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Abstract: This paper proposes a new refractivity profile es-
timationmethod based on the use of AIS signal power and
quantum-behaved particle swarm optimization (QPSO) al-
gorithm to solve the inverse problem. Automatic identifica-
tion system (AIS) is amaritime navigation safety communi-
cation system that operates in the very high frequencymo-
bile band and was developed primarily for collision avoid-
ance. SinceAIS is a one-way communication systemwhich
does not need to consider the target echo signal, it can es-
timate the atmospheric refractivity profilemore accurately.
Estimating atmospheric refractivity profiles from AIS sig-
nal power is a complex nonlinear optimization problem,
theQPSO algorithm is adopted to search for the optimal so-
lution from various refractivity parameters, and the inver-
sion results are compared with those of the particle swarm
optimization algorithm to validate the superiority of the
QPSOalgorithm. Inorder to test the anti-noise ability of the
QPSOalgorithm, the syntheticAIS signal powerwithdiffer-
ent Gaussian noise levels is utilized to invert the surface-
based duct. Simulation results indicate that the QPSO al-
gorithm can invert the surface-based duct using AIS signal
power accurately, which verify the feasibility of the new
atmospheric refractivity estimation method based on the
automatic identification system.
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AIS Automatic identification system;
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QPSO Quantum-behaved particle swarm optimiza-

tion;
RFC: Refractivity from clutter;
SOLAS: Safety Of Life At Sea;
SPE: Standard parabolic equation
SSFT: Split-step Fourier transform;

1 Introduction
Atmospheric ducting is an abnormal propagation phe-
nomenon resulting from the varying refractivity of air,
which can cause anomalous propagation of electromag-
netic waves. In the marine environment, there is a high
probability of ducts occurring at any time and in any sea
area, which has a significant impact on the performance
of radar and communication systems [1]. Therefore, it is
important to estimate the atmospheric refractivity profile
for the performance evaluation and prediction ofmaritime
radar and communication systems.

Currently, the method of remote sensing detection is
mainly used to estimate atmospheric refractivity profile,
and refractivity from clutter (RFC) technique has been an
active field of research. RFC estimate refractivity profile of
the atmosphere from the sea surface reflected radar clut-
ter signal [2–6]. This method holds the characteristics of
remote, indirect, real-time, cheap and convenient. Real-
time detection can be achieved without increasing any ad-
ditional equipment by RFC, because it depends on radar
measurements only. In recent years, RFC has become a
hot research method of estimating atmospheric refractiv-
ity profile. Although RFC has certain advantages, it actu-
ally has the following limitations [7]: In order to estimate
the atmospheric refractivity profile, radar need to transmit
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high-power signals for active detection, which easily inter-
feres with the normal operation of electronic equipment
in the relevant area. In addition, the uncertainty of the cur-
rently utilized normalized radar cross sectionmodel of the
sea surfacewill severely limit the accuracy of the inversion.
When sea surface and weather (volume) clutter is hard to
separate such as in precipitation, the shortcoming of the
current RFC approaches is evident.

However, if we use the automatic identification system
(AIS) for refractivity profile inversion, these problems do
not occur. AIS system is a one-way communication system
that depends on radio wave propagation for the transmis-
sion of AIS signals and the propagation path of AIS signals
will be influenced by the atmospheric conditions [8–10].
Referring to the idea of RFC, this paper proposes a new re-
fractivity profile estimation method based on the AIS sig-
nal power to improve the accuracy of estimating the refrac-
tivity profile. Using existing shipboard and shore-based
AIS equipment and AIS networks, no additional equip-
ment is required, the cost is lower, and it is convenient to
operate. It can be accurately and efficiently invert the dis-
tribution of atmospheric ducts over the entire sea surface.

Obviously, atmospheric refractivity profile estimation
is an inverse problem, and the powerful and efficient
quantum-behaved particle swarm optimization (QPSO) al-
gorithm is presented to estimate the surface-based duct.
QPSO algorithm [11–13] is a type of particle swarm opti-
mization (PSO) algorithm with quantum behaviour that
proposed on the basis of classical particle swarmoptimiza-
tion algorithm, which is simple, effective and converges
rapidly. Becauseparticles in quantumspace satisfy unique
properties of aggregation state, there is no definite tra-
jectory when particles move, which enables particles to
search for global optimal solutions to the entire feasible
solution space. Therefore, the global search performance
of the QPSO algorithm ismuch better than that of classical
PSO algorithm.

The remainder of this article is organized as follows.
In Section 2, the automatic identification system is intro-
duced. In Section 3, the forward propagation model used
to calculate the AIS signal power under maritime atmo-
spheric duct conditions is provided. In Section 4, a new
method to invert the atmospheric refractivity profile using
the AIS signal power is proposed. Numerical results are an-
alyzed and discussed in Section 5, while the paper is con-
cluded in Section 6.

2 Automatic identification system
In 2000, as a part of the Safety Of Life At Sea (SOLAS)
regulations [14], the International Maritime Organization
(IMO) require AIS to be fitted aboard all ships of 300 gross
tonnage and upwards engaged on international voyages,
cargo ships of 500gross tonnage andupwardsnot engaged
on international voyages and all passenger ships irrespec-
tive of size. It came into full force on December 31, 2004,
and this system is known as Class A AIS, which can auto-
matically provides vessel information, including the ves-
sel’s identity, type, position, course, speed, navigation sta-
tus and other safety-related to other ships and to shore sta-
tions in its surroundings. It also receives such information
from similarly fitted ships and exchanges data with shore-
based facilities automatically. In 2007, Class B AIS was in-
troduced for small vessels, including pleasure boats. Class
B messages generally contain less information than Class
A messages. However, they all provide essential safety in-
formation.

Two international channels are allocated for AIS and
both frequencies are in the very high frequency band. They
are 161.975 MHz and 162.025 MHz. As Class A AIS system
is mandatory for all ships specified by the IMO, we only
consider this system in this paper.

3 Forward propagation modelling

3.1 Atmospheric ducts

Since meteorological elements such as temperature, hu-
midity and pressure in the atmospheric environment have
vertical stratification unevenness characteristics, the at-
mospheric refractivity also has vertical stratification un-
even characteristics. Therefore, electromagnetic waves
propagating in the atmosphere are affected by atmo-
spheric refraction. Atmospheric refractivity is defined
by [15]

N = (n − 1) × 106 (1)

where n is the refractive index.
In order to take the influence of the curvature of the

earth into consideration, the modified refractivity M is in-
troduced and defined as

M = N +
(︂
z
R0

)︂
× 106 = N + 0.157z (2)

where R0 = 6370 km is the radius of the earth, and z is the
height above sea level in m.
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Figure 1: Atmospheric modified refractivity profile of surface-based
ducts

The propagation characteristics of electromagnetic
waves in the clear-air troposphere mainly depend on the
modified refractivity gradient dM/dz. When the modified
refractivity gradient dM/dz is less than zero, the curvature
of the electromagnetic wave propagation path will exceed
the curvature of the surface of the earth, that is, there is an
atmospheric duct phenomenon. Since evaporation ducts
have little effect on AIS transmission, this paper only con-
siders the surface-based duct, which is illustrated in Fig-
ure 1.

As in Figure 1, the atmospheric modified refractivity
profile of the surface-based duct can be modelled with a
tri-linear curve:

M (z) = M0 +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c1z z ≤ zb
c1zb − ∆M

z−zb
zthick

zb < z < zb + zthick
c1zb − ∆M z ≥ zb + zthick
+c2 (z − zb − zthick)

(3)

where M(z) is the modified refractivity, M0 is the value of
modified refractivity at the sea level surface, z is the ver-
tical height, zb is the base height, zthick is the duct layer
thickness, and ∆M is the duct strength, c1 is the slope
of the duct bottom layer and c2 = 0.118 is the slope of
the duct top layer. Obviously, the refractivity profile of the
surface-basedduct canbedescribedby the four-parameter
vector m = (c1, zb , zthick , ∆M).

3.2 Parabolic equation method

The propagation of electromagnetic waves under atmo-
spheric ducting conditions depends on many factors: an-
tenna height, duct height, duct strength, carrier frequency,
polarization and sea surface conditions, and the parabolic
equation method can take all of these factors into con-
siderations [16]. The parabolic equation method is a for-

ward full wave analysis method with the ability to han-
dle complex boundary conditions and horizontal inhomo-
geneous atmospheric environment, and it also has excel-
lent stability and accuracy. The solutions of the parabolic
equation method can be achieved by the split-step Fourier
transform (SSFT) technique and implemented on a per-
sonal computer in seconds for propagation over a sea sur-
face, so it is widely applied to the wave propagation prob-
lems under atmospheric ducting conditions [17]. For the
purpose of analyzing the propagation of AIS signals un-
der atmospheric ducting conditions, the parabolic equa-
tion method may be the best choice. Therefore, we utilize
the parabolic equation method to calculate the propaga-
tion loss of AIS signals in ducting channel.

In the troposphere electromagnetic wave propagation,
forward narrow angle parabolic equations are usually
used. Ignoring backscattering effect of electromagnetic
waves, the standard parabolic equation (SPE) is defined
as [18]

∂u (x, z)
∂x = ik02

[︂
1
k20

∂2
∂z2 + m2 (x, z) − 1

]︂
u (x, z) (4)

where u (x, z) is the reduced function, x is the horizontal
range and z is the height, k0 = 2π/λ is the free-space wave
number, λ is the wavelength, m (x, z) = 1 +M × 10−6 is the
range and height dependent modified atmospheric refrac-
tive index.

3.3 AIS propagation model

Since AIS is a one-way communication system, it does not
need to consider the target echo signal, thus the AIS radar
range equation is [19]

Pr =
PtGtGrλ2

(4πR)2
F (5)

where Pt is the transmitted power, Gt is the gain of the
transmitter antenna, Gr is the gain of the receiver antenna,
λ is the wavelength, R is the path length. The propagation
factor F is the field relative to free space expressed in dB,
which is defined as

F = 20 log (|u (x, z)|) + 10 log(x) + 10 log(λ) (6)

Therefore, the one-way propagation loss of AIS signals
is defined as

PL(x,m) = 20 log (4π) + 10 log(x) − 30 log(λ) (7)
− 20 log (|u (x, z)|)

where x is the range from the transmitter to the receiver,m
is the unknown refractivity profile parameter vector, λ is
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the wavelength of AIS signals, u (x, z) is the reduced func-
tion that can be solved by the parabolic equation split-step
Fourier method.

The received AIS signal power can be modelled as

Pr(x,m) = −PL(x,m) + C (8)

where C is the constant terms in (5).

4 A new inversion method based on
the AIS signal power

4.1 The inversion step

Although RFC techniques have certain advantages, some
problems exist. For example, currently used normalized
sea surface radar cross section is not accurate and in some
cases it is difficult to separate the sea surface and weather
(volume) clutter, which will severely limit the accuracy of
the inversion. AIS system is a one-way technique that does
not need to consider the reflection of the signal on a tar-
get, and thus it is more appropriate for inverting the at-
mospheric refractivity profile. To improve the accuracy of
the estimation of the refractivity profile, a new inversion
method based on the AIS signal power is proposed. The
inversion step is as follows.

Step 1. Obtain the observed AIS signal power Pobsr (x,m).
Step 2. Select the appropriate atmospheric refractivity

profile model.
Step 3. Use the forward propagation model to calculate

the AIS signal power Pr(x,m).
Step 4. Construct the objective function f =

min
⃒⃒⃒
Pr(x,m) − Pobsr (x,m)

⃒⃒⃒
.

Step 5. Optimize the objective function f determined in
step 4using a global optimization algorithm to get
the unknown refractivity profile parameter vector
m.

4.2 Quantum-behaved particle swarm
optimization algorithm

The quantum-behaved particle swarm optimization algo-
rithm [20] is used to optimize the objective function for ob-
taining the best atmospheric modified refractivity profile.
The classical particle swarm optimization algorithm [21] is
a random search algorithm based on swarm intelligence,
which has the ability of global approximation, but due
to its limited search space, it is easy to fall into the lo-

cal extreme value. From the perspective of quantum me-
chanics, a new particle swarm optimization algorithm,
quantum-behaved particle swarm optimization algorithm
is proposed. Quantumcomputing is a newcomputing tech-
nology, and its fusion with swarm intelligence algorithm
has a broad application prospect. QPSO algorithm com-
bine quantum computing method and PSO algorithm and
become a more efficient algorithm.

In the PSO algorithm, each particle represents a fea-
sible solution to the optimization problem. The pros
and cons of the solution is determined by the fitness
function, which depends on the actual optimization
problem. For the ith particle (1 ≤ i ≤ M, M is
the number of particles in the population), the cur-
rent position of the particle in the search space is de-
noted by Xi = (xi1 (t) , xi2 (t) , · · ·, xid (t) , · · ·, xiD (t)),
t is the current number of iterations of the algorithm
and D is the dimension of the particle. According to
the analysis of the particle trajectory in the PSO algo-
rithm, to ensure the convergence of the PSO algorithm,
each particle must converge to its local attractor pi =
(pi1 (t) , pi2 (t) , · · ·, pid (t) , · · · , piD (t)), which is defined
as [22]

pid(t) = φd(t)Pid(t) +
(︀
1 − φd(t)

)︀
Pgd(t) (9)

where φd (t) = c1r1d (t) / (c1r1d (t) + c2r2d (t)), r1d (t)
and r2d (t) are two random number uniformly dis-
tributed within (0, 1). c1 and c2 are the learning
factors. During each iteration of the PSO algorithm,
Pi = (Pi1 (t) , Pi2 (t) , · · ·, Pid (t) , · · · · , PiD (t)) is the
current optimal position of the ith particle, and Pg =(︀
Pg1 (t) , Pg2 (t) , · · ·, Pgd (t) , · · ·, PgD (t)

)︀
is the global op-

timal position of the population.
Assuming that the PSO system is a quantum system,

the velocity and position of the particles in the quantum
space cannot be determined simultaneously. The state of
each particle is determined by the wave function ψ, and
|ψ|2 is the probability density function of the particle posi-
tion. By establishing a Delta potential well model in each
dimension of pi to prevent particle divergence, the corre-
spondingSchrödinger equation canbe solved to obtain the
probability density function of the position of each dimen-
sion of the particle in the search space, which is defined as

F [xid (t + 1)] = exp
[︂
−2 |xid (t + 1) − pid (t)|

Lid (t)

]︂
(10)

where Lid (t) is the characteristic length of the Delta well,
which determines the search range of the particle.

Monte Carlo simulation method is used to obtain the
position of the dth dimension of the ith particle at the
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(t + 1)th iteration:

xid (t + 1) = pid (t) ±
Lid (t)
2 ln

(︀
1/u

)︀
(11)

where u is a random number uniformly distributed over
(0, 1).

Lid (t) = 2α × |md (t) − xid (t)| (12)

where α is the contraction-expansion coefficient. md (t) is
the average optimal position, which is the centre point of
the optimal position of all particles themselves and is de-
fined as

m (t) = (m1 (t) ,m2 (t) , · · ·,md (t) , · · ·,mD (t)) (13)

=
(︃
1
M

M∑︁
i=1

Pi1 (t) ,
1
M

M∑︁
i=1

Pi2 (t) , · · · ,
1
M

M∑︁
i=1

Pid (t),

· · · , 1M

M∑︁
i=1

PiD (t)

)︃

Therefore, the position update equation of the particle
is

xid (t + 1) = pid (t) ± α |md (t) − xid (t)| × ln
(︀
1/u

)︀
(14)

Initialize the population
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Figure 2: The flowchart of the QPSO algorithm

The PSO algorithm using the Equation (14) as the
particle position update equation is called the quantum-
behaved particle swarm optimization (QPSO) algo-
rithm [23].

The flowchart of the QPSO algorithm is shown in Fig-
ure 2.

5 Results and discussion

5.1 Inversion of surface-based ducts

In this section, inversion of surface-based ducts using the
AIS signal power is investigated by the QPSO algorithm via
the simulation study. For the surface-based duct, there is
four-parameter m = (c1, zb , zthick , ∆M) that need to be es-
timated. The AIS system parameters are chosen as: the fre-
quency is 162 MHz, the antenna is an omnidirectional an-
tenna with a height of 20 m, and the vertical polarization
is employed. The AIS signal power simulated by the pro-
file parameter vector m = (0.13, 40, 20, 50) using the AIS
propagationmodel in Section 3.3 is treated as the observed
AIS signal power.

The control parameters of the QPSO algorithm for the
surface-basedduct inversion are givenas follows: thenum-
ber of maximum iteration is 100, the population size is 60,
the learning factor is 2, and the inertial weight is reduced
from the initial 1 to the final 0.5. Figure 3 gives the com-
parison of the simulated atmosphericmodified refractivity
profile and the inverted profile of the surface-based duct
obtained by the proposed method in the case of without
noise. In order to reveal the superiority of the QPSO algo-
rithm, the inversion results of the QPSO algorithm are com-
pared with that of the PSO algorithm.

From Figure 3, we can see that the refractivity profile
inverted by the QPSO algorithm is in excellent agreement
with the simulated one, which indicates that the inversion
method based on the AIS signal power can be utilized to
invert the surface-basedduct in amaritime environment. It
can also be seen from Figure 3 that the refractivity profile
inverted by the PSO algorithm is obviously less accurate
than those inverted by the QPSO algorithm. The inversion
results show that the QPSO algorithm is more suitable for
inverting atmospheric ducts.

Error analysis of the AIS based atmospheric refractiv-
ity inversion method in term of the Root Mean Square Er-
ror (RMSE) is performed to quantitatively analyze the opti-
mization performance of the QPSO and the PSO algorithm
and is illustrated in Table 1.
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Table 1: The error analyse of the QPSO and the PSO algorithm

Parameter True QPSO PSO
c1 0.13 0.11 0.18
zb 40 39.97 34.43
zthick 20 22.15 23.63
∆M 50 48.59 53.48
RMSE 0 1.29 3.75

As showed in Table 1, the RMSEof the PSOalgorithm is
larger than those of the QPSO algorithm, which illustrates
theQPSOalgorithm is better than that of thePSOalgorithm
for the surface-based duct inversion.

5.2 Inversion with Gaussian noise

To further analyze the anti-noise capability of the QPSO
algorithm for estimating refractivity profile, the Gaussian
noise with zero mean and different noise level is added
to the synthetic AIS signal power. Simulated AIS signal
power with 5 dB and 10 dB noise levels is taken as the ob-
served AIS signal power to analyze the performance of the
QPSO algorithm. Inversion results for different Gaussian
noise levels are shown in Figure 4.

As can be seen fromFigure 4, the QPSO algorithmwith
the noise level of 5 dB and 10 dB can still make a good es-
timation of atmospheric refractivity profile. Although the
inversion error is slightly larger than that of the noiseless
case, the overall inversion accuracy is acceptable. There-
fore, the QPSO algorithm has certain anti-noise capabil-
ity and good robustness for the surface-based duct estima-
tion.

Figure 3: The simulated and inverted atmospheric refractivity profile
without noise

Figure 4: The simulated and inverted atmospheric refractivity profile
with different Gaussian noise levels

The above analysis is based on receiving a single ship
AIS signals, when multi-ship AIS signals are received (in
the same direction or in different directions), the atmo-
spheric refractivity profile over the sea in the entire region
can be inverted simultaneously by themethod proposed in
this paper. Not only can shipboard AIS equipment be used,
but also existing AIS equipment installed on other ships
and shore-based equipment can be used for inversion, en-
abling ships to obtain current atmospheric refractivity dis-
tribution in near-real-time.

6 Conclusion
In this work, a new inversion method based on the AIS sig-
nal power has been proposed to invert the surface-based
duct and the QPSO algorithm is used to search for the opti-
mal solution from various refractivity parameters. Simula-
tion results show that this new inversion method is feasi-
ble for the atmospheric refractivity profile estimation and
the QPSO algorithm has good robustness. And it also has
near-real-time performance, which provides strong sup-
port for the performance prediction of AIS system and
other radio systems. It is of great value to use AIS system
for realizing near-real-time, large-scale and continuous de-
tection of atmospheric duct distribution in the maritime
environment. However, an important topic that needs to
be addressed more extensively is the validation of results
obtained with this study for refractivity profile estimation,
which will be investigated in the near future.
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