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Abstract: The reliable quantification of daily evapotran-
spiration (ET) over vast croplands is a quest in many
scholarly works aimed at the precise practice of water
resources management. Remote sensing–based empirical
and nonempirical models were developed to overcome
large-scale quantification issues, which are usually experi-
enced when using conventional approaches for the esti-
mation of ET. The surface energy balance system (SEBS)
model was used to quantify the daily ET in the arid/semi-
arid overWadi Ad-Dwaser, Saudi. SEBS input variables are
parametrically sensitive and climatic dependent, and the
model input/output dependencies are of high comprehen-
sibility; therefore, the optimization analysis of SEBS input/
output parameters is the target of the current research.
SEBS inputs reciprocal inconsistencies were determined
using the artificial neural network analysis, while the
output dependencies on the daily ET estimation were
mapped. Results demonstrated that the temperature and
relative humidity are the most sensitive parameters to be
considered in the routine cropmonitoring procedure. SEBS
output thematic maps showed the robust proportional cor-
relation between the daily ET and the conducted tempera-
ture map. Moreover, the estimated daily ET was inversely

correlated with the estimated cold sensible heat fluxes. The
findings suggest systematic monitoring and forecasting
procedures for efficient water-saving management plans
in Saudi Arabia.

Keywords: daily evapotranspiration, desirability func-
tion, neural network analysis, SEBS

1 Introduction

The estimation of daily evapotranspiration (ET) using the
remote sensing data was successfully applied to the last
decade of agricultural studies. The remote sensing data
were continuously developed and improved to enclose
the far-infrared and short-wave infrared as crucial seg-
ments of the electromagnetic spectrum [1,2]. The latter
two segments showed extensive importance in water-
related scholarly studies rather in atmospheric water stu-
dies at the top of atmosphere level [3,4] or at the top of
canopy (TOC) level [5,6]. The TOC applications of remote
sensing covered the soil/water relationships as well as
the water/crop relationships [7,8].

The substantial quantification of the ET exploiting
remote sensing imagery proved significantly the quantum
involvement of the sensible heat fluxes interacted with
the TOC water vapor in large-scale agricultural practices
[9,10]. Nevertheless, the implementation of the adopted
algorithms is valid solely in local-scale practices, while
the large-scale agricultural practices are used to encounter
droughts due to the interactions of surface geometry and
heat flux fluctuation, besides the lack of meteorological
data consistency [11,12].

Empirical and nonempirical algorithms to quantify
the daily ET were lately developed to serve purposes
and different spatial configuration settings [13,14]. Those
physical models were heavily dependent on the physical
parameters of the surrounding environments, and there-
fore, the biological parameters were less involved [15,16].
The most recently developed algorithms to quantify the
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daily ET showed the synergy between the physical and
the biological parameters in a single biophysical algo-
rithm performance [17–20].

One of the current and best-performing calculations
to estimate ET is the semi-empirical SEBS model founded
by Su [21]. SEBS considers not only a diverse range of
land surfaces but also the physical and biological para-
meters that were conducted from two European Space
Agency sensors: Advanced Along-Track Scanning Radio-
meter (AATSR) and MEdium Resolution Imaging Spectro-
meter (MERIS) symbolism.

Optimization analysis could convey a significant deter-
mination to the hesitation in multi-input measurement
uncertainties. It is a functional strategy to analyze the
intuitive relationship between detached frameworks [23].
The optimization analysis procedures and its executions
are discussed in the studies by Ficici et al. [24] and
Kunnan and Carr [25]. The procedure of the comprehen-
sive study generally examines the most extreme, least,
and the mean desirability parameters for singular obser-
vations considering the reality that the desirability ana-
lysis and its transformations led to a forecasted retort into
nonscaled values [26–28].

The artificial neural network (ANN) analysis was
developed by Jo et al. [29]. The back-propagation method
was the conceptual development of ANN to be imple-
mented extensively after [30] the neural network training
procedure. The uses of ANN are comprehensively and
successfully applied in several fields related to hydrology
and water resources management. Related fields to water
quality assessment and water resources management
were discussed in the previous studies [31–35].

The objectives of the research are the realization of
the SEBS algorithm over a large-scale agricultural prac-
tice in an arid environment and then to thematically map
SEBS outputs. Consequently, an optimization analysis
of SEBS input parameters will be exercised to compre-
hend SEBS inputs reciprocal inconsistencies using the
ANN analysis. Finally, the SEBS model output dependen-
cies are assessed against the estimated ET over Wadi Ad-
Dwaser, Saudi Arabia.

2 Materials and methods

2.1 Study area

Wadi Adwaser is a typical example of an arid environ-
ment located in Saudi Arabia. Wadi Adwaser is located at
44°43′ latitude and 20°29′ longitude, which is at an
approximate distance of 600 km southwest of Riyadh,
the capital city of Saudi Arabia (Figure 1). The major
activity in Wadi Ad-Dwaser is agriculture. More than
1,20,000 hectares of the designated study area is used
for Alfalfa crop production as a whole-year fodder [36].
The main irrigation system is the pivot sprinklers con-
nected to water pumps. These are deep-well pumps
that convey groundwater continuously to the sprinklers.
The extensive use of the groundwater resources in Wadi
Ad-Dwaser led to a drastic drop in the groundwater level
and irrecoverable soil salinity problems [37]. The mean
annual temperature in the designated study area is

Figure 1: Location of the study area in a false color composite where the agricultural areas of Wadi Ad-Dwaser appear as red dots [39].
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around 37°C with huge variations between the maximum
temperatures of 45°C and theminimum temperature closely
to 3°C. The mean annual rainfall is reported to be less than
18mm with mostly sunny day’s long solar radiation [38].

2.2 Data sets

The use of the SEBS calculation necessitates input para-
meters from four remote sensing images that can be
acquired from three unique informational collections:
(1) two datasets of AATSR images acquired in March
and June 2012, (2) two datasets of MERIS images acquired
in synchronization with the AATSR images and the total
number of the remote sensing datasets is four images, and
(3) meteorological data, as entirely mentioned in the stu-
dies by Su [18] and Elhag et al. [10]. The meteorological
data utilized in the current study are incorporated in the
form of 10-year monthly average temperature, relative
humidity, wind speed, and solar radiation to ensure the
meteorological stability of the used data [22,40]. The infor-
mation was gathered amid August 2012 (Table 1).

2.3 The SEBS fundamentals

SEBS comprises a sequence of examination practices for
the assurance of the surface physical and biophysical
parameters to be initially assessed. These parameters
are albedo, emissivity factor, maximum and minimum

temperature, and vegetation possibilities. Finally, a model
for the assurance of the evaporative fraction estima-
tion based on meteorological restriction conditions to
the wet/dry weather limit was adopted [18]. The SEBS
essential conditions are as follows:

= + + ×Rn G H λ E,0 (1)

where Rn is the net radiation (watt/m2), G0 is the soil heat
flux (watt/m2), H is the turbulent sensible heat flux
(watt/m2), λE is the turbulent latent heat flux (watt/m2),
and H is the actual sensible heat flux (watt/m2).

The pixel conditions representing the dry (H-dry)
and the wet (H-wet) metrological settings are controlled
by the actual sensible heat fluxes. The H-dry and the
H-wet pixel values are determined by equation sequence
under the hypothesis of having a comprehensive wet con-
dition [10]. Therefore, the daily ET estimation (Edaily) is
estimated as follows:

= × × ×

−E Rn G
λρ

Λ 8.64 10 ,
ω

daily
24

0
7 0 (2)

where Λ24
0 is the anticommutative exterior product of

daily evaporative fraction, ρω is the density of water
kg/m3, λ is the latent heat of vaporization (watt/m2),
and E is the actual evaporation (mm/day).

A total number of 52 ground truth standardized
Penman–Monteith ET data were collected uniformly to
verify the daily ET conducted in the current study using
an SEBS model. The lysimeter technique was carried out
according to Liu and Wang [41] with ±0.025 calibrated
accuracy. The calibration procedure was principally based
on placing double infiltrometers of Taylor [42].

Table 1: Meteorological data of 10-year monthly average used to empower SEBS model

Month Minimum temperature Maximum temperature Humidity Wind Sun expo. Radiation
(°C) (°C) (%) (km/day) (h) (MJ/m²/day)

January 3.7 25.2 40 346 7.4 15.7
February 5.8 28.6 34 302 8.2 18.5
March 9.4 32.9 28 302 8.7 21.3
April 12.8 37.9 27 302 8.9 23.0
May 17.8 42.8 16 302 7.1 20.6
June 19.8 45.1 11 259 8.1 22.0
July 21 45.5 13 346 6.5 19.6
August 25.1 45.4 13 302 6.3 19.1
September 17.5 42.8 15 259 7.7 20.2
October 12.5 37.7 21 216 7.8 18.5
November 7.5 31.1 29 259 8.5 17.4
December 4.9 26.5 37 216 6.6 14.1
Average 13.1 36.8 24 284 7.6 19.2
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2.4 Optimization function analysis

The reason for utilizing the optimization analysis is to
simultaneously enhance the model forecasts considering
numerous conditions. Optimization analysis is a standout
practice found among the most well-known methodolo-
gies used to expand a few progressions of response [23].
In a general sense, the desirability analysis changes over
the information capacities into (0,1) scale to enhance the
model forecasting in terms of optimization. Derringer and
Suich [23] reported that the optimization analysis is
based on three procedural approaches.

Maximization analysis:
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where A, B, and S are the analysis scope of the predefined
variables, high f(X) is the higher desirability, and low f(X)

is the low desirability. The three parametric optimization
settings are with the exact scale and periodic at the given
points A, B, and t0.

2.5 ANN concepts

The ANN analysis was implemented in the current study
to decompose the interconnected relationships of the
input parameters for the better comprehensive standing
of the problem. In this study, the neural analysis was
carried out based on the study by Monahan [43].

The neural network regression method can be con-
ducted as follows:
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where = ( | )Y E Y X and Y is the final neuron output value,
w is the assigned weight between the nodes, X is the
assigned value of the nodes, and ϕh is the activation
function.

Such neural network settings can function under
only one hidden layer to avoid the model overfitting
[44]. The ( )ϕ z function implemented in the current
ANN is a hyperbolic refraction stimulation function. It
is implemented for the logistic stimulation of the hidden
layers.
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(7)

To limit the model predictions between 0 and 1, the
concluding productions must be in a linear relationship.
The skip-layer diagram of the neural network analysis is
shown in Figure 2.

Evapotranspiration Estimation  

Max. Temp. Min. Temp. Rel. Humid.Ave. Temp. Solar Radi.Wind

Figure 2: The outline of the ANN analysis including one hidden layer and two nodes.
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The following is the equation for the skip-layer ANN
for regression:
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It ought to be evident that these approaches are
exceedingly parameterized and subsequently will tend
to overfit the investigated datasets. Cross-validation is a
consequent practice to ensure that the prescient execu-
tion of the neural network analysis is satisfactory.

The skip-layer neural network analysis is conducted
as follows:
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However, this model tends to overfit its training data-
sets. Therefore, assurance of the satisfactory execution
of the ANNs demonstrates is an unquestionable require-
ment. Five distinct evaluation criteria are utilized to
decide the optimum fit: the Pearson correlation coeffi-
cient of connection (R), the root mean square error
(RMSE), the mean absolute deviation (MAD), the nega-
tive log-likelihood, and finally the unconditional sum of
squares (SSE). Essentially, RMSE is the preferred ana-
lyzed parameter for comparability explanations. RMSE
can be calculated as follows:

∑=   ( − )

=

T
y yRMSE 1 ´ ,

t

T

0 1
1 1

2
0

(10)

where T is the time index and ŷt and yt iare the pre-
dicted and the actual values, respectively. Primarily,
the higher value of R and smaller values of RMSE are
considered to ensure the improved functionality of the
model.

2.6 Output statistical analysis

Univariate statistical analysis is performed to find mean,
standard deviation, number, sum, quantile, maximum,
minimum, and N missing functions. These functions

Figure 3: Conceptual framework scheme.
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Figure 4: The correlation between the actual and the estimated
daily ET.
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run across columns or rows. The statistic is computed for
each row across the series of rows. The quantile function
was performed to evaluate the conducted values, ascend-
ingly in the tabulate manner, of the 2D image data from
0 to 1 according to Cheng and Parzen [45] as follows:









=

( ) − ( )

( ) −

( )
Q Q X N i N j

N i
Col Row Row

Row 1
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Regression analysis was carried out to investigate
the reliance of the conducted daily ET on the albedo,
temperature H-dry, and H-wet outputs. The scatter plot
matrix was conducted using the restricted maximum like-
lihood equation (RMLE) function according to the study
by Robert and Gene Hwang [46] as follows:
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where K′ has full row rank of N.
To understand the conceptual framework of the study

under investigation, SEBS input/output diagram shown in

Figure 3 indicates that the main inputs of SEBS model are
meteorological data combined with certain remote sensing
imagery. Conversely, the output data are mainly thermal
maps where each of which is used for different data mea-
sures. The inconsistency process starts with the problem
definition utilizing the collected problem-solving informa-
tion. Consequently, the analysis matrix can be performed
with different weights of criteria in a comparable mode
[47,48]. Throughout the normalizationmethods, the weights
were transformed into a uniform scale value between 0 and 1.
The value function converts the implementation of an option
into a weighted score, which represents the degree to which
a decision objective is matched [49].

3 Results and discussion

3.1 SEBS realization

The application of the SEBS model over the designated
study area has produced 21 different output thematic
maps related to surface energy fluxes. The actual daily
ET and the evaporative fraction thematic maps were
demonstrated caused by their relative significance to
the study purposes. According to the regression equation
demonstrated in Figure 4 (Y = 3.939 ln(x) − 1.4319 and
R2 = 0.8189), the application of the SEBS model over the
study area is significantly correlated with the ground
truth data measurements collected from the lysimeter.

The idea behind drawing the best fit line assumes that
the data are scattered along a line that represents the least
squares regression error. This equation is of substantial
sensible use because the water balance information is
required for the irrigation requirements in the study area
or under similar conditions. Therefore, the actual daily ET
values were verified using real data in situ measurements.
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Figure 5: The frequency distribution of the estimated daily ET.

Table 2: Gaussian analysis using Jackknife-predicted model

Jackknife predicted model

Theta μ σ² −2*log-likelihood

SEBS inputs
Maximum temperature 31.4 13.5 22.5 82.4
Minimum temperature 20.7 28.3 27.1 83.9
Average temperature 26.8 20.9 24.3 83.1
Relative humidity 13.6 0.7 0.0 −30.7
Wind speed 100 1.3 0.0 −6.7
Solar radiation 2.6 1957.3 322469.6 199.8

326  Mohamed Elhag et al.



Consequential information could be collected from
remote sensing data only when the inadequacy conditions
are considered. Inadequacy conditions for the application
of the SEBS model primarily depend on the surface rough-
ness [18], the planetary boundary layer [50], and land use
land cover type [51,52].

The frequency distribution of daily ET values over the
study area illustrated in Figure 5 has a mean frequency

peak value at 2.4 mm, corresponding to the temperature
distribution value of 322 K.

3.2 Input inconsistencies

Table 2 and Figure 6 show the Gaussian analysis of the
Jackknife predicated model and the desirability function

Figure 6: Prediction profiler of SEBS input parameters under optimization function. SEBS inputs are (a)maximum temperature, (b)minimum
temperature, (c) the average temperature, (d) relative humidity, (e) wind speed, and (f) solar radiation.
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on SEBS input data. Results show insignificance differ-
ence in SEBS input desirability in terms of temperature in
general (Figure 6a–c). According to Table 2, −2*log-like-
lihood values for the maximum, minimum, and average
temperatures were estimated to be closer to 83 with mar-
ginal variation [53].

Finally, solar radiations in Figure 6f show arbitrary
Gaussian behavior with −2*log-likelihood value estimated
to be 199.8, which is the highest value among SEBS input
parameters. A higher Gaussian value indicates that the
role of solar radiation in SEBS daily ET in the Wadi Ad-
Dwaser is still understudied [39,54]. Such a correlation

needs to be considered in water conservation plants in
arid environments [55].

The ANN analysis of a hidden layer, eight nodes, and
hyperbolic refraction stimulation function was performed
under specific conditions for each temporal dataset. These
settings were sensibly practiced to limit the overfitting of the
used algorithm, and ANN findings are presented in Table 3.

Based on RMSE and –log-likelihood, the dataset of
April showed that relative humidity followed by wind
speed was used to descend the neural network classifica-
tion parameters. The significant variables obtained from
the analysis imply their importance to determine their

Figure 7: SEBS outputs estimated using MERIS and AATSR data.
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influence on the SEBS estimation [44]. Temperature
(minimum, average, and maximum, correspondingly)
came in second in the significance order, while solar
radiation ranked the last. This could be explained due
to the close range of the wind speed and the relative
humidity variations within the collected data from the
different meteorological stations. On the contrary, solar
radiation showed the highest range of input data varia-
bility [56,57].

According to the Gaussian analysis with −2*log-like-
lihood value of −6.708327, the wind speed was the least
desirably function that affects the SEBS algorithm to con-
duct the daily ET within the selected study area as shown
in Figure 6e [40,58].

The daily ET showed uneven −log-likelihood values
with SEBS input parameters integrated together for satis-
factory results [59]. Each parameter value was multiplied
to its corresponded layer, and then the layers were over-
laid all together to be introduced to the final optimization
process [55].

3.3 Outputs inconsistencies

The spatial distribution of daily ET values varies over
Wadi Ad-Dwaser. The extreme daily ET findings are

situated at the West and East side of the study area, while
in the central region of the Wadi Ad-Dwaser, the daily ET
findings are ranged from low to medium. The mean daily
ET was estimated to be around 2.4 mm/day, with an
extreme value reached to 9mm/day (Figure 7). The range
of the estimated daily ET, evaporative fraction, and other
heat fluxes indices is presented in Table 4.

The estimation of the daily ET values was not per-
formed over the agricultural practices of the study area
only, and it was also extended over the peripheral bare
soils to estimate the potential ET values instead of the
actual values. The tendency of the algorithm to estimate
the potential ET over noncroplands is the reason behind
the higher daily ET values (Table 4). This shift from the
mean values of the daily ET was due to the absence of the
biological parameters, especially the leaf area index (LAI)
found using the MERIS sensor and the daily estimation is
based on only the physical parameters found from the
AATSR and the meteorological data [10,36].

Following the daily ET mapping, the evaporative frac-
tion was also mapped in along with surface temperature,
surface albedo, and the hot and the cold heat fluxes at the
TOC level. The coefficient of variation was precisely used
in the present study to assess the SEBS output inconsis-
tencies (Table 4). The smallest coefficient was pointed out
by the surface temperature (0.02), while the daily ET
values and the corresponded albedo values showed
robust dependencies of 0.234 and 0.263, respectively.

The performed regression analysis (Table 5) showed
two distinctive behaviors of the estimated daily ET and
each of the surface temperature and the heat fluxes as
shown in Figure 8. The estimated daily ET showed per-
sistent correlation with the surface albedo and the hot
heat fluxes, while it was proportionally correlated with
the surface temperature and inversely correlated with the
cold heat fluxes [15,18,60,61].

Table 4: The univariate and the quantile analyses of SEBS output thematic maps

Daily_Evap Relative_Evap Albedo Temp H-dry H-wet

Minimum 0.3242 0.1997 0.1787 258.8811 42871.4548 4355.4284
Maximum 8.9951 0.9532 0.7247 341.6599 131850.2985 45843.4828
Mean 4.6521 0.8927 0.3533 320.6427 100361.5447 10746.6688
Sigma 0.5836 0.0211 0.0502 3.3124 7818.0457 1856.7539
Median 4.6803 0.8944 0.3632 320.8219 98774.0922 10432.7801
Coefficient variation 0.2341 0.0402 0.2635 0.0202 0.1602 0.5292
P75 threshold 4.9878 0.9002 0.3952 322.2586 104800.7300 11405.1564
P80 threshold 5.0624 0.9017 0.3973 322.5819 106224.3915 11648.2505
P85 threshold 5.1556 0.9032 0.4005 323.0670 108003.9684 11972.3759
P90 threshold 5.2767 0.9061 0.4037 323.7137 111029.2491 12539.5954
Maximum error 0.0093 0.0015 0.0011 0.1617 88.9788 81.0314

Table 5: SEBS output regression functions

Regression function R2

Daily ET against surface albedo 0.005X + 1.984 0.43
Daily ET against H-dry fluxes −0.004X − 1.843 0.42
Daily ET against H-wet fluxes −2.79 ln(x) − 3.523 0.89
Daily ET against surface
temperature

2.84 ln(x) − 3.754 0.88
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Figure 8: SEBS input parameter correlations with the estimated daily evapotranspiration.
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The correlation established between the estimated
daily ET and either the surface temperature or the cold
heat fluxes was logical in principle, and it proves the
efficiency of the SEBS model as well as the output intra-
relationships [62–64]. Meanwhile, the surface albedo
and the hot heat fluxes seemed to be less significant
in SEBS output inconsistencies [44,65]. Accordingly,
effective water-saving plans shall continuously monitor
surface temperature variations to ensure their validity
particularly in arid regions where the water resource
management plans are always questioned of its sustain-
ability [10,66].

The use of the SEBS input/output inconsistencies is
to develop and disseminate information about condition-
specific management approaches that are considered to
be profitable and practical for agricultural practices and
the supply chain [67,68]. The use of the meteorological
data for SEBS model performance is to estimate the daily
ET on an accurate manner to minimize the overfit of the
estimation using a single month data [22,69,70].

4 Conclusions

SEBSwas used in the arid environments ofWadi Ad-Dwaser
to estimate the daily ET. The algorithm estimated daily ET
values are within the empirical range of 1.2–8.9mm/day.
The desirability function as well as the ANN analysis
show the significant importance of input datasets used
to investigate and examine the SEBS input parameters
over the designated study area. Temperature and relative
humidity are significant parameters and must be consid-
ered and regularly monitored for water quality manage-
ment plans in the selected study area. Further temporal
data analysis is required to identify the trend of the solar
radiation role. The current investigation is a biophysical
evaluation that delivers information that could be used by
farmers to enhance their cropping pattern. Furthermore,
the outcomes could be valuable for other investigators
who could use these results for diverse studies. For future
considerations, a greater number of factors such as soil,
climate, irrigation facilities, and socioeconomic shall be
taken into consideration.

Acknowledgment: This project was funded by the Deanship
of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under grant no. (G-65-155-1440). The authors, there-
fore, acknowledge with thanks, DSR technical and financial
support.

Conflict of interest: The author declares that there is no
conflict of interest regarding the publication of this article.

References

[1] Brunet Y, Nunez M, Lagouarde J-P. A simple method for esti-
mating regional evapotranspiration from infrared surface
temperature data. ISPRS J Photogramm Remote Sens.
1991;46:311–27.

[2] Zhang Y, Li L, Chen L, Liao Z, Wang Y, Wang B, et al. A modified
multi-source parallel model for estimating urban surface eva-
potranspiration based on ASTER thermal infrared data. Remote
Sens. 2017;9:1029.

[3] Peng J, Liu Y, Zhao X, Loew A. A direct algorithm for estimating
daily regional Evapotranspiration from modis TOA radiances.
2012 IEEE international geoscience and remote sensing sym-
posium. Munich, Germany: IEEE; 2012. p. 702–5

[4] Montes C, Jacob F. Comparing Landsat-7 ETM + and ASTER
Imageries to estimate daily evapotranspiration within a
Mediterranean vineyard watershed. IEEE Geosci Remote Sens
Lett. 2017;14:459–63.

[5] Sarkkola S, Hökkä H, Koivusalo H, Nieminen M, Ahti E,
Päivänen J, et al. Role of tree stand evapotranspiration in
maintaining satisfactory drainage conditions in drained peat-
lands. Can J For Res. 2010;40:1485–96.

[6] Pinnix GD, Miller GL. Comparing evapotranspiration rates of
tall fescue and bermudagrass in North Carolina. Agric Water
Manag. 2019;223:105725.

[7] Ladson A, Moore I. Soil water prediction on the Konza Prairie
by microwave remote sensing and topographic attributes.
J Hydrol. 1992;138:385–407.

[8] Sewell PD, Quideau SA, Dyck M, Macdonald E. Long-term
effects of harvest on boreal forest soils in relation to a remote
sensing-based soil moisture index. For Ecol Manag.
2020;462:117986.

[9] Kustas W, Norman J. Use of remote sensing for evapotran-
spiration monitoring over land surfaces. Hydrol Sci J.
1996;41:495–516.

[10] Elhag M, Psilovikos A, Manakos I, Perakis K. Application of the
SEBS water balance model in estimating daily evapotran-
spiration and evaporative fraction from remote sensing data
over the Nile Delta. Water Resour Manag. 2011;25:2731–42.

[11] Olioso A, Chauki H, Courault D, Wigneron J-P. Estimation of
evapotranspiration and photosynthesis by assimilation of
remote sensing data into SVAT models. Remote Sens Environ.
1999;68:341–56.

[12] Wu C-D, Cheng C-C, Lo H-C, Chen Y-K. Application of SEBAL
and Markov models for future stream flow simulation through
remote sensing. Water Resour Manag. 2010;24:3773–97.

[13] Hartman MD, Baron JS, Ojima DS. Application of a coupled
ecosystem-chemical equilibrium model, DayCent-Chem, to
stream and soil chemistry in a Rocky Mountain watershed. Ecol
Model. 2007;200:493–510.

[14] Johnson NL, Kotz S, Balakrishnan N. Continuous univariate
distributions, vol. 2 of wiley series in probability and

332  Mohamed Elhag et al.



mathematical statistics: applied probability and statistics.
New York: Wiley; 1995.

[15] Shahzad Sultan IA. Determination of daily regional scale
actual evapotranspiration for indus sub-basin using landsat
ETM. Pak J Meteorol. 2008;4:49–58.

[16] Krishnan N, Raj C, Chaubey I, Sudheer K. Parameter estimation
of SWAT and quantification of consequent confidence bands of
model simulations. Environ Earth Sci. 2018;77:470.

[17] Roerink G, Su Z, Menenti M. S-SEBI: a simple remote sensing
algorithm to estimate the surface energy balance. Phys Chem
Earth Part B Hydrol Ocean Atmosphere. 2000;25:147–57.

[18] Su Z. The surface energy balance system (SEBS) for estimation
of turbulent heat fluxes. Hydrol Earth Syst Sci. 2002;6:85–99.

[19] Su H, McCabe M, Wood EF, Su Z, Prueger J. Modeling evapo-
transpiration during SMACEX: comparing two approaches for
local-and regional-scale prediction. J Hydrometeorol.
2005;6:910–22.

[20] Chen X, Su Z, Ma Y, Yang K, Wang B. Estimation of surface
energy fluxes under complex terrain of Mt. Qomolangma over
the Tibetan Plateau. Hydrol Earth Syst Sci. 2013;17:1607–18.

[21] Su Z. The surface energy balance system (SEBS) for estimation
of turbulent heat fluxes. HESS. 2002;6(1):85–100.

[22] Allen RG, Tasumi M, Trezza R. Satellite-based energy balance
for mapping evapotranspiration with internalized calibration
(METRIC) – model. J Irrig Drain Eng. 2007;133:380–94.

[23] Derringer G, Suich R. Simultaneous optimization of several
response variables. J Qual Technol. 1980;12:214–9.

[24] Ficici F, Koksal S, Karacadag MC. Optimization of cutting
parameters for surface roughness of stainless steel in drilling
process. Int J Adv Sci. 2012;2:114–21.

[25] Kunnan AJ, Carr NT. Statistical analysis of test results. The
encyclopedia of applied linguistics. New Jersey, USA: John
Wiley & Sons; 2013.

[26] Sibalija TV, Majstorovic VD. An integrated approach to opti-
mise parameter design of multi-response processes based on
Taguchi method and artificial intelligence. J Intell Manuf.
2012;23:1511–28.

[27] Muthukrishnan N, Babu TM, Ramanujam R. Fabrication and
turning of Al/SiC/B4C hybrid metal matrix composites opti-
mization using desirability analysis. J Chin Inst Ind Eng.
2012;29:515–25.

[28] Maiyar LM, Ramanujam R, Venkatesan K, Jerald J. Optimization
of machining parameters for end milling of Inconel 718 super
alloy using Taguchi based grey relational analysis. Proc Eng.
2013;64:1276–82.

[29] Jo S, Sung H, Ahn B. A comparative study on the performance
of intrusion detection using decision tree and artificial neural
network models. J Soc Korea Ind Syst. 2015;11:33–45.

[30] Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent
neural networks for sequence learning. arXiv preprint
arXiv:150600019. 2015.

[31] Lek S, Guégan J-F. Artificial neuronal networks: application to
ecology and evolution. Berlin, Germany: Springer Science &
Business Media; 2012.

[32] Abyaneh HZ. Evaluation of multivariate linear regression and
artificial neural networks in prediction of water quality para-
meters. J Environ Health Sci Eng. 2014;12:40.

[33] Vafakhah M. Application of artificial neural networks and
adaptive neuro-fuzzy inference system models to short-term
streamflow forecasting. Can J Civ Eng. 2012;39:402–14.

[34] Yilmaz N, Elhag M, Yasar U. Consideration of phytoplankton
composition and water quality of Anamur (Dragon) Creek,
Turkey. Desalin Water Treat. 2017;91:386–94.

[35] Wen X, Fang J, Diao M, Zhang C. Artificial neural network
modeling of dissolved oxygen in the Heihe river, Northwestern
China. Environ Monit Assess. 2013;185:4361–71.

[36] Elhag M, Bahrawi JA. Realization of daily evapotranspiration in
arid ecosystems based on remote sensing techniques. geo-
scientific instrumentation. Methods Data Syst. 2017;6:141.

[37] Elhag M, Bahrawi JA. Conservational use of remote sensing
techniques for a novel rainwater harvesting in arid environ-
ment. Environ Earth Sci. 2014;72:4995–5005.

[38] Almazroui M. Simulation of present and future climate of Saudi
Arabia using a regional climate model (PRECIS). Int J Climatol.
2013;33:2247–59.

[39] Elhag M. Evaluation of different soil salinity mapping using
remote sensing techniques in arid ecosystems, Saudi Arabia.
J Sens. 2016;2016:7596175–84.

[40] Psilovikos A, Elhag M. Forecasting of remotely sensed daily
evapotranspiration data over Nile Delta region, Egypt. Water
Resour Manag. 2013;27:4115–30.

[41] Liu C, Wang H. The interface processes of water movement in
the soil-crop-atmosphere system and water-saving regulation.
Beijing: Science Press; 1999.

[42] Taylor AR. A method for surface irrigation design based on infil-
tration using the border strip as an infiltrometer: Lincoln College.
Christchurch, New Zealand: University of Canterbury; 1981.

[43] Monahan AH. Nonlinear principal component analysis by
neural networks: theory and application to the Lorenz system.
J Clim. 2000;13:821–35.

[44] Elhag M. Inconsistencies of SEBS model output based on the
model inputs: global sensitivity contemplations. J Indian Soc
Remote. 2016;44:435–42.

[45] Cheng C, Parzen E. Unified estimators of smooth quantile and
quantile density functions. J Stat Plan Inference.
1997;59:291–307.

[46] Robert CP, Gene Hwang J. Maximum likelihood estimation
under order restrictions by the prior feedback method. J Am
Stat Assoc. 1996;91:167–72.

[47] Saaty TL. A scaling method for priorities in hierarchical struc-
tures. J Math Psychol. 1977;15:234–81.

[48] Yager RR. On ordered weighted averaging aggregation opera-
tors in multicriteria decisionmaking. IEEE Trans Syst Man
Cybern. 1988;18:183–90.

[49] Hajkowicz SA, McDonald GT, Smith PN. An evaluation of mul-
tiple objective decision support weighting techniques in nat-
ural resource management. J Environ Plan Manag.
2000;43:505–18.

[50] Su Z, Yacob A, Wen J, Roerink G, He Y, Gao B, et al. Assessing
relative soil moisture with remote sensing data: theory,
experimental validation, and application to drought moni-
toring over the North China Plain. Phys Chem Earth Parts A/B/
C. 2003;28:89–101.

[51] Li F, Kustas WP, Prueger JH, Neale CM, Jackson TJ. Utility of
remote sensing–based two-source energy balance model
under low-and high-vegetation cover conditions.
J Hydrometeorol. 2005;6:878–91.

[52] Li Z-L, Tang R, Wan Z, Bi Y, Zhou C, Tang B, et al. A review of
current methodologies for regional evapotranspiration esti-
mation from remotely sensed data. Sensors. 2009;9:3801–53.

Input/output inconsistencies of daily evapotranspiration  333



[53] Singh A, Datta S, Mahapatra SS. Principal component analysis
and fuzzy embedded Taguchi approach for multi-response
optimisation in machining of GFRP polyester composites:
a case study. Int J Ind Syst Eng. 2013;14:175–206.

[54] Elhag M. Remotely sensed vegetation indices and spatial
decision support system for better water consumption regime
in Nile delta. A case study for rice cultivation suitability map.
J Life Sci. 2014;11:201–9.

[55] Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ,
Stenseth NC. Using the satellite-derived NDVI to assess eco-
logical responses to environmental change. Trends Ecol Evol.
2005;20:503–10.

[56] Bastawesy ME. Ramadan Ali R, Faid A, Osta ME. Assessment of
waterlogging in agricultural megaprojects in the closed drai-
nage basins of the western desert of Egypt. Hydrol Earth Syst
Sci. 2013;17:1493–501.

[57] Jia K, Liang S, Gu X, Baret F, Wei X, Wang X, et al. Fractional
vegetation cover estimation algorithm for Chinese GF-1 wide
field view data. Remote Sens Environ. 2016;177:184–91.

[58] Dureja J, Gupta V, Sharma VS, Dogra M, Bhatti MS. A review of
empirical modeling techniques to optimize machining para-
meters for hard turning applications. Proc Inst Mech Eng B J
Eng Manuf. 2016;230:389–404.

[59] Glenn EP, Huete AR, Nagler PL, Nelson SG. Relationship
between remotely-sensed vegetation indices, canopy attri-
butes and plant physiological processes: what vegetation
indices can and cannot tell us about the landscape. Sensors.
2008;8:2136–60.

[60] Su Z, Schmugge T, Kustas W, MassmanW. An evaluation of two
models for estimation of the roughness height for heat
transfer between the land surface and the atmosphere. J Appl
Meteorol. 2001;40:1933–51.

[61] Chen K-S, Wu T-D, Tsang L, Li Q, Shi J, Fung AK. Emission of
rough surfaces calculated by the integral equation method

with comparison to three-dimensional moment method simu-
lations. IEEE Trans Geosci Remote Sens. 2003;41:90–101.

[62] Cleugh HA, Leuning R, Mu Q, Running SW. Regional evapora-
tion estimates from flux tower and MODIS satellite data.
Remote Sens Environ. 2007;106:285–304.

[63] Vinukollu RK, Wood EF, Ferguson CR, Fisher JB. Global esti-
mates of evapotranspiration for climate studies using multi-
sensor remote sensing data: evaluation of three process-
based approaches. Remote Sens Environ. 2011;115:801–23.

[64] McColl KA, Salvucci GD, Gentine P. Surface flux equilibrium theory
explains an empirical estimate of water-limited daily evapotran-
spiration. J Adv Model Earth Syst. 2019;11:2036–49.

[65] Timmermans WJ, Gieske AS, Kustas WP, Wolski P, Arneth A,
Parodi GN. Determination of water and heat fluxes with MODIS
imagery. In: Maun B, editor. Remote sensing for agriculture,
ecosystems, and hydrology V. California, USA: International
Society for Optics and Photonics; 2004. p. 444–55.

[66] Rice B, Harter T, Foglia L, Kisekka I. Automated Basin-wide ET
estimation using the SEBS method to improve groundwater
sustainability plan development. AGUFM. 2019;2019:H21C-08.

[67] Kumar V, Panu U. Predictive assessment of severity of agri-
cultural droughts based on agro-climatic factors 1. J Am Water
Resour Assoc. 1997;33:1255–64.

[68] Mandal D, Ghosh PP, Dasgupta M. Appropriate precision
agriculture with site-specific cropping system management for
marginal and small farmers. Plant Sci Rev. 2012;2013:121.

[69] Allen RG, Jensen ME, Wright JL, Burman RD. Operational esti-
mates of reference evapotranspiration. Agron J.
1989;81:650–62.

[70] Norman L, Tallent-Halsell N, Labiosa W, Weber M, McCoy A,
Hirschboeck K, et al. Developing an ecosystem services online
decision support tool to assess the impacts of climate change
and urban growth in the Santa Cruz watershed; where we live,
work, and play. Sustainability. 2010;2:2044–69.

334  Mohamed Elhag et al.


	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data sets
	2.3 The SEBS fundamentals
	2.4 Optimization function analysis
	2.5 ANN concepts
	2.6 Output statistical analysis

	3 Results and discussion
	3.1 SEBS realization
	3.2 Input inconsistencies
	3.3 Outputs inconsistencies

	4 Conclusions
	Acknowledgment
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


