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Abstract: To understand the influence of underground
mining disturbances on the shallow soil moisture in the
Daliuta coal mine, remote sensing monitoring of the tem-
poral and spatial evolution of surface soil moisture and
the influence of mining on multi-source, multi-temporal
and high spatial resolution remote sensing data were car-
ried out. The scale effect of monitoring the soil moisture at
different scales was analyzed using the Scaled Soil Mois-
ture Monitor Index (S-SMMI). In this paper, SPOT 5/6 and
Worldview-2 were used as the data source and mainly
made up two aspects of the research: 1) based on the three
SPOT data sets with the use of S-SMMI from different an-
gles from the Daliuta mine from nearly three years of soil
moisture temporal and spatial changes, the results show
that the perturbation has a negative effect on the shal-
low soil moisture in the Daliuta coal mine, and average
soil moisture of the mining area is smaller than the non-
mining area, but the surface ecological construction has
effectively improved the impact of the underground min-
ing disturbance on the surface soil moisture. 2) the scale
conversion of Worldview-2 data was carried out based on
the resampling method. S-SMMI was used to analyze the
scale effect of soil moisture monitoring at different scales.
The results show that the difference between the soil mois-
ture is only 0.0016 during the conversion process of 2 m-30
m.
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1 Introduction
Soil moisture (SM) is a physical quantity that indicates the
degree of soil dryness andwetness in a certain depth [1–4].
Soil moisture is an important factor in studying the conver-
sion of ground gas energy andwater cycle, plays an impor-
tant role in various processes and feedback loops within
the Earth system and also an important indicator for re-
mote sensingdroughtmonitoring [5–10]. Soilmoisture can
be obtainedbyfield instrumentalmeasurements or remote
sensing estimates. With the rapid development of Earth
observation technology, the field of soil moisture remote
sensing has developed greatly in the past few decades [11,
12]. Thus, researchers have gradually shifted their atten-
tion to monitoring soil moisture by using remote sensing
techniques [13–15]. Currently, SM is an important indicator
of remote sensingmonitoring. Based on themulti-band in-
formation of visible light, near infrared, thermal infrared
and microwave, many models and methods for soil mois-
ture remote sensing monitoring are proposed [16–18]. It
was developed by establishing relationships between SM
and soil reflectivity or surface temperature/vegetation cov-
erage and soil thermal properties [19, 20].

Traditional SM acquisition methods mainly include
single-point based or specific location measurements.
The direct and most accurate method is the gravimetric
method [21, 22]. The original soil moisture content can
be confirmed by the change of soil quality. However, this
method is destructive and cannot be reproduced. More-
over, this method needs the support of human sampling
and laboratory equipment [9]. Today, soil moisture mea-
suring instruments have been further developed. For ex-
ample, Time Domain Reflectometry (TDR), neutron probes
and gamma ray scanners are subsequently used to indi-
rectly measure the SM [23]. However, these methods are
based on pointmeasurements, and cannot be used as data
for regional or surface soil moisture. With the rapid de-
velopment of remote sensing technology, remote sensing
monitoring of soil moisture has become the focus of re-
search. There methods were established for retrieving soil
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moisture based on the relationship between surface soil
moisture and satellite-derived land surface parameters.
The spectral feature space method based on NIR-Red has
been further extended and applied because of its simplic-
ity and ease of operation. There are two kinds of soil mois-
ture monitoring indices based on NIR-Red spectral char-
acteristic space. One is based on the vertical distance be-
tweenanypoint in the characteristic space and the straight
line passing through the origin (which is perpendicular to
the soil baseline), such as Perpendicular Dryness Index
(PDI), the Modified Perpendicular Drought Index (MPDI),
etc. The second is to use the distance from any point in the
characteristic space to the origin directly (such as short-
wave infrared soil moisture index, soil moisture monitor-
ing index (SMMI), etc.) to characterize the soil moisture
status in the study area.

Based on the energy balance equation, the principles
of the thermal inertia method and the thermal inertia of
remote sensing imaging are systematically summarized,
and the concept of Apparent Thermal Inertia is proposed
to make the visible light and near-infrared channel reflec-
tivity provided by satellite. And thermal infrared radia-
tion temperature difference to calculate thermal inertia
and estimate soil moisture becomes possible [24, 25]. In
recent years, the drought monitoring index derived from
the vegetation index has been further expanded and ap-
plied because of its ease of use. Moran et al. [26] proposed
the evapotranspiration index-water deficit index (WDI),
which can monitor the surface vegetation coverage and
part of the vegetation coverage. Based on the water loss
index, the concept of Temperature Vegetation Dryness In-
dex (TVDI) was proposed by Sandholt [15] in 2002. The
algorithm is only required to rely on remote sensing im-
age data, and the normalized difference vegetation index
(Normalized Difference Vegetation Index, NDVI) and sur-
face temperature are normalized. Ghulam [27] proposed a
soil moisture monitoring model based on surface spectral
characteristics—Perpendicular Dryness Index (PDI). This
method directly replaces the previous Normalized Differ-
ence Vegetation Index (NDVI) and albedo (Albedo) with
spectral features, which is simple and effective. However,
PDI is more suitable for drought monitoring in bare soils,
and monitoring accuracy in the vegetation area will be
affected. In response to this problem, Ghulam [28] intro-
duced vegetation coverage and proposed a Modified Per-
pendicular Drought Index (MPDI). Zhang [29] used HyMap
andHyperion images to study theMount Lyell mining area
in Australia and the Dexing copper mine in China and pro-
posed VII (Vegetation Inferiority Index, VII) and WDI (Wa-
ter Absorption Disrelated Index, WDI). The results show
that the vegetation is better than the Traditional Vegeta-

tion inMonitoringVegetationGrowth. The indexNDVI and
WDI can be used to identify hematite in sparse vegetation
covered areas. Amani [30] constructed two trigonometric
soil moisture indices (Triangle Soil Moisture Index, TSMI)
and enhanced the triangular soilmoisture index (Modified
Triangle Soil Moisture Index, MTSMI), based on the Land-
sat 8 NIR-Red spectral feature space. Amani compared it
with the real data and considered that the two exponents
were retrieved. Soil moisture is highly correlated with 5 cm
deep soil moisture.

Throughout the aforementioned studies, a variety of
indicator factors were initially used to establish a large
number of soil moisture inversion models. The indica-
tors include thermal inertia, surface temperature, vege-
tation index, backscatter coefficient, and brightness tem-
perature, etc. Later, research began with active and pas-
sive remote sensing. The data were combined to invert the
soil moisture. Many scholars verified the different drought
monitoring indexes based on the two-dimensional spec-
tral feature space. The results showed that they have dif-
ferent applicability to large-scale remote sensing drought
monitoring [31].

The study of the Shendong Mining Area mostly analy-
ses the changes of vegetation and soil moisture in the min-
ing area to evaluate the environmental quality of the min-
ing area in themacroscopic domain. In recent years, many
scholars have conducted research on theDaliutamine, but
previously, remotemonitoring on the surface environment
of the Daliuta Coal Mine had not been completed. The fol-
lowing problems still exist:

1. Insufficient analysis of the influenceof underground
mining activities on the surface soil moisture inmin-
ing areas at the mine scale.

2. The selection of data uses medium- and low-
resolution data to study the surface environment of
the mine and lacks high-resolution remote sensing
data for use at the mine scale.

3. At present, there is a lack of research on the scale ef-
fect of mining areas, and the scale of previous stud-
ies is relatively large.

Therefore, the specific objectives of our study are to:

1. Based on the three-period satellite data, the Scaled
Soil Moisture Monitoring Index (S-SMMI) based on
the NIR-Red feature space was used to analyze the
differences in soil moisture between mining areas
and non-mining areas, and the impact of under-
ground mining activities on surface moisture in the
mining area was analyzed from the scale of mines.
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Figure 1: The geographical location of the Daliuta coal mine.

2. To study the scale effect of using S-SMMI to monitor
soil moisture in the Daliuta coal mine under differ-
ent scales.

2 Study Area
The Daliuta Coal Mine was established in October 1987
and went into production in 1996. The mine is located ap-
proximately 52.5 km northwest of Shenmu County on the
edge of the Mu Us Desert, the center of the hinterland
of the Dongsheng Coal Mine (38∘52′N-39∘41′N, 109∘51′E-
110∘46′E) (Figure 1). Daliuta Coal Mine is the first modern
coal mine in the world with annual output of 33×106 t/a.

The stratigraphic structural unit in the study area belongs
to the Ordos Block of North China Platform. Most of them
are Triassic, Jurassic and Tertiary sedimentary strata, and
Quaternary is all over the region which covered with de-
posits such as aeolian sand and the unconsolidated Sara
Wusu Formation aquifer. Daliuta Coal Mine mainly mines
No.1−2, No.2−2andNo.5−2 coal seams of the Jurassic Yan’an
Formation, and the average depth of the coal seam is ap-
proximately 150 m [32, 33]. The coal mine terrain is high
in the north and low in the south, the north is a windy
and sandy beach, and the south andwest are typical Gaisa
loess hilly landform areas, with an elevation of 1000 to
1250 m. It is a semi-arid continental monsoon climate in
the temperate zone, characterized by long and cold win-
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ters. The average annual wind speed is 2.3 m/s, and the
maximumwind speed is 28.0 m/s. The types of land cover
are mostly sandy land, shrubbery land, natural grassland,
bare rock, fixed sandy land, and sand dune lowland. The
lack of water resources in the study area and the fragile
ecological environment are one of the unfavourable con-
ditions that limit the development of large-scale coal re-
sources in the area.

3 Methods

3.1 Data

Data used in this research are SPOT5 from October 16,
2010, and September 28, 2013; SPOT6 fromOctober 5, 2015;
Worldview-2 from 2015 September 12, 2015.

3.2 Image processing

Using the calibration coefficients of SPOT 6 remote sens-
ing image for radiometric calibration, the original pixel DN
value is converted into apparent radiance through sensor
calibration. The FLAASH Atmospheric Correction Module
was used in ENVI 5.1 to complete atmospheric calibration
of the radiometrically calibrated image. Since the SPOT 5
imagepixel values are 16-bit positive integers, they are con-
verted into 8-bit storage format in Photoshop and then ra-
diometrically scaled using gain offset coefficients. The cal-
culation formula is:

L = DN
Gains + Bias (1)

where DN is the value of the original image, Gains is the
gain value of the remote sensing image; Bias is the offset,
and the offset of each band is 0. Each band gain value
is shown in Table 1. We perform a layer overlay and con-
vert into BIL format to complete atmospheric correction of
SPOT5 imagery.

Table 1: SPOT 5 data band gain value.

Band Green Red NIR SWIR
2010.10.16 0.36860 0.35956 0.33653 0.09494
2013.09.28 0.51537 0.46372 0.43206 0.12397

The Worldview-2 image needs to convert the DN value
into the spectral radiance value of the entrance pupil of
the sensor before atmospheric correction. We first con-
vert the cell DN value into band integrated radiance

Li
(︀
W · m−2 · sr−2

)︀
and calculate the spectral radiance

L
(︀
W · m−2 · sr−1 · um−1)︀.

Li = DN · absCalFactor (2)

L = Li/∆λ (3)

where the absCalFactor is the absolute scaling factor,
which is the effective width of the image band (um), Both
of the above values can be found in the *.IMD file (Table 2).

Table 2:Worldview-2 Absolute Calibration Factor and Effective
Width for Each Band.

Band Green Red NIR SWIR
Absolute
calibration

0.0126 0.0971 0.0110 0.0122

Effective
width

0.0543 0.0630 0.0574 0.0989

The experimental image contains three different sen-
sors. The remote sensing images acquired by different sen-
sors have different projection information and will pro-
duce different degrees of geometric distortion during the
acquisition. Therefore, the experiment uses a Worldview-2
image as the reference image to complete the imagematch-
ing. The Image Registration workflow completes the geo-
metric registration of other images.

According to the 2013 DWG format file of the Daliuta
Coal Mine, the coordinated translation conversion in AU-
TOCAD converts it to WGS84 coordinates with the transla-
tion of east coordinates of 400066 and north coordinates
of 4298218. However, the translation result still lacks pro-
jection information, so the output is opened in ArcGIS in
.shp format and the projection is defined. Then, we create
a file geodatabase and create a new line feature class. We
manually highlight and save the 2013 Daliuta mining area
in the .shp data during editing. Due to the lack of 2015 data,
themining area boundary in 2013 will use the 2013mining
area vector.

3.3 SMMI Index Construct

The Soil Moisture Monitor Index (SMMI) uses the distance
from any point in the NIR-Red two-dimensional spectral
feature space to the origin to characterize the soil moisture
status in the study area. It is a soil moisture monitoring
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Figure 2: Sketch map of Scaled Soil Moisture Monitoring Index
(SSMMI).

index that does not depend on the soil background line.

SMMI = |OE|
|OD| =

√︁
ri2 + rj2

⧸︂√
2 (4)

where ri, rj is the surface reflectivity of TM/ETM+ i-band
and j-band respectively. For example, in the NIR-Red two-
dimensional spectral feature space, i=4 and j=3. In the
NIR-Red space, the change of the|OE| distance reflects the
change of the soil moisture to some extent (Figure 2). From
the moist bare soil at point B to the semi-moisture full veg-
etation coverage at point A and to the dry bare soil at point
C, the soilmoisture showsadecreasing trend. Thedistance
fromany point E to O in the two-dimensional feature space
can explain the change of soil moisture.When point E is at
point B, |OE| is the minimum and the soil moisture is the
highest. When point E is at point C, |OE| is the maximum,
and the soil moisture is the minimum. Usually, space clos-
est to the O point is awater body or a relatively humid area,
and the space far from the O point is a relatively dry or low-
vegetation vegetation coverage area.

3.4 Scaled SMMI Index

To eliminate the phase difference, a scaled soil moisture
monitoring index S-SMMI (scaled SMMI) was proposed
above the soil moisture monitoring index SMMI.

S − SMMI = (SMMI − SMMI0) / (SMMIm − SMMI0) (5)

where SMMI is the SMMI value corresponding to a pixel;
SMMI0 is the SMMI value corresponding to the saturated
bare soil, and SSMMIm refers to the dry SMMI value. We
select the SMMI value of SMMI0 when the confidence
rate of the cumulative frequency of SMMI in each image
is 1%. When the cumulative frequency confidence is 99%,
the corresponding SMMI value isSSMMIm. The smaller
the SSMMI value, then the greater the soil moisture con-
tent, because the S-SMMI value is negatively related to soil
drought. Therefore, the 1-S-SMMI calculations were made
to have a positive correlation for analysis, and the SPOT
6 soil moisture calculation results were resampled into a
spatial resolution of 10 m for subsequent analysis.

4 Results

4.1 Analysis of the Temporal Change of Soil
Moisture in the Daliuta Mining Area and
Non-mining Area

As the mining progress continues to deepen, the average
soil moisture in Daliuta has decreased between 2010 and
2015, both in the mining area and non-mining area (Fig-
ure 3). However, according to the standard for the classifi-
cation of the humidity level, the soil moisture is in a wet
state. In 2013, the soil moisture was generally higher than
that in 2010 but it decreased again in 2015. On the whole,
the average soil moisture in non-mining areas is greater
than the mining area within the three periods.

Figure 3: Variation of average soil moisture in Mining Area and
non-mining area of Daliuta.
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Table 3: The area of different underlying surfaces and the mean 1-SSMMI index.

Time Opencast mine Vegetation Sand Water
Area(km2) 1-SSMMI Area(km2) 1-SSMMI Area(km2) 1-SSMMI Area(km2) 1-SSMMI

2010.10.16 1.58 0.85 73.90 0.70 14.67 0.32 0.4 0.80
2013.09.28 2.27 0.79 74.24 0.71 11.30 0.40 0.03 0.97
2015.10.15 2.98 0.78 77.90 0.65 5.76 0.30 0.04 0.96

Figure 4: Changes in Soil Moisture at Different Levels in Daliuta
Mining and Non-mining Areas.

4.2 Spatial Variation of Soil Moisture in
Daliuta Mining Area and Non-mining
Area

The soil moisture level classification criteria are: 1) when
0<S-SMMI≤ 0.2 is extremely arid; 2) when 0.2<S-SMMI≤ 0.4
is drought; 3) when 0.4<S-SMMI≤ 0.6 is normal; 4) when
0.6<S- SMMI ≤ 0.8 is wet; 5) when 0.8 <S-SMMI ≤ 1 is ex-
tremely moist. The extremely arid area of the Daliuta min-
ing area is decreasing; the area of non-mining areas is in-
creasing,whichhasdecreased and increasedby 2.57%and
0.37%, respectively. The normal and wet soil moisture ar-
eas are increasing, and the increase rate of the mining ar-
eas is relatively large. From the year 2010 to 2015, the pro-
portion of thewet soil area in themining area increased by
15.7%. Extremely humid areas have a decreasing trend, in
2015, theproportions of normal,wet, and extremelyhumid
areas in the Daliuta mining and non-mining areas were
87.62% and 86.42% respectively, of which the proportion
of the mining area was 1.66% higher than that of the non-
mining areas (Figure 4).

Figure 5 shows that, overall, the soil moisture in the
northwest, middle, and southeast parts of the Dali Tower
was mostly arid and extremely arid in 2010, and by 2015,
its extremely arid areawas significantly reduced. However,

the extremelywetted area also appearedwithin three years
as a whole. There is a decreasing trend; the extremely arid
area of the mining area is mainly distributed in the north-
east and northwest. It can be seen from the figure that the
extremely arid area of themining area was significantly re-
duced from 2010 to 2015, and the area of the normal and
wet soil increased. This is due to the result of the increase
in the area of desert vegetation on the surface of the Dali-
uta coal mining area in 2010; from 2010 to 2015, the area of
the drought in the north, southwest, and east of the non-
growing area continues to increase.

4.3 Analysis of Soil Moisture Changes in
Different Underlying Surfaces of Daliuta

The maximum likelihood classification of the three re-
motely sensed images were done on ENVI. To improve the
separability and classification accuracy of ROI, the image
texture information, normalized vegetation index and S-
SMMI were calculated before the classification, and the
original image was superimposed onto it. In a new layer,
we select five surfaces ROIs on the new layer as open-
cast mines, bodies of water, impervious layers, vegetation,
sandy lands, and then generate random samples from the
selected ROI.We use random samples to complete the new
layer. Then, we perform Maximum Likelihood Classifica-
tion andpost-classification processing; the accuracy of the
selected original ROI as a real surface sample is verified,
and the overall classification accuracy and kappa coeffi-
cient of the classifications are recorded.

In the past three periods, the surface sand area of the
Daliuta CoalMinehasdecreasedby8.91 km2 between 2010
and 2015, showing a gradual decrease, while the area of
vegetation, and surface coal mines has increased to vary-
ing degrees. As seen in Table 2 and Figure 6, the average
humidity in the water and sand areas tends to be stable,
and the mean value of vegetation humidity shows a down-
ward trend. This is because although the vegetation cover
area increases, and the increased vegetationmostly grows
in the sand, resulting in overall vegetation. With the de-
crease of the average humidity, the soil moisture of open-
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Figure 5: Spatial Distribution of 1-SSMMI Index of SPOT in Daliuta (a) in 2010(a), 2013(b) and 2015(c).

pit coal mines continues to decrease, but it is in a wet state
in all three periods.

4.4 Remote Sensing Image Scale Conversion
and Evaluation Index

After the ascending scale conversion, remote sensing data
will inevitably lead to different levels of information loss or
variation in the image. With different methods for scaling
up, the loss of spectral information and feature informa-
tion will also have different degrees of severity. To be able
to quantitatively analyze the scale effect of the remote sens-
ing data studied, the analysis indicators such as the mean
value of the pixel, the standard deviation, the peak signal-
to-noise ratio, the correlation coefficient, and the spectral

distortion are introduced to describe the scale effect be-
tween the studied scales.

1. Calculating the average value of all the pixel values
in the remote sensing image can express the mean
value of the entire image, and obtaining the mean
value in three different scales can intuitively explain
the scale effect. Its expression is as follows:

E = 1
MN

M∑︁
i=1

N∑︁
j=1

f (i, j) (6)

where E is the average value of the pixel values in
the entire image, M and N are the number of rows
and columns of the pixels in the image and are the
pixel values in the i row and the j column.

2. We calculate the Standard deviation. The standard
deviation describes the degree of deviation between
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Figure 6: Classification results for 2010(a), 2013(b), and 2015(c).

the pixel value and the average value of the image
before and after scaling. The larger the standard de-
viation, then the more dispersed the gray value of
the image; the better the visual effect, the greater the
amount of information covered, and the worse the
visual effect. For the smaller the amount of informa-
tion, the expression is as follows:

std =

⎯⎸⎸⎷ 1
MN − 1

M∑︁
i=1

N∑︁
j=1

f (i, j) (7)

whereM and N are the number of rows and columns
of the pixels in the image and are the pixel values in
the i row and the j column.

3. For the Peak Signal to Noise Ratio, the PSNR de-
scribes themaximumvalue of the imagenoise signal
and can express the relationship between the ver-
tex value and background noise. In general, PSNR
is used to compare the difference between the image

before and after the scale conversion to express the
degree of distortion after the image is transformed.
The larger the peak signal-to-noise ratio, then the
better the image quality and the better the fidelity
is. For the PSNR, the expression is as follows:

PSNR = 10 (8)

× lg

⎡⎢⎢⎢⎣ 2552

M × N
M∑︀
i=1

N∑︀
j=1

(︀
f (i, j) − g(i, j)

)︀2
⎤⎥⎥⎥⎦

where PSNR is the peak signal-to-noise ratio, f (i, j)
and g(i, j) are pixel values before and after scaling.

4. We calculate the Spectral distortion. Spectral distor-
tion describes the distortion of the upscaled spec-
trumof a remote sensing image. The larger the value,
then more image loss occurs.
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It is truly larger, but the difference is less, and the
formula is as follows:

D = 1
MN

M∑︁
i=1

N∑︁
j=1

⃒⃒
f (i, j) − g(i, j)

⃒⃒
(9)

where f (i, j) and g(i, j) indicates the pixel values be-
fore and after the remote sensing image transforma-
tion.

The 1-SSMMI mean values are basically the same at
spatial resolutions of 2 m, 6 m, and 30 m. Table 4 shows
that as the scale increases, the mean 1-SSMMI of the im-
age shows a decreasing trend, but the change is very small,
and the average soil moisture from the 2 m scale to the 30
m scale only decreased by 0.0016. This shows that the soil
moisture information in the 2m to 30m scale conversion is
basically unchanged. The standarddeviationof 1-SSMMI is
the smallest in the 2m scale, and the standard deviation is
in the middle of 6 m, while the standard deviation of 30m
is the largest. This shows that the image covers more infor-
mation as the scale increases.

Table 4: The mean and standard deviation of three scales 1-SSMMI.

Index 2m 6m 30m
mean value of the pixel 0.5694 0.5693 0.5678
Standard deviation 0.1872 0.1874 0.1888

Table 5: The PSNR and Spectral distortion of three scales 1-SSMMI.

Index 2m to 6m 6m to 30m 2m to 30m
PSNR 70.5707 65.4526 65.3457

Spectral
distortion

0.00008 0.00015 0.00016

Table 5 shows that when 2 m rise to 6 m, PSNR is the
largest, and 6 m rises to 30 m, while 2 m rise to 30 m. This
shows that from the point of view of fidelity, the 1-SSMMI
distortion is the lowest and the fidelity is high in the first
rise scale (Figure 7). The degree of 1-SSMMI distortion in
the second elevation scale is the middle, and the 1-SSMMI
distortion of the third rising scale is the most serious and
the fidelity is poor. The spectral distortion produced by the
2m~6m scale conversion is the least, the spectral distor-
tion produced by the 6m~30m scale conversion is the sec-
ond, and the spectral distortion produced by the 2m~30m
scale conversion is the most serious (Figure 8). This indi-
cates that the larger the scale difference is, the more sig-

Figure 7: Spectral Distortion of 1-SSMMI Between Three Scale Con-
versions.

Figure 8: PSNR Statistics of 1-SSMMI Between Three Scale Conver-
sions.

nificant the spectral distortion is, then themore severe the
scale effect is.

5 Discussion
The Daliuta coal mine is the earliest mine built in Shen-
dongMining Area. It is located in arid and semi-arid deser-
tification areas with fragile ecological environment. There-
fore, it is of great significance to study the influence of un-
derground mining disturbance activities on the ecological
environment by studying the surface soil moisture of coal
mines. Due to the rational exploitation of coal mines and
the emphasis on ecological environment protection in re-
cent years, the overall surface soil moisture in the Dali-
uta coal mining area in 2015 has turned better than that
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in 2010, but the proportion of extremely wet area is still
decreasing, and the proportion of extremely dry area in
non-mining area is showing a growing trend. Themain rea-
son is that the mining activities in coal mining face have
destroyed the stability of the ground vegetation and soil,
reduce its resistance and recovery ability to environmen-
tal impact [33–35]. The vegetation coverage of the mining
area has increased year by year, but the soil is seriously
eroded [36–39]. Thus, although the vegetation coverage is
increasing in the mining area, the soil stability type is de-
stroyed, which results in the reduction of the extremely
wet area of soil moisture.

Based on the resampling method, the scale-up con-
version of Worldview-2 scale soil moisture data was car-
ried out. The scale-up scales were 2m~6m, 6m~30m, and
2m~30m, respectively. The scale effects of soil moisture be-
tween 2m, 6m, and 30m were analyzed. Four evaluation
factors, average value, standard deviation, peak signal-
to-noise ratio (PSNR) and spectral distortion, were used
to make a detailed analysis. Among the three scales, the
larger the scale, the more serious the distortion degree
anddistortion degree of soilmoisture information, and the
more obvious the scale effect of soil moisture information
changes with the scale.

6 Conclusion
The Daliuta coal mine is the earliest mine in the Shendong
mining area. It is located in arid and semi-arid desert ar-
eas and has a fragile ecological environment. Therefore,
it is of great significance to study the influence of under-
groundmining disturbance on the ecological environment
of the Daliuta mine by studying the surface soil moisture
elements. The main conclusions were drawn through this
study are as follows:

1. The average soil moisture in the Daliuta mine is in
descending order of average soilmoisture in thenon-
growing area > average soil moisture in the Daliuta
mine> average soil moisture in the mining area, and
the ratio of extremely arid, dry, and extremely moist
areas in the coal mine has been reduced to varying
degrees. The normal and wet areas have increased
by 11.86%.

2. Between 2010 and 2013, the proportion of extremely
arid and arid area in the mining area has decreased
rather than the non-mining area, which shows an
increasing trend. In 2015, the proportion of normal,
wet, and extremely moist areas in the mining area is
1.66%more than that in the non-mining area.

3. During scale conversions, the average soil moisture
change was small, and the average soil moisture
value from the 2m scale to 30mwas only reduced by
0.0016. In the scale conversions, the larger the scale
of conversion, the more severe the degree of distor-
tion and distortion of soil moisture information.
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