensuring the
correct detection rate of the ship. It can be speculated that
compared with the traditional nighttime light data, the high-
resolution nighttime light data will have better adaptability
in the smarter ship detection algorithms. In summary, the
LJ1-01 nighttime light data can not only record more
potential ship lights but also have higher accuracy in ship
detection algorithms, which has great application potential
in nighttime marine ship detection.

Figure 9: Valid ship marking results. (a–c) Effective ships in LJ1-01 images and (d–f) effective ships in VIIRS images.
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4 Discussion

The use of nighttime light remote sensing data to
monitor marine vessels is a novel topic. The nighttime
light remote sensing technology has a unique night
imaging capability, which can overcome the problem
that traditional daytime remote sensing images cannot
monitor targets at night. Although there have been
application studies of nighttime light data in the
monitoring of marine vessels at night, the detection
accuracy is still limited in the sea area where ships are

densely distributed. Based on the LJ1-01 nighttime light
images, this study explores the application of high-
resolution nighttime light data in marine vessel detec-
tion at night and compares it with the current
commonly used VIIRS nighttime light images. After
the unified correction of the radiation value, the gas
flare search method and the nearshore mask were
designed to filter the offshore oil and gas exploration
combustion sources and nearshore or island-building
lights in the two types of images. Finally, combined
with the TS and TP-CFAR methods, the spatial location

Figure 10: Detection results using the TS method. (a) Ship lights detection results in the LJ1-01 images; (b) detection result classification in
the LJ1-01 images; (c) ship lights detection results in the VIIRS images; and (d) detection results classification in the VIIRS images.
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information of ships in the Beibu Gulf area was
obtained.

In the research of using nighttime light remote
sensing images to detect marine ships, it is usually
believed that higher resolution will naturally bring better
detection results. But the premise of this result is that
there is no noise or the same noise conditions in the two
types of images. In fact, higher resolution usually also
brings more prominent noise distribution, and these
noises include outlier noise, background noise, and
high-energy noise [50,51], which make the ship

detection results to have many uncertainties. This study
found that, compared with the low-resolution data, LJ1-
01 high-resolution nighttime light data can record more
potential weak ship lights, but also accompanied by
some sharper noise. When the LJ1-01 data are processed
using the TS method, more false detection results were
displayed. In the TP-CFAR method, the false detection
results are relatively reduced. However, compared with
the VIIRS data, the accuracy of using LJ1-01 data to
detect ships in both methods has been significantly
improved, especially in the sea area where ships are

Figure 11: Detection results using the TP-CFAR method. (a) Ship lights detection results in the LJ1-01 images; (b) detection results
classification in the LJ1-01 images; (c) ship light detection results in the VIIRS images; and (d) detection result classification in the VIIRS
images.
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densely distributed. However, this study still has some
limitations. Due to the lack of actual data of the ship’s
position, this article uses the preprocessed nighttime
light images to manually mark the effective ship
position, and hence, the verification of data may have
slight errors. Moreover, this article only compares two
relatively typical ship detection algorithms, and the
accuracy will be reduced compared to the more intelligent
detection algorithms. Nevertheless, this article can
still provide a reliable reference for the application
exploration of high-precision nighttime marine vessel
detection.

High-resolution nighttime light data play an
important role in the safety monitoring of high-density
ship areas and have significant application potential in

channel planning, tracking of illegal fishing fleets, and
monitoring of illegal invasions in sea areas [52]. Also,
with the further development of the high-resolution
nighttime light remote sensing technology, more high-
resolution nighttime light data are gradually available
[53–55], which will make the application of night marine
ship detection more reliable. In the future, it can also
integrate diversified high-resolution remote sensing
images to achieve all-weather and high-precision ship
monitoring, which will be the main goal of the
further work.

5 Conclusion

Based on LJ1-01 high-resolution nighttime light data,
this article compares the currently commonly used VIIRS
data and combined the TS and TP-CFAR methods to
explore the characteristics, performance, and applica-
tion potential of high-resolution data in marine ship
detection.

The analysis of the data shows that the LJ1-01
nighttime light image has a higher radiation range and a
higher resolution of the radiation value. It can record
more potential ship lights, and the ship lights and
background noise in the image are more accessible to
distinguish. In addition, for the interference of offshore
oil and gas burning light sources and nearshore
architectural lights on ship detection, the gas flare
filtering method and buffer zone designed in this article
can effectively filter them and has a little effect on other
light sources. Ship detection results show that the
accuracy of ship detection using the LJ1-01 data is

Figure 12: Accuracy assessment of ship detection results.

Table 3: Quantitative results of ship detection accuracy

Methods Images Number of standard
ships

Correct detection results Missed detection results False detection results

Number Proportion (%) Number Proportion Number Proportion (%)

TS LJ_20180904 587 490 83.48 97 16.52% 82 13.97
LJ_20180920 320 263 82.19 57 17.81% 76 23.75
LJ_20190215 468 372 79.49 96 20.51% 64 13.68
VIIRS_20180904 478 348 72.80 130 27.20% 44 9.21
VIIRS_20180920 240 165 68.75 75 31.25% 40 16.67
VIIRS_20190215 332 243 73.19 89 26.81% 61 18.37

TP-CFAR LJ_20180904 587 476 81.09 111 18.91% 84 14.31
LJ_20180920 320 265 82.81 55 17.19% 29 9.06
LJ_20190215 468 399 85.26 69 14.74% 23 4.91
VIIRS_20180904 478 306 64.02 172 35.98% 31 6.49
VIIRS_20180920 240 158 65.83 82 34.17% 32 13.33
VIIRS_20190215 332 201 60.54 131 38.46% 57 17.17
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significantly higher than that of the VIIRS data. Among
them, when using the TS method, the correct detection
rate of the ship in the LJ1-01 images is 10.59% (mean)
higher than the VIIRS images; when using the TP-CFAR
method, the former is 19.38% (mean) higher than the
latter.

This study considered the LJ1-01 data as an example
and achieved the refined detection of nighttime marine
vessels, which is of prominent significance to the safety
management of marine ships. Moreover, comparing the
characteristics of high-resolution and low-resolution
nighttime light data in ship detection and providing
corresponding data preprocessing methods can provide
a significant reference for the application of high
precision nighttime marine ship detection.
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