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Abstract: The integrated study of seismic attributes and
inversion analysis can provide a better understanding for
predicting the hydrocarbon-bearing zones even in extreme
heterogeneous reservoirs. This study aims to delineate and
characterize the gas saturated zone within the reservoir
(Cretaceous C-sand) interval of Sawan gas field, Middle
Indus Basin, Pakistan. The hydrocarbon bearing zone is
well identified through the seismic attribute analysis along
a sand channel. The sparse-spike inversion analysis has
efficiently captured the variations in reservoir parameter (P-
impedance) for gas prospect. Inversion results indicated
that the relatively lower P-impedance values are encoun-
tered along the predicted sand channel. To further
characterize the reservoir, geostatistical techniques com-
prising multiattribute regression and probabilistic neural
network (PNN) analysis are applied to predict the effective
porosity of reservoir. Comparatively, the PNN analysis
predicted the targeted property more efficiently and applied
its estimations on entire seismic volume. Furthermore, the
geostatistical estimations of PNN analysis significantly
predicted the gas-bearing zones and confirmed the sand
channel as a major contributor of gas accumulation in the
area. These estimates are in appropriate agreement with
each other, and the workflow adopted here can be applied
to various South Asian regions and in other parts of the
world for improved characterization of gas reservoirs.
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1 Introduction

From the last few decades, advancements have been seen
in hydrocarbon exploration through the invention of prolific
geophysical interpretation techniques for hydrocarbon
identification [1-3]. Among the various seismic interpreta-
tion methods, seismic attribute analysis has proven to be
the most beneficial technique to detect the reservoir
structural and stratigraphic variations away from the well
[4]. Seismic attributes are basically any measured informa-
tion derived by either direct measurements or logical
reasoning from the seismic data [5]. The 3D seismic
attribute analysis is used to map features from basin to
reservoir scale that enhances the spatial prediction of
reservoir properties from the seismic data [6,7]. These
attributes generate strong reflection coefficient along the
lithological interfaces, indicating the bright spots that are
usually associated with hydrocarbon (gas) accumulation in
sandy reservoir [8,9].

However, besides this, the analyst does not merely rely
on the seismic attribute analysis and attempt to enhance
the interpretation resolution by inversion of given seismic
data to any other reservoir property. Poststack seismic
inversion is one of the advanced geophysical techniques
that can enhance the interpretation accuracy and has the
ability to estimate subsurface rock and fluid models of
varying physical characteristics [10]. In the current study,
the poststack inversion technique based on the linear
programming sparse-spike algorithm is used to obtain full
band acoustic impedance (P-impedance) cube. The algo-
rithm of sparse-spike inversion is very vigorous and
commonly used to generate the Earth’s P-impedance from
the 3D seismic data cube with minimum number of spikes
to obtain the absolute subsurface information [11,12]. The
postinversion results can be processed further through
geostatistical methods to predict reservoir parameters such
as lithology, porosity, and fluid saturations in the inter-well
region [12-15]. In addition, the statistical methods aim to
search the linear or nonlinear operator that can predict
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well-logs from the neighboring seismic data. These methods
enhance the prediction power by analyzing the nonlinear
seismic attributes away from the wells along with the low-
resolution seismic reflection data [13].

In the recent studies, Indus Basins of Pakistan have
been extensively evaluated for hydrocarbon potential and
petroleum prospects [16-18]. The authors investigated that
the widely distributed reservoir unit in lower and middle
Indus Basins is the Lower Goru Formation of Cretaceous
age. Despite the reservoir unit is distributed widespread in
the area, it has heterogeneous intrinsic properties and
variable thickness due to diverse depositional environment.
Moreover, the sand of reservoir unit appears as the
composite reflection on conventional seismic amplitude
data due to intercalations of shale beds, resulting in
originating obscurity in the seismic data interpretation
[19,20]. Therefore, it is necessary to discriminate the
interbedded shale layers from sand bodies, and the
objective could be achieved by improving the resolution
of the seismic data. Multiple studies attempted previously
to characterize the reservoir unit based on petrophysical,
rock physical and seismic interpretation [20-22]. A recent
study by Ali et al. [23] evaluated the reservoir properties of
Lower Goru Formation using different poststack inversion
algorithms, and another recent study by Ashraf et al. [24]
carried out the electrofacies classification using the 3D
seismic attribute analysis, but none included essential
integrated study of 3D seismic attributes and poststack
inversion analysis with efficiency of geostatistical methods
for predicting the promising reservoir feature (gas sand
channel) in the area.

This study aims to delineate and characterize the gas
resource potential within the reservoir interval of the study
area using the 3D seismic attribute analysis and poststack
inversion technique along with the geostatistical methods.
Moreover, to predict the reservoir feature like sand channel
that majorly takes part in hydrocarbon accumulation and
improves the resource potential. The data used for the
interpretative analysis comprised a 3D seismic cube and
wireline logs of four wells (Sawan-01, Sawan-07, Sawan-08
and Sawan-14) from the study area of Sawan gas field,
Middle Indus Basin, Pakistan (Figure 1).

2 Structural and stratigraphic
evolution of the region

The study region of Sawan gas field is a part of Middle
Indus Basin of Pakistan, covering the hydrocarbon
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producing Formation of Cretaceous age (Lower Goru). The
study area was discovered in 1997 and located 300 km
north-east of Karachi in Thar Desert within Khairpur District
of Sindh province [25]. The prolific reservoir unit of Lower
Goru Formation is the C-sand interval with approximately
103m thickness at the average depth interval of
3,000-3,500 m in the area [26].

The study area is bounded by several structural highs
and lows within the tectonically controlled basement of
the Precambrian age [27]. The Jacobabad—Khairpur and
Mari—Kandhkot highs cover the southern and Sargodha
High covers the northern side of the study area (Figure 1).
The Indian Shield and Kirthar range bound the area from
eastern and western sides, respectively [18]. The horst
structure of Jacobabad-Khairpur high divided the Indus
Basin into Central and Southern Basins and Sawan area
is situated on the southeastern flank of Jacobabad-
Khairpur high. The uplifting of Jacobabad—-Khairpur high
significantly developed the structural traps of reservoir
quality in Sawan area and in other adjacent exploration
fields during the Cretaceous time [18,28].

The regional tectonic and stratigraphic information
revealed that the Paleogene uplifts of Ranikot Formation
were initially encountered as pinch-out with Jacobabad-
Khairpur high. The existence of carbonates and asso-
ciated marls indicated the development of complex
basinal and subbasinal paleo-topography during the
early Eocene epoch and latterly filled with the Gazih
Shale [27,28].

The tectonic collision of Indian and Eurasian plates
had contributed in the formation of deep basement-
rooted and shallower wrench faults in the area passing
through the whole Cretaceous sequence [29,30]. The
crustal thrusting developed the forebulge of paleo-highs
during the Mesozoic and Tertiary periods in the north-
west parts of the study area, and this was the last
episode of hydrocarbon migration and trap formation in
the Lower Indus Basin [28]. The stratigraphic sequence
(Jurassic to Quaternary age) ranging from Chiltan lime-
stones at the base to alluvial rocks at the top covers in-
between the Sembar and Lower Goru Formations of
Cretaceous age. The Sembar Formation is a proven
source rock of Indus Basin and mainly comprised black
shale with minor filling of sandstone, argillaceous
limestone and dark siltstone [31]. The Sembar Formation
is thermally mature due to its deep burial from western
edge and less mature and comparatively shallower from
eastern edge in the Indus basin with variable thickness
ranging from O to 260 m [32]. The tectonic uplifting of
Jacobabad-Khairpur high developed the favorable
depositional scenario for the main reservoir unit; the
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Figure 1: The study area of Sawan gas field is highlighted on the regional structural map of Pakistan (modified after Anwer et al. [20]) along

with the base map.

proximal reservoir sand was accumulated in deep
structural areas, whereas nonreservoir shale layers
were positioned up-dip in the distal side to develop the
major trap for hydrocarbon accumulation [33,34]. The
Lower Goru member of Goru Formation covered the
Sembar Formation and was considered as the major
reservoir unit of the study area [35]

The sequence of Sembar—Goru Formations has various
progrades passing from shallow distal to proximal facies
[34]. The composition of Lower Goru Member from upper
side is mainly shales, whereas it comprises medium to
coarse-grained sandstones with thin layers of limestone
and shale from its lower part. The subordinate portion of
the reservoir interval can be classified into distinct sand
intervals: A, B, C and D intervals (Figure 2). Petrographi-
cally, A and B intervals have mostly quartz-rich arenites,
whereas the major portion of D-interval consists of black
shales. The C-sand interval mostly comprises pore lining
iron chlorite cement and partially altered volcanic rock
fragments. The sands of the C-sand interval can be
classified as sublitharenites, lithic arkoses and litharenites,
whereas other diagenetic components include carbonates,
glauconite quartz cement and chlorite cement [35]. The
C-sand interval covers the main gas reservoirs in the
research area, accommodating high average porosity of
around 17% within the depth range of 3,000-3,500 m. The
Upper Goru Member consists of reservoir transgressive
shales, siltstones and marl, which acts as a regional seal

and extend from shoreface to foreshore facies of the
prograding shoreline [34].

3 Dataset calibration and
methodology

The proposed methodology for predicting and character-
izing the gas saturated zones within the C-sand interval
of Lower Goru Formation of the study area using the 3D
seismic and wireline log data is presented in Figure 3.
The wireline log data of density (RHOB), sonic (DT),
gamma ray (GR), caliper (CALI), resistivity, spontaneous
potential (SP) and neutron porosity (NPHI) logs are used for
this study that lies within the seismic domain of study area.
An integrated method is adopted using the 3D seismic and
well-log data to establish the tie for identification of key
stratigraphic surfaces (i.e., Lower Goru, Top and Base of the
C-sand interval) on the basis of strong reflection continuity
(Figure 4a). The 3D view of the arbitrary seismic line passing
through the four wells location is displayed along with time
amplitude map of C-sand top horizon (Figure 4b). The
petrophysical analysis is carried out to transfer the wireline
log data into predictable parameters such as volume of
shale, porosity, water saturation and pay zone [36]. The
porosity of the shale is eliminated using estimated shale
volume to correctly calculate the effective porosity. The
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Figure 2: Stratigraphic chart showing the petroleum play of the study area. The principal gas-producing reservoir zone (C-sand interval) is

highlighted with red color (modified after Krois et al. [53]).

general workflow adopted for the petrophysical analysis to
quantify the reservoir parameters is presented in Figure 5.

3.1 3D seismic attributes

The attributes selected for reservoir structural and strati-
graphic evaluation are trace envelope, root-mean-square
(RMS) amplitude and sweetness. These are extracted at
constant time slice (45ms below the C-sand top horizon)
within the reservoir interval. The resultant attributes are

also displayed on the 3D map along with the corresponding
vertical section of the arbitrary seismic line.

The trace envelope of the original seismic trace is an
analytical signal and can be presented as a complex-
valued function x(t) given by the modulus at each time ¢.

E(t) = J(Re x(t))* + (Im x(t))?, ey

where Rex(t) is the real part of the analytical signal from
seismic trace and Imx(t) is the imaginary part computed
by taking Hilbert transform of the real part [37]. The RMS
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amplitude can be computed for a set of n samples s(t) = e(t) 3)

{s1, S»...sn} of stack data as the sum of square root of all
trace values x squared [38] and are presented in equation 2.

Xeme = |1 S x?
ms — n i
i=1

Sweetness s(t) can be computed by dividing the
trace envelope e(t) with the square root of instantaneous
frequency f, of the stacked seismic data [39].

2

T

3.2 Poststack inversion procedure

The poststack inversion procedure involves the synthetic
seismogram generation (wavelet estimation and well to
seismic data calibration), initial model/low-frequency
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Figure 5: The workflow adopted for petrophysical analysis in this study.

model, inversion analysis and linear programming
sparse-spike inversion.

The necessary transformation of seismic amplitudes
to impedance values in inversion can be done by the
process of convolution. The process generates the
synthetic seismic trace (S;) by convolving the estimated
wavelet with Earth’s reflectivity series [40,41], which can
be expressed as follows:

St = W x R + N, %)

where W, is the extracted statistical wavelet at a constant
phase, R; is a reflection coefficient series and N; is the
random noise. The statistical wavelet used for the
correlation between traced and inverted reflectivity
from seismic data at Sawan-08 well location is extracted
within the window length of 1,700-2,500 ms in the
seismic time domain with 200ms wavelength, and
synthetic seismogram is then generated by the convolu-
tion of the extracted statistical wavelet with reflectivity
series. The seismic data lack the low-frequency compo-
nent due to its band-limited nature, which is essential
for estimating the reservoir properties. The P-impedance
logs generated from the wells data must be added to

provide the missing frequency components (low and
high) to seismic data for realistic model building [41].
The low-frequency model of P-impedance is estimated
within the time window of 1,700-2,500ms for the
application of linear programing sparse-spike inversion
(Figure 6).

3.2.1 Linear programing sparse-spike inversion
algorithm

The low-frequency model provides the missing fre-
quency component for analysis and also constrains
the inversion results to control the nonuniqueness of
the solution. After setting the input parameters for the
inversion process, the linear programming algorithm is
applied on the input data in two steps. In the first step
of quality control (QC) test, inversion analysis is
performed between P-impedance log and extracted
composite traces that are inverted for P-impedance
around well location. In the second step, the technique
transformed the entire seismic section into P-impedance
volume.
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The inversion technique based on the linear pro-
gramming theory, which was developed by Sacchi and
Ulrych [42] and later modified by Li [11], is adopted for
this study. The purpose of inversion methodology is to
generate a series of reflection coefficients as a bulk
subsurface model. The objective could be achieved by
using seismic data (S;) and source wavelet (W;) as input
parameters and by estimating P-impedance from that
model. The relationship among the data d = (x, x5, ...,
Xn), model m = (ry, 1y, ..., I'y) and noise “n” is presented as
follows:

(©)

where L is the operator to measure the misfit between d
and m. Generally, the d is known, and the subsurface m
vector can be defined by a probability P(m|d) and can be
expressed in Bayes’ formula in equation (6):

P(dlm) x P(m)
P(d)

Im+n=d,

P(m|d) = , (6)
where P(d) is a normalization factor from prior knowledge
of data vector, P(m) is a prior knowledge of the model and P
(dlm) is a likelihood function between model and the
observations. Thus, this additional information of the prior
model is obtained from the wireline log data and is used to
estimate the difference between synthetic and seismic
traces [11]. For the model based on the posterior probability
P(m|d), we could use the maximum-a-posteriori (MAP)
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solution that maximizes the P(m|d). The objective function
Y can be obtained as follows:

Y = - log(P(ml|d)) = - log(p(dim)) - log(p(m)). (7)

As the constant term of log(P(d)) can be omitted for
simple operation, the solution can be obtained from the
maximization of objective function Y in least square
sense [11]. The prior knowledge about the model is
generally known as a global constraint S(m). Afterward,
the principle of maximum entropy can be used to
compute the prior probability [42].

Consider the continuous model parameters (m) with
the probability density function p(m). The entropy factor
h is presented as follows:

h= I P(m)log [p(m)]dm. (8)
Equation (8) gives the uncertainty associated with the
probability density function p(m). If we have available
information of global constraint S(im) for parameter (m),
then the corresponding probability distribution for
maximum entropy will be expressed as follows:

)

where A is the constant for normalization. The p(d|lm) as
a function of discrepancy between the model and the
observation in generalized version can be written as
follows:

P(m) = Ae™Sm),
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Figure 6: Low-frequency model of P-impedance estimated for the application of sparse-spike inversion.
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The solution for I;-norm or l,-norm can be estimated
if one selects p = 1 or 2 in equation (10), respectively. In
this way, error between the observation and the model
parameters can be reduced that maximizes the objective
function Y [11]. The solution of l;-norm for P-impedance
&(t) can be expressed as follows:

t
£(t) = £(0)exp ZIR(t)dt . 1)
0

From the l;-norm solution in equation (11), it can
be observed that the sparseness in R(f) may give a
blocky structure in &(t) [11,42]. The workflow followed for
linear programming sparse-spike inversion for estima-
tion of P-impedance within subsurface is displayed in
Figure 7.

3.3 Geostatistical techniques

Geostatistical methods provide linkage between petro-
physical rock properties and the seismic data. The
methods develop a statistical relationship between
seismic-derived and petrophysical properties using
linear regression approach [43]. A geostatistical ap-
proach is adopted to estimate the effective porosity
(porosity) from seismic data as internal attributes and
inversion results as external attributes. 3D time slices
from seismic attributes and estimated properties are
incorporated to better predict the lateral extend of gas-
bearing zones at the targeted depth (constant time slice)
within the reservoir interval. The geostatistical methods
applied in this study include multiattribute regression
and probabilistic neural network (PNN) analysis for
predicting the targeted rock property (porosity) of the
reservoir.

In the multiattribute analysis, numerous seismic
attributes are integrated simultaneously to estimate their
relationship with the targeted parameter by following
the linear regression approach [13]. The attributes that
give the optimal correlation with the porosity are
selected and cross-plotted to estimate the porosity
distribution for the particular time sample. Mathemati-
cally, modeling of porosity ¢(t) parameter via n number
of extracted attributes A by involving the convolutional
operator can be presented as follows:

P(t) = wo + Wi A((£) + WrAp(t) +---+ WAp(t), (12)
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where w indicates the attributes weighting factor and
can be estimated by minimizing the prediction error
between the attributes and ¢(t) as follows:

N
B - % 3 ((E) - Wo + WiAy(D) + Waky(t) +--+ Won()?(13)
i=1

The mean-squared error E* is calculated by the
solution of derived weight of attributes using the least
squares method [13]:

N ) Ay
Wo )
wi| YAy Y AL

wa |~ Y Ay ) Ay
Wn

YA Y Ay
Y Aihy ) Ayhs
YA ) A
Y A Y AvAs Y AiAs ) A

2 A
y > Avigi

> Asig .

Y Asigi

The application of the neural network algorithm
gives the robust estimation of input attributes and
targeted property by following the nonlinear approach
[13,44]. Therefore, the PNN analysis as the most effective
neural network technique is applied to predict the
porosity. For a given series of training samples {Ay;, A;,
As;, ¢}, PNN linearly combines with the log values of the
training set and expresses in new output log value
having vector x as follows:

Y, ¢ exp[-D(x, x;)]
Y, exp[-D(x, x;)]

(14)

¢(x) = , (15)

where D (x, x;) represents the distance between the
training points (x;) and point (x) to be estimated and can
be defined as follows:

3 (x5 - x;Y
D, x) = ). (QJ ,

A

(16)

where o0; is the smoothing parameter that responds
uniquely for every attribute. The network analysis aims
to minimize the validation error for obtaining the
smoothing parameter. Thus, for the Kth target sample,
the validation result can be expressed as follows:

Zi;ek ¢, exp[-D(x, x;)]
Zi#k eXp[_D(Xky Xi)] .

b (x0) = (17)

In this study, the attributes acquired from multi-
attribute regression are used for the PNN training set.
The PNN analysis selected the optimal attributes using
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Figure 7: Sparse-spike inversion procedure adopted to estimate the P-impedance.

stepwise regression, and after the validation procedure,
the PNN analysis derived the statistical relationship
among seismic attributes and targeted (porosity) log at
well locations. The derived network is then applied to
the available seismic data cube.

4 Results
4.1 Petrophysical analysis

Petrophysical interpretation of the C-sand interval for
Sawan-8 well is carried out to delineate the potential gas
bearing zones in reservoir (Figure 8). The results of the
calculated reservoir parameters are presented in Table 1.
The Sawan-08 well encountered with the reservoir
interval (C-sand) at the depth level of 3,267 m, having
95m gross thickness. A 44 m thick net-pay sand zone is
delineated within the C-sand interval, which shows
prolific results for hydrocarbon (gas) potential. The pay

zone exhibits the rock layer of high effective porosity
(15%) and saturation with hydrocarbon (58%) of
economical level. High porosity values are good indi-
cator of substantial hydrocarbon saturation within
productive zones of reservoir [36].

4.2 3D seismic attribute analysis
4.2.1 Trace envelope

The relatively higher envelope values in time slice
indicated toward a channel feature of reservoir sand.
The sand channel is laterally extended from the south-
west (SW) to the north-east (NE) direction covering the
productive wells (Sawan-01, Sawan-07 and Sawan-08) of
the Sawan gas field. The section display of the envelope
clearly shows the amplitude anomalies at reservoir
interface that highlighted the favorable lithological
changes for hydrocarbon accumulation in the C-sand
interval (Figure 9).
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Figure 8: Petrophysical interpretation for the estimation of reservoir parameters of the C-sand interval in Sawan-08 well.

4.2.2 RMS amplitude

The application of RMS amplitude slice shows the high
values along the sand channel. The prevalence of the
high amplitude values within the C-sand interval
indicates the existence of relatively high porous
sand unit (Figure 10). The subsurface lithologies with
high porosity significantly contributed toward the

accumulation of hydrocarbons and usually related to
high values of RMS amplitudes [9].

4.2.3 Sweetness

The time slice of sweetness attribute also highlighted the
fluid bearing zone as the sand channel body. The presence of
the hydrocarbon increases the sweetness amplitude strength
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Table 1: Petrophysical analysis of reservoir C-sand interval for
Sawan-08 well used in this study.

Reservoir properties Sawan-08
Depth range (m) 3,267-3,362
Gross thickness (m) 95

Reservoir thickness (m) 61

Pay thickness (m) 44

Average porosity (%) 16.1
Average effective porosity (%) 15

Average water saturation (%) 42

Average hydrocarbon saturation (%) 58

Average volume of shale (%) 15

and decreases the frequency content. Hence, the distinct
lithological contrast at the C-sand interval is the indicator of
sweet spots that shows the gas-bearing zones (Figure 11). The
high sweetness values are the evidence for the presence of
reservoir quality lithofacies [45].

4.3 3D Poststack inversion analysis

The synthetic seismogram is generated by the convolu-
tion of the extracted statistical wavelet with reflectivity
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series derived at Sawan-08 well location. The correlation
of synthetic seismogram with seismic traces at Sawan-08
well is displayed in Figure 12. The synthetic traces using
the statistical wavelet have shown the excellent correla-
tion results with extracted seismic traces where the
correlation coefficient value is 0.854. The inversion
analysis is then applied to the seismic data using linear
programming sparse-spike inversion algorithms.

4.3.1 Sparse-spike inversion

The inversion analysis is performed between the inverted
P-impedance and the actual P-impedance log at the
Sawan-08 well location (Figure 13). In Figure 13a, log-
derived (blue line) and seismic-derived (red line)
P-impedance is in good agreement particularly within
the C-sand interval. The correlation between the synthetic
(acquired after convolution process) traces (red) and
seismic traces (black) at well location gives the excellent
results (correlation coefficient = 0.996) for P-impedance
(Figure 13b). The estimated RMS error between original
and inverted P-impedance is 0.08 and 653 (m/s) x (g/cc),
respectively (Figure 13c). After performing the inversion
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Figure 9: (a) Constant time slice map of trace envelope attribute indicating the predicted sand channel. (b) The corresponding seismic
section of the trace envelope attribute along arbitrary line. (c) 3D map of trace envelope attribute of the targeted area.
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Figure 10: (a) Constant time slice map of RMS amplitude attribute indicating the predicted sand channel. (b) The corresponding seismic
section of the RMS amplitude attribute along arbitrary line. (c) 3D map of RMS amplitude attribute of the targeted area.

analysis, the spatial distribution of P-impedance away
from the wells is well captured by the inversion using the
linear programming algorithm (Figure 14). Low P-
impedance values within the C-sand interval are
observed in the range of 8,000-9,700 (m/s) x (g/cc) at
two-way time window of 2,240-2,280 ms, which is a
good indicative of potential gas-bearing sand zone at
this reservoir level. The overlying layer near the C-sand
top horizon within purple-blue color range represents
the high impedance anomaly having value range of
10,700-11,950 (m/s) x (g/cc) and considered as the seal
rock unit of shale lithology.

A constant time slice map is extracted from the inversion
result to analyze the spatial distribution of P-impedance at
the desired reservoir depth level (Figure 15). A relatively
lower impedance anomaly is observed along the sand
channel, which is assumed to be responsible for prolific
hydrocarbon (gas) accumulation in Sawan-01, Sawan-07 and
Sawan-08 wells of the study area. P-impedance inversion
results also indicated that Sawan-14 well is not situated at
the suitable place compared to other three wells in the area.
The less prolific inversion results for Sawan-14 well can be
attributed toward its minimum production level of hydro-
carbon (gas).

4.4 Geostatistical estimations
4.4.1 Multiattribute regression

In the application of multiattribute regression analyses,
the prediction (training) error is minimized to obtain
optimal operator values between the predicted and the
actual target log (i.e., porosity). At the same time, most
suitable attributes are selected for predictive variable in
an unsupervised manner under the stepwise regression
process. However, a validation test is required to
constrain the number of investigated attributes. Hence,
run a cross-validation process that computed the error
for all the wells and repeated until the optimal number
of attributes is achieved. Afterward, a plot between
validation error and number of attributes is generated to
identify the suitable attributes for predicting the targeted
reservoir parameter. The entire dataset of internal and
external attributes is randomly split into 10 folds. Table 2
presents the list of suitable attributes along with their
numerical errors for predicting the porosity. The optimal
number of attributes is determined from the plot of
average error versus number of attributes (Figure 16).
Results showed that initial eight attributes are
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Figure 11: (a) Constant time slice map of sweetness attribute indicating the predicted sand channel. (b) The corresponding seismic section
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extracted seismic traces (black). (c) Traces of RMS error between original P-impedance and inverted P-impedance.

statistically significant and utilized in the prediction
process because the validation error starts to rise beyond
this number. In Figure 17, the predicted porosity is cross-
plotted against the actual porosity for QC check and the
predicted data points are closely distributed to the actual

data points and least scattered from the best fitted line of
cross correlation. The correlation coefficient between the
actual and predicted porosity is 0.866 with the average
training error of 0.032. However, the validation result
decreases to 0.773 with 0.041 error (Table 3).
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Figure 14: Sparse-spike inversion-based P-impedance along the arbitrary seismic line. The lithological variations are well captured by the
linear programming algorithm. The low P-impedance anomaly is clearly visible in the C-sand interval.
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Figure 15: Constant time slice map of estimated P-impedance. The spatial distribution of its lowest values indicating toward the

hydrocarbon (gas) saturation along the sand channel.

4.4.2 PNN

For the neural network analysis, the suitable attributes
are selected through the stepwise regression process and
further validated to get the final attribute set for neural
network training. Afterward, the constrained attributes
and targeted log (porosity) at well locations are
correlated to derive the statistical relationship. Finally,
the derived neural network is applied to the seismic data
volume. The attributes obtained in the multiattribute

regression analysis are used in the neural network
training process. Figure 18 displays the comparison
between actual and modeled (predicted) porosity with
the average training error at each well location within
the C-sand interval under the PNN analysis, and the
training results showed the correlation coefficient value
of 0.896 with the average training error of 0.029 (Table 3).
It is evident from the cross-plot of actual and predicted
porosity that the PNN estimation (Figure 19) showed less
scatter relative to the best fitted regression line when
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Table 2: List of multiattributes from stepwise regression for predicting porosity in the reservoir.

# Target log Final attribute Training error Validation error
1 Porosity Average frequency (inversion result) 0.04789 0.059123
2 Porosity X-coordinate (inversion result) 0.040144 0.047124
3 Porosity Derivative 0.034673 0.046932
4 Porosity Integrated absolute amplitude 0.033773 0.046933
5 Porosity Instantaneous phase 0.03304 0.045306
6 Porosity Integrated absolute amplitude (inversion result) 0.032505 0.043155
7 Porosity Second derivative 0.031903 0.043799
8 Porosity Quadrature trace (inversion result) 0.031692 0.042945
9 Porosity Filter 5/10-15/20 0.031372 0.043216
10 Porosity Dominant frequency 0.030681 0.044052

compared with cross-plot estimation of multiattribute
regression for actual and predicted porosity (Figure 17).
Higher cross correlations with less average errors
indicate that the prediction efficiency improved under
the PNN analysis compared to the multiattribute regres-
sion analysis.

The PNN is approved as a better geostatistical
approach based on the training and validation test
results and applied on the seismic data to predict the
porosity away from the wells within the C-sand interval.
The results showed that the high porosity values are
prominent in gas saturated zone of the C-sand interval
(Figure 20). High porosity anomaly varies between its
fractional volume range of 0.14-0.20 v/v in the seismic
time window of 22,40-2,280 ms, which coincides with

the low P-impedance values predicted in inversion
results. The extracted time slice map from porosity
volume also showed the distribution of its relatively high
values along the identified channel feature (Figure 21).
The favorable distribution of porosity in the direction of
low P-impedance values has successfully mapped the
gas saturated zone in reservoir.

5 Discussion

Initially, the analysis starts with the extraction of
attributes from the seismic data at the desired depth
level within the reservoir C-sand interval. The high

Average error (fract)
=
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Figure 16: Validation plot between average error and number of attributes for all wells, showing that the optimal number of attributes is
eight for predicting the porosity. The error using all wells and when a well is removed are indicated by a black curve and a red curve,

respectively.
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the C-sand interval of each well are shown in one color.

amplitude anomalies of attributes predict the sand
channel at the targeted reservoir depth level trending
in SW to NE direction. Afterward, the reservoir elastic
property (P-impedance) is estimated through poststack
seismic inversion to predict the promising zone of
hydrocarbon (gas) accumulation. The inversion results
showed that the low P-impedance values ranging from
8,000 to 9,700 (m/s) x (g/cc) between the time interval
of 2,240 and 2,280 ms are good indicatives of hydro-
carbon (gas) zone in the reservoir. The spatial distribu-
tion of P-impedance revealed that the relatively lower
values are observed along the predicted sand channel.
To further characterize the reservoir, porosity is
estimated in the inter-well region using multiattribute
regression and the PNN analysis within the C-sand
interval. The PNN analysis delivered more significant
cross-correlation results between predicted and actual
porosity compared to the multiattribute regression

analysis and therefore applied on entire seismic data to
generate the porosity volume. The transect and time slice
display of the estimated porosity indicated that the high
porosity anomaly coincided with the low P-impedance
zone of the C-sand interval. The uniformity in these
estimates (i.e., P-impedance and porosity) has efficiently
predicted the gas saturated zones in the reservoir. The
estimates also highlighted the stratigraphic feature of
sand channel, which is identified as the main contributor
of gas accumulation in the area.

A cross-plot is generated between the predicted
porosity and inverted P-impedance estimated at constant
time slice from geostatistical and inversion analysis,
respectively (Figure 22). A linear regression approach is
adopted to find the correlation between porosity and
inverted P-impedance, as the relationship is linear
between these two parameters with a negative slope.
The result showed a reasonably good correlation

Table 3: Summary of porosity prediction by multiattribute regression and PNN analysis, and the correlation reasonably improved in PNN

analysis.
Target log Technique Validation result Training result (QC)
Cross correlation Average error Cross correlation Average error
Porosity Multiattribute regression 0.773 0.041 0.866 0.032
Neural network (PNN) 0.810 0.038 0.896 0.029
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Figure 20: Section display of computed porosity using the PNN analysis along the arbitrary seismic line. The high porosity zone is clearly
visible in the C-sand interval, where the low P-impedance anomaly encountered in the inversion analysis.

coefficient value (i.e., 0.807). The best fitted line
developed the relationship between P-impedance and
porosity as follows:

¢ = -4.51304¢% x A + 0.567, (18)

where ¢ is the porosity and A is the inverted P-impedance.
The porosity can be estimated directly from P-impedance
and vice versa by using the estimated relationship (equation
(14)) in the study region. The outcomes of petrophysical,
seismic attribute and sparse-spike inversion analyses are
consistent with geostatistical results in which the spatial
distribution of the estimated reservoir parameter (porosity)
confirmed the presence of gas sand channel (Figure 22) as a
major gas saturated zone within the reservoir. Moreover, the
extent of predicted gas sand channel can be further
demarcated at the regional level for the C-sand interval of
Lower Goru Formation by following the applied methodology
of this study for the area.

5.1 Significance of the study to gas
reservoirs of South Asian Regions

The gas-bearing reservoirs have been investigated in
various Basins of Asia by using seismic attributes and

poststack inversion techniques. The study performed by
Anees et al. [46] is based on paleo sand channels
identification in tight gas sand reservoir of Lower Shihezi
Formation of northern Ordos Basin, China. Their study
successfully recognized the horizontal distribution and
geometry of the multiple gas-bearing sand channels
through the application of seismic attributes in reservoir.
The study by Ali et al. [47] also presented the substantial
results in predicting the hydrocarbon (gas) saturated
zones by utilizing the seismic attributes and poststack
inversion analysis in the secondary reservoir of Eocene
carbonates of Lower Indus Basin, Pakistan. Another
study by Ali et al. [23] effectively evaluated the reservoir
properties of gas sand in Lower Goru Formation using
different poststack inversion algorithms along with the
geostatistical method. The study by Sinha and Mohanty
[48] also presented the reliable estimation of reservoir
parameters through poststack inversion algorithms for
delineating the gas saturated zones in Krishna Godavari
Basin of India. The Cretaceous sand/shale intervals of
this Basin have similar characteristics to the lithological
intervals of Indus Basin in Sothern Pakistan [49]. Similar
results are achieved in the study by Karbalaali et al. [50]
from the inversion analysis for Ghar Formation of
Persian Gulf Oilfield, Iran. Their study demonstrated
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Figure 21: Constant time slice map showcasing the porosity distribution within the reservoir interval. The high porosity values indicating

the gas accumulation along a sand channel in the reservoir.

the cross-plots of inverted P-impedance from poststack
inversion results for predicting the productive hydro-
carbon (gas) zones.

Porosity is a most important parameter for predic-
tion of fluid (hydrocarbon) in pore space of reservoir
rock volume. However, at the same time, its estimation is
difficult due to its variable types and lithological
heterogeneity of the reservoir. The porosity along with
other parameters (i.e., water saturation, shale volume) is

usually measured at particular well locations and
represents only vertical variations in a limited area.
The aim of seismic inversion is not only to determine the
P-impedance model but also to provide the estimation of
reservoir parameters laterally away from the wells by in
cooperating the geostatistical approach [51,52]. In this
study, the geostatistical analysis provides the stepwise
estimation of gas reservoir and spatial distribution of its
parameters over the whole reservoir surface. This



DE GRUYTER

— 69

Predicting the gas resource potential

Predicted porosity vs Inverted P-impedance

=

1= y = -4.51304e-05 x +0.566624

i Correlation: 0.807281

o

o

o

®]

c

™~

c
—~ .\g_
b wn
z 2 s
9 o o
2 S e
B o N
3 o o
e
E o o

=

24 Gas sand channel

ol @

3=

o

34 o

o

54

o

3

KR | T T T T T T

3000 8500 9000 9500 10000 10500 11000
Inverted P-impedance (m/s)*(g/cc)

Figure 22: Cross-plot of predicted porosity versus inverted P-impedance at constant time slice with the significant value of correlation
coefficient. The gas sand channel zone is highlighted with a black circle.

integrated study approach may be considered as
advantageous work to delineate the gas saturated zones
in Basins of South Asian Regions and in other parts of
the world with similar reservoir characteristics.

6 Conclusions

The integrated use of advanced geophysical techniques
(seismic attributes, sparse-spike inversion and geosta-
tistical analysis) effectively estimated the gas-bearing
zones of Cretaceous C-sand interval of Lower Goru
Formation in Middle Indus Basin, Southern Pakistan.
The high amplitude anomalies of seismic attributes
predicted the sand channel at the targeted reservoir
depth level trending in SW to NE direction. The sparse-
spike inversion analysis successfully captured the
detailed lithological variations and revealed that the
relatively lower impedance values are observed along

the predicted sand channel, which is good indicatives of
hydrocarbon (gas) saturated zone within reservoir
interval. To further characterize the reservoir, porosity
is estimated in the inter-well region using multiattribute
regression and the PNN analysis. The PNN analysis
delivered more significant cross-correlation results
between predicted and actual porosity and therefore
applied on entire seismic data to generate the porosity
volume. The spatial distribution of estimated porosity is
in good agreement with its petrophysical estimation in
Sawan-08 well. Furthermore, the current study provides
the knowledge toward the estimation of reservoir
properties through advanced integrated geophysical
approach to robustly predict the hydrocarbon bearing
zones in reservoir. The methodologies applied in this
study can be executed in other global regions beside
Pakistan that exhibit the similar geological conditions
for better understanding and characterization of gas
reservoirs.
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