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Abstract: The Tunisian North-western region, especially
Tabarka and Ain-Drahim villages, presents many land-
slides every year. Therefore, the landslide susceptibility
mapping is essential to frame zones with high landslide
susceptibility, to avoid loss of lives and properties. In this
study, twobivariate statisticalmodels: the evidential belief
functions (EBF) and the weight of evidence (WoE), were
used toproduce landslide susceptibilitymaps for the study
area. For this, a landslide inventory map was mapped us-
ing aerial photo, satellite image and extensive field sur-
vey. A total of 451 landslides were randomly separated into
two datasets: 316 landslides (70%) for modelling and 135
landslides (30%) for validation. Then, 11 landslide con-
ditioning factors: elevation, slope, aspect, lithology, rain-
fall, normalized difference vegetation index (NDVI), land
cover/use, plan curvature, profile curvature, distance to
faults and distance to drainage networks, were consid-
ered for modelling. The EBF and WoE models were well
validated using the Area Under the Receiver Operating
Characteristic (AUROC) curve with a success rate of 87.9%
and 89.5%, respectively, and a predictive rate of 84.8%
and 86.5%, respectively. The landslide susceptibilitymaps
were very similar by the twomodels, but theWoEmodel is
more efficient and it can be useful in future planning for
the current study area.
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1 Introduction
Landslides are considered among the most dangerous nat-
ural hazards due to their effect on human’s lives and prop-
erties [1, 2]. The north western area of Tunisia presents
many landslides every year. For example in February 2012,
Ain-Drahim village was isolated due to roads destruction
by landslides. In addition, 98 peoplewere directly affected
and7deathswere reported according toNationalDatabase
of Disaster Losses [3]. Despite the importance of landslide
study and zonation in the Tunisian North western area,
there are no studies done in the region.

Landslides are controlledby several natural condition-
ing factors such as: slope, rainfall, lithology, tectonics,
etc. [2, 4]. So, in nature there are areas which are more
prone to landslides than others whereby landslide suscep-
tibility is defined as the spatial distribution or probabil-
ity of the occurrence of landslides [5–7]. The damage of
landslides could be significantly decreased by establish-
ing landslide susceptibility maps [8].

The assessment of slope stability is carried out using
two approaches [9–11]: the direct or qualitative method
based on expert knowledge [12] and the indirect or quan-
titative method based on statistical algorithms [2, 10, 13].
The direct or qualitative method such as analytical hier-
archy process (AHP) was used in landslide susceptibility
mapping [14–16]. The indirect or quantitative method was
widely used in the literature as the artificial neural net-
work (ANN) [17–19], support vector machine (SVM) [20, 21]
andneuro-fuzzy [22, 23]. Also the bivariate statisticalmeth-
ods as an indirectmethodswere used bymany researchers
like the certainty factor (CF) [6, 24, 25], statistical index
(SI) [6, 26, 27], frequency ratio (FR) [8, 28, 29], evidential
belief function (EBF) [30–32], weight of evidence (WoE) [6,
26, 33]. Also, themultivariatemethod as the logistic regres-
sion was applied in several works [34–36].

The landslide susceptibility mapping statistical meth-
ods were widely compared in the literature in different ge-
ological, climatologic, geomorphologic, etc. conditions [6,
32, 37] and results show that practically all methods were
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similar with high accuracy. For example, Pradhan and
Lee [38] reported that the ANN, FR and LR methods were
very similar in landslide susceptibility mapping. Also,
Park [39] noticed an insignificant difference in the land-
slide susceptibility maps (LSMs) produced using FR, AHP,
ANN and LR methods.

The main aim of this study is the establishment of
landslide susceptibility maps of the current study area us-
ing two bivariate statistical methods: the evidential belief
function (EBF) and weight of evidence (WoE).

2 Study area
The study area covering 860 km2, is located in the North-
West of Tunisia, betweenAin-DrahimandTabarka villages,
which extends from longitude 8∘ 25’ 29” E to 8∘ 59’ 53” E
and from latitude 36∘ 40’ 26” N to 37∘ 00’ 36” N (Figure 1).
This zone is situated at an altitude ranging between 3 and
1000m above msl in a mountainous area. The lithological
units of the area are mainly composed by the Numidian
flyschoidal deposits of Oligocene, lower-Miocene age, es-
sentially consisting of turbiditic sandy and clayey forma-
tion [40–44]. The flysch formations present large changes
in structural style [45] and are heterogeneous rock masses
which lead to the alteration of hard rock layers (sandstone
and siltstones) and weak ones (marls and clay). Also, fly-
sch rocks are influenced by weathering processes which
cause changes in strength properties and increases the
content of the clay fraction in the weathered zone by al-
teration of silicate minerals in clay, silt, sand and sand-
stone [46] which make flysch rocks more prone to land-
slide.

The climate of the study area is considered Mediter-
ranean, with rainy winters and warm summers. The pre-
cipitation ranges from 630 mm (1993) to 2400 mm (2003)
with a yearly average precipitation above 1000mm accord-
ing to the National Institute of Meteorology [47].

3 Data preparation

3.1 Landslide inventory map

A landslide inventory map is crucial for landslide suscep-
tibility mapping [48, 49]. This map is the base for the land-
slide occurrence probability calculation by defining the re-
lationship between landslide occurrences and factors re-
lated to them in the past [50–52].

The landslide inventory map of the studied area was
produced by aerial photo interpretation with large scale
field surveys. Only rotational, transitional and compound
landslideswere taken into account due to their similar con-
ditioning factors [28]. Thus, 451 landslides were identified
in the study area and mapped as polygons. They were ran-
domly subdivided into two data sets: 70% (316 landslides)
for the susceptibility model building and 30% (135 land-
slides) for model validation (Figure 1).

3.2 Preparation of landslide conditioning
factors

For this study 11 factors which are: elevation, lithology,
slope angle, slope aspect, plan curvature, profile curva-
ture, distance to drainage network, distance to fault, rain-
fall, NDVI and land use/cover were prepared in ARCGIS
10.4 database as landslide conditioning factors.

3.3 Elevation

Altitude is considered as a landslide factor in many re-
search papers [53, 54]. In this study, a DEM with 30 x 30
grid size was used and reclassified into five classes with
a 200m interval: <200, 200-400, 400-600, 600-800 and
>800 (Figure 2b).

3.4 Slope angle

As one of most important factor of landslide susceptibility
mapping, slope angle is usually used in landslide suscep-
tibility mapping [26, 28, 51]. The slope angle of the study
area ranges between 0 and 60∘, it was reclassified into six
classes with 10∘ interval: <10∘, 10∘-20∘, 20∘-30∘, 30∘-40∘,
40∘-50∘ and >50∘ (Figure 2j).

3.5 Slope aspect

Slope aspect is the direction of the slope angle and is con-
sidered as a landslide conditioning factor in several re-
searches [55], due to numerous conditions such as weight
of slope exposure to sunlight, cold and hot winds, rain-
fall and discontinuities [52, 56, 57]. The slope aspect
is derived from DEM in ARCGIS software and reclassi-
fied into nine classes: flat (−1), north (0∘-22.5∘, 337.5∘-
360∘), northeast (22.5∘-67.5∘), east (67.5∘-112.5∘), southeast
(112.5∘-157.5∘), south (157.5∘-202.5∘), southwest (202.5∘-
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Figure 1: Study area location with landslide inventory.
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Figure 2a: Landslide conditioning factors – slope aspect

Figure 2b: Landslide conditioning factors – elevation
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Figure 2c: Landslide conditioning factors – distance to fault

Figure 2d: Landslide conditioning factors – land cover/use



GIS-based landslide susceptibility mapping using bivariate statistical methods | 713

Figure 2e: Landslide conditioning factors – lithology

Figure 2f: Landslide conditioning factors – NDVI
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Figure 2g: Landslide conditioning factors – plan curvature

Figure 2h: Landslide conditioning factors – rainfall
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Figure 2i: Landslide conditioning factors – profile curvature

Figure 2j: Landslide conditioning factors – slope
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Figure 2k: Landslide conditioning factors – distance to drainage network

247.5∘), west (247.5∘-292.5∘) and northwest (292.5∘-337.5∘)
(Figure 2a).

3.6 Plan curvature

Plan curvature is a geometrical parameter of the earth
surface; it describes the slope change in inclination or
aspect [58]. Plan curvature was also derived from DEM
(30x30) and reclassified into five classes (natural break
from Jenks) : <-0.74 (very low), from -0.74 to-0.23 (low),
from −0.23 to 0.16 (moderate), from 0.16 to 0.67 (high),
>0.67 (very high) (Figure 2g).

3.7 Profile curvature

The curvature in the vertical plane parallel to the slope di-
rection is considered as the profile curvature and it was
usually used in susceptibility mapping [59]. Profile curva-
ture was also derived from DEM and reclassified into five
classes (natural break) :<−0.99 (very low), from −0.99 to
−0.34 (low), from−0.34 to0.16 (moderate), from0.16 to0.81
(high) and >0.81 (very high) (Figure 2i).

3.8 Distance to drainage network

Rivers and drainage networks play an important role in
landslide occurrence since they accumulate waters and
saturate the surrounded surface and subsurface area [39,
60, 61]. In this study, a drainage network was derived from
DEM, and then the distance to drainage was generated by
Euclidean distance in ARCGIS 10.4 software. Finally, the
distance to drainage was reclassified into six classes with
a 100m interval: <100m, 100m-200m, 200m-300m, 300m-
400m, 400m-500m, >500m (Figure 2k).

3.9 NDVI

The normalized difference vegetation index (NDVI) was ex-
tracted fromSentinel 2A satellite image [28] and calculated
by the following equation:

NDVI = IR − R
IR + R (1)

Where, IR is the infrared and R is the red bands of the
electromagnetic spectrum. In this study, NDVI varies from
−0.11 to 0.48 and it was reclassified into five classes (nat-
ural breaks from Jenks) : <0 (very low), 0-0.32 (low), 0.32-
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0.48 (moderate), 0.48-0.61 (high) and >0.61 (very high) (Fig-
ure 2f).

3.10 Land use/cover

The land use/covermap of the study areawas derived from
the interpretation of Sentinel 2A satellite image using the
semi automatic classification plugin in Qgis [62] and also
based on Regional Commissariat for Agricultural Develop-
ment of Jendouba [63] maps and data. The land use/cover
map was reclassified into four classes: forest, cultivated
area, bare soil and built up (Figure 2d).

3.11 Distance to fault

The strength of rocks decreases with the amount of joints,
which increase with the distance to faults. Thus, the dis-
tance to fault was considered as landslide susceptibility
mapping factor [48, 64].

Fault map was derived from geological map of the Na-
tional Office of Mines [65], the Euclidean distance was ap-
plied to generate the distance to fault map, then reclas-
sified into six classes with 1000m of interval: <1000m,
1000m-2000m, 2000m-3000m, 3000m-4000m, 4000m-
5000m, >5000m (Figure 2c).

3.12 Lithology

The lithology has an important impact on slope stability,
the different lithological units have different susceptibility
degree [66–68]; for example, clay unit is more prone to fail
than calcareous unit. With this logic in mind, the litholog-
ical map was derived from the geological map and was re-
classified into four classes: clay and marl units, clay and
sand units, sand and evaporates units and limestone and
calcareous units from the most to the least susceptible, re-
spectively (Figure 2e).

3.13 Rainfall

Rainfall is considered as the landslide triggering factor.
It plays an important role in shear strength decrease by
increasing pore pressure [69]. Thus, rainfall is usually
used in susceptibility analysis [28, 70, 71]. The annual
average precipitation map was produced by kriging data
of meteorological stations available in Tabarka and Ain-
Drahimdelegations Then, reclassified into six classeswith

100mm/year interval: <800, 800-900, 900-1000, 1000-
1100, 1100-1200, >1200 mm/year (Figure 2h).

4 Methodology
In this study two statistical bivariate models: evidential
belief function (EBF) and weight of evidence (WoE) were
used to produce landslide susceptibility maps using AR-
CGIS 10.4 as GIS software.

4.1 Evidential belief function (EBF)

The theory of belief functions is a statistical bivariate
model known as Dempster-Shafer theory [72, 73]. The ev-
idential belief function has been used in landslide suscep-
tibility mapping by many researchers [6, 30, 32]. The EBF
model is defined by four statistical functions: Bel (degree
of belief) which means the lower degree of belief for each
factor, Dis (degree of disbelief) which means the degree of
disbelief for each factor, Unc (degree of uncertainty)which
means the degree of uncertainty for each factor and Pls
(degree of plausibility) which means the upper limits of
the probability. The data driven estimation of the eviden-
tial belief functions can be calculated by many equations;
in this study, the equations used by researchers which in-
clude [31, 74] were applied.

4.2 Weight of evidence (WoE)

The weight of evidence method was used for the first
time in 1988 for mineral exploration [75] and in 2003
for landslide susceptibility mapping [76]. Then, the WoE
method was widely used by researchers [6, 77–80]. The
WoEmethod is a probabilistic method based on the follow-
ing Bayes’ rule equations:

P (AB) = P (BA) × P(A)
P (B)

(2)

4.3 Validation of landslide susceptibility
models

After elaborating the landslide susceptibility map using
different models, their validation is necessary in order to
check their reliability, to compare the results of these mod-
els and to choose the best one. There are many method of
model validation such as: success/ prediction rate curve,
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landslide density or frequency, Chi squared, etc. The suc-
cess/prediction rate curve is themost commonmethod fol-
lowed by landslide density or frequency [81]. In this study,
both success and predictive rate curves using the area un-
der the receiver operating characteristic curve (AUROC)
were applied.

The success rate curve allow to check how well the
resultant map has classified the areas of existing land-
slides [82]. The success rate curve was obtained by com-
paring the training dataset with the landslide susceptibil-
ity map.

The prediction rate curve indicates the model effi-
ciency to predict future landslide [17, 83]. The comparison
of the validation dataset with the landslide susceptibility
map provides the prediction rate curve.

5 Results

5.1 Conditioning factors

The weights of all classes of all conditioning factors calcu-
lated with the EBF and WoE models are presented in the
first table (Table 1). Results show a good correlation be-
tween the weights of each class for the two models. This
indicates that the susceptibility of each class is similar for
all methods.

The highest susceptible classes of the aspect is SW fol-
lowed by E. Also the S and SE classes have an effect on
landslide triggering but less than SW and E classes.

For the elevation factor, the highest weight values are
for the 600-800 m asl class followed by the <200 m asl
class for the EBF model. But, for the WoE model it is the
reverse, the highest weight is for the <200 m asl class fol-
lowed by the 600-800 m asl class.

The most susceptible classes of the distance to fault
factor is the 1000-2000m class followed by the <1000m
class and the 2000-3000m class.

The clay/sand lithological units are the most suscep-
tible class followed by the clay/marl units for all the two
models.

The land cover/use factor shows that the built up is the
most susceptible classes followed by the cultivated area
and the bare soil classes.

Concerning theNDVI factor, themost susceptible class
is the low class followed by the very low class. The NDVI
low class have the highest value of all classes of all factors.

For the plan curvature and the profile curvature fac-
tors the highest values are for the very low and the very
high classes.

Regarding the rainfall factor, as expected, the most
susceptible class is the>1200 mm/year class followed by
the 1100-1200 mm/year class, the landslide density in-
crease as the rainfall increase.

With regard to the slope factor, the highest weights are
for the 40-50∘ and >50∘ classes (they have similar weights)
followed by the 30-40∘ class for the EBF model. For the
WoE model the highest weight is for the 40-50∘ class fol-
lowed by 30-40∘ and >50∘ classes, respectively.

Finally, the most susceptible class for the distance
to drainage factor is the <100m class and the weights of
classes decrease by moving away from the drainage net-
work

5.2 Application of statistical models

The LSI values range between 1.03 and 3.6 for EBF model,
and between −54.72 and 90.56 for the WoE model. The
lower the LSI pixel value the less the pixel is susceptible to
landslide. The output landslide susceptibility map (LSM)
was produced and classified into five classes using the nat-
ural breaks (Jenks) method: very low, low, moderate, high
and very high for the two models (Figure 3).

In the current study, the area percentage of each class
is shown in (Table 2). In the case of the EBF model, the
distribution of class area was as following: 15.77% for the
very low class, 33.25% for the low class, 32.4% for themod-
erate class, 13.96% for the high class and 4.62% for the very
high class. As regards to the WoEmodel, the very low, low,
moderate, high and very high classes has 18.96%, 33.82%,
28.83%, 12.83% and 5.56% of the entire study area, respec-
tively. Result shows that the spatial distribution of the sus-
ceptibility is very similar.

5.3 Validation of models

The validation and the check of the capabilities of the LSM
produced by the two models were carried out with both
success and prediction rate curves. ROC curves were plot-
ted by comparing the LSM with the training and the vali-
dating data set of the inventory map and the area under
the ROC curves was calculated. Result shows that the AUC
of the success rate curves were 0.879 for the EBF model
and 0.895 for the WoE model (Figure 4a). The AUC of the
prediction rate curves were 0.848 for the EBF model and
0.865 for the WoE model (Figure 4b). The AUC of the suc-
cess rate and predictive rate curves range between 0.8-0.9
indicating a good performance of the two models [84].
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(a)

(b)

Figure 3: LSMs of the EBF (a) and WoE (b) models.
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Table 2: Distribution of class area and landslide using natural
breaks method

Susceptibility EBF WoE
Area
(%)

Landslide
(%)

Area
(%)

Landslide
(%)

very low 15.77 1.00 18.96 0.73
low 33.25 5.18 33.82 4.55

moderate 32.40 18.45 28.83 14.27
high 13.96 22.00 12.83 25.09

very high 4.62 53.36 5.56 55.36

(a)

(b)

Figure 4: Success and predictive ROC curves (a) EBF and (b) WoE

6 Discussion
In landslide susceptibility bivariate statistics-based
method, the preparation of data is very important. Es-
pecially, landslide inventory map since all statistics are
based on quantities and landslide distribution in the study
area. The relationship between conditioning factors and
landslide releases is also very important. Based on EBF
andWoE as two bivariate statistics method, the weights of
all classes of all conditioning factorsmapswere calculated

to reveal the relationship between landslide and every con-
ditioning factor for the present study area. Results show
that the susceptibility of each class is similar by the two
models indicating that if a factor class is susceptible for
landslide, it must have a high weight for any statistical
method [28].

In the present study, results show that the most sus-
ceptible class of the aspect factor was the SW followed
by the E, S and SE classes. This may be due to the dry
and warm summer wind coming from the S and/or the SE
Tunisian prevailing wind. In summers, these slopes are
exposed to warm wind, therefore clay lithological units
shrink and drying slots appear which facilitates the wind
and rainfall infiltration. This process leads to a deep and
quick alteration of clay units which becomemore prone to
landslide.

For the elevation there was no specific correlation be-
tween the altitude and landslide. The most susceptible
class was 600-800m asl which has a medium elevation in
the study area. Many researchers reveal that susceptibility
is low for higher elevation due to the presence of bedrocks
resistant to weathering processes [19, 55]. The high weight
of the <200m asl class is due to the fact that low elevation
accumulate loosely consolidated components of erosion
scraps and screeds [85].

Concerning the linear distance to fault factor there is
no clear relationshipwith landslide, thismay be due to the
infrequent tectonic activity in the study area.

With regards to the relationship between landslide
and lithological units, the most susceptible class was the
clay/sand units followed by the clay/marl units which indi-
cate the effect of clay on landslide triggering. The alterna-
tion of sand with clay beds may increase the susceptibility
to landslide by accumulating the rainfalls water for long
times which decrease the shear strength of clay beds. Also,
the presence of sand as loose material in slopes can come
in as a sliding surface during rainfall.

Regarding the plan curvature and profile curvature
factors, the susceptible classes were the extreme classes
(concave and convex), which is logical because the in-
crease of slope convexity increase the landslide suscepti-
bility; also concavity and convexity are twomutual param-
eters.

Classes with high precipitation of rainfall factor were
more susceptible. Indeed, rainfall increase the water con-
tent of clay formation which increase the pore pressure
and decrease the shear strength of clay units [69]. Also wa-
ter play as lubricant of clayminerals which facilitates their
sliding [86].

As expected the high slope angle classes were more
susceptible, the 40∘-50∘ classwas themost susceptible fol-
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lowed by the >50∘ class due to the small area of the >50∘

class (0.01%of the study area). For theWoEmodel, the 30∘-
40∘ class was more susceptible than the >50∘ class owing
to the high variance of this class (one landslide pixel). Gen-
erally, landslide susceptibility increase as the slope angle
increase on account of the increasing of shear stress of soil.

Concerning the linear distance to drainage network,
the landslide susceptibility increases inversely propor-
tional to the distance. Drainage networks accumulate
the erosion remains which are loose material. Also, the
drainage networks increase the water content of adjacent
soils by accumulating rainfalls water.

For the land cover/use, themost susceptible class was
the built up class followed by the cultivated area and bare
soil classes. The forest class is the least susceptible class
by dint of tree roots which fixes the soil, this is why bare
soils were more susceptible than forest. The susceptibility
of the cultivated area class can be attributed to the irriga-
tion and the very loose soil in slope. The very high sus-
ceptibility of the built up class is due to the disruption
of natural slope by the house building and especially the
road construction in slope area without strong geotechni-
cal studies. This was in line with the NDVI classes weights.
In fact, the low class of NDVI factor was the most suscepti-
blewhich can be attributed to the buildings (constructions
and roads) because the very lowclassmay attributed towa-
ter accumulation in rivers.

In this study, two LSMs were established using EBF
and WoE as bivariate statistical models. Results show a
very good accuracy of the EBF and WoE models. The WoE
success rate and predictive rate are more than the EBF
model indicating that theWoEmodel can bemore efficient
than the EBF model for the current study.

7 Conclusion
The Tabarka/ Ain-Drahim region in the Northwestern area
of Tunisia present several landslides every year which
cause damages to infrastructures and properties. In this
study, 11 conditioning factors were prepared: aspect, ele-
vation, rainfall, lithology, slope, distance to drainage net-
work, distance to fault, plan curvature, profile curvature,
NDVI and land cover/use. Using aerial photo and extent
field investigation, an inventory map of landslides, that
have occurred since 2004, was produced and 451 land-
slides have been located. A randomly selection of 316 land-
slides, which represent 70% of all landslides, were used
to produce landslide susceptibility models and 135 land-
slides (30%) were used to validate models.

The statistical relationship between conditioning fac-
tors and landslides was studied using the inventory map.
The low NDVI class (judged as buildings) and the built up
land cover/use class had the highest weights. The anthro-
pogenic factor by the disturbance of natural slope is the
main cause of landslides in the study area.

A GIS-based EBF and WoE bivariate statistical models
were applied. In order to check and validate the capabili-
ties of models both success and predictive rates using AU-
ROC curve were calculated. The success rates and predic-
tive rates of the two models were about 90% showing a
good performance of models and good capabilities in pre-
dicting future landslides for the current study area.

The landslide susceptibility map of the WoE model
was deemed to be the best map and it may be useful in the
future especially in geotechnical planning to help avoid-
ing the existing mistakes.
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