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Abstract: China has one of the highest rates of natural dis-
asters in the world. In recent years, the Chinese govern-
ment has placed a high value on improving emergency
natural disaster relief. The goal of this research was to
resolve a key issue for emergency natural disaster relief:
the emergency vehicle routing problem (EmVRP) with re-
lief materials in sudden disasters. First, we provided a de-
scription of the EmVRP, and defined the boundary con-
ditions. On this basis, we constructed an optimization
model of EmVRP with relief materials in sudden disasters.
To reach the best solution in the least amount of time,
we proposed an enhanced monarch butterfly optimization
(EMBO) algorithm, incorporating two modifications to the
basic MBO: a self-adaptive strategy and a crossover oper-
ator. Finally, the EMBO algorithm was used to solve the
EmVRP. Our experiments using two examples EmVRP with
relief materials in a sudden-onset disaster proved the suit-
ability of EMBO. In addition, an array of comparative stud-
ies showed that the proposed EMBO algorithm can achieve
satisfactory solutions in less time than the basic MBO al-
gorithm and seven other intelligent algorithms.
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1 Introduction

When natural disasters occur, an efficient logistics
system is vital for emergency relief work. Although rapid
advances in science and technology have improved our
ability to predict some natural disasters with increasing
certainty, sudden natural disasters are still a major threat
to the survival of regional populations and to the main-
tenance of social and economic development. Even when
a disaster can be predicted in advance, obstacles such as
short warning times and long transport distances make it
difficult to protect threatened populations in the interval
between the forecast and the event. Therefore, an efficient
emergency natural disaster relief logistics system is key to
providing rescue and post-disaster relief for many people.

Studies of emergent natural disaster relief logistics
systems have concentrated primarily on two areas of con-
cern [75]. First, researchers have explored methods for
evaluating the degree of impact of a natural disaster. The
evaluation results determine the level of demand for emer-
gency relief, and the logistics of distribution. Second, stud-
ies have examined the topologies of emergency logistics
distribution networks, including the emergency vehicle
routing problem (EmVRP). This paper focuses on finding
the most efficient way to assign vehicles to bring relief
materials and goods to disaster sites from various storage
areas such as depots, railway stations, airports, and docks.

One of the most representative studies on emergency
logistics was the LP (linear programming) model proposed
by Rathi et al. [41]. In that study, the authors assigned
each vehicle to each route to obtain the optimal network.
A traditional optimization algorithm was adopted in this
model, but the process fell easily into the local optimum.
Equi et al. [8] studied the optimal number of trips and the
number of vehicles needed to complete each travel route in
the context of a given number of supply centers. While it
may be feasible to target those receiving relief after a nat-
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ural disaster, it is difficult to differentiate the amount of
relief provided among beneficiaries. This is because much
of the relief consists of food, clothing, and medicine, all
goods for which the absorptive capacity of households is
limited. Empirical tests using data from Honduras follow-
ing Hurricane Mitch confirm this hypothesis. The probabil-
ity of receiving relief was negatively correlated with wealth
and positively correlated with assets losses (with a higher
weight placed on losses than pre-disaster wealth) and the
fact that households suffered damage to their dwelling.
By contrast, controlling for whether households suffered
damage to their dwelling, the amount of relief received was
related neither to pre-Mitch wealth, nor to assets losses
[36].

Current studies of the EmVRP have provided greater
depth by considering changes of various factors in the
models, and by using more advanced algorithms. How-
ever, studies that consider a combination of the EmVRP
and the logistics of emergency materials distribution are
still relatively scarce. Moreover, the models that have been
produced to date for the mechanisms and optimization of
emergency distribution have not been able to meet real-
world demands in terms of objective function and bound-
ary conditions [75].

In contrast, the monarch butterfly optimization (MBO)
algorithm proposed by Wang et al. in 2015 [55] is a novel
and promising swarm-based intelligent method [48]. Al-
though the MBO algorithm was proposed only two years
prior to the writing of this paper, some researchers have
implemented several in-depth studies from algorithm im-
provements and engineering application [12-14].

In fact, the EmVRP with relief materials in sudden dis-
asters is an NP-hard problem [75] that is difficult to solve
using traditional methods. In this paper, we proposed
an enhanced monarch butterfly optimization (EMBO) al-
gorithm to tackle the EmVRP problem. In the EMBO al-
gorithm, the crossover operator used in evolutionary al-
gorithms (EAs) is incorporated into the basic MBO al-
gorithm to generate a new offspring population for the
next generation. In addition, the self-adaptive scheme is
used to establish the butterfly adjusting rate. We used the
proposed EMBO algorithm to solve the EmVRP with relief
materials in sudden disasters, and we provided compar-
ative studies between the basic MBO algorithm and seven
other intelligent algorithms to demonstrate the superiority
of EMBO in terms of accuracy.

The remainder of this paper is structured as follows.
The next section reviews the related preliminaries, includ-
ing the EmVRP and MBO algorithm. Section 3 provides the
description of the EmVRP with relief materials in sudden
disasters, followed by the main framework of MBO and the
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proposed EMBO algorithm, as shown in Section 4. Sub-
sequently, Section 5 details how to use EMBO to solve the
EmVRP with relief materials in sudden disasters. Then, in
Section 6, an array of experiments on EmVRP are carried
out. The final section summarizes our current work, and
provides our future work orientation.

2 Preliminaries

2.1 EmVRP

In the Introduction above, we described briefly some
of the prior work focused on EmVRP. In this section, we
review examples of other significant contributions to the
field.

Hale and Mober [23] studied the selection of emer-
gency logistics supply nodes, with particular attention to
the number of nodes (sites) for storage of emergency sup-
plies. Their research proposed a quantitative model. For
vehicle routing within a time window (VRPTW) involving
a limited number of vehicles, Lau et al. [30] constructed a
model and put forward the related solutions. In addition,
they implemented a substantial number of fundamental
studies on the variants of the traditional VRP problem.

Based on the features of multi-resource and multi-
point rescue, Dai et al. [6] constructed a mathematical
model to solve the multi-resource emergency problem.
Fu et al. [15] divided emergency logistics distribution is-
sues into three categories: road conditions, vehicle condi-
tions, and the state of materials. They proposed a static,
dynamic, and functional model in accordance with each
emergency issue category. To address actual challenges
of VRP with time windows, Li [32] put forward a method
based on affinity group match, and further proved that
the immune algorithm can provide an effective solution for
routing vehicle within a time frame.

Ozdamar et al. [38] studied distribution decision sup-
port systems after natural disasters. A model was estab-
lished by considering disaster relief materials compre-
hensively, regarding vehicles as both relief materials and
transportation resources. In addition, Ghiani [21], Ikou
[24], and Ozyurt [39] proposed several different algorithms
to solve the EmVRP problem.

Though many scholars have carried out several in-
depth studies regarding emergency relief, few of them
has used swarm intelligence algorithm to solve emer-
gency vehicle routing problem with relief materials in sud-
den disasters. In this paper, one of the most representat-
ive swarm intelligence algorithms, called monarch butter-
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fly optimization (MBO), is introduced to solve emergency
vehicle routing problem with relief materials in sudden
disasters. Next, the mainframe of MBO algorithm will be
provided.

2.2 MBO algorithm

Since MBO [55] was proposed, many scholars have ex-
plored this approach. In this section, some of the most
representative work regarding MBO is summarized and re-
viewed.

Yi et al. [70] combined quantum computation the-
ory into MBO algorithm, and proposed a novel quantum-
inspired MBO methodology, called QMBO, by incorporat-
ing quantum computation into the basic MBO algorithm.
In QMBO, a certain number of the worst butterflies were
updated by quantum operators. The path planning navig-
ation problem for Unmanned Combat Air Vehicles (UCAVs)
was modeled into an optimization problem, and then its
optimal path could be obtained by the proposed QMBO al-
gorithm. Furthermore, B-Spline curves were utilized to re-
fine the obtained path, making it more suitable for UCAVs.
The UCAV path obtained by QMBO was studied and ana-
lyzed in comparison with the basic MBO. The experimental
results showed that QMBO can find a much shorter path
than MBO.

Ghetas et al. [20] incorporated the harmony search
(HS) algorithm into the basic MBO algorithm, and pro-
posed a variant of MBO, called MBHS, to deal with
the standard benchmark problems. In MBHS, the HS al-
gorithm was considered as a mutation operator to improve
the butterfly adjusting operator, with the aim of accelerat-
ing the convergence rate of MBO.

Feng et al. [10] presented a novel binary MBO (BMBO)
method used to address the 0-1 knapsack problem (0-1 KP).
In BMBO, each butterfly individual was represented as a
two-tuple string. Several individual allocation techniques
were used to improve BMBO’s performance. In order to
keep the number of infeasible solutions to a minimum, a
novel repair operator was applied. The comparative study
of BMBO with other optimization techniques showed the
superiority of the former in solving the 0-1 KP.

Wang et al. [62] put forward another variant of the
MBO method in combination with GCMBO. In GCMBO,
two modification strategies, including a self-adaptive cros-
sover (SAC) operator and a greedy strategy, were utilized to
improve its search ability.

Feng et al. [14] combined chaos theory [50] with the
basic MBO algorithm, and then proposed a novel chaotic
MBO (CMBO) algorithm. The proposed CMBO algorithm
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enhanced the search effectiveness significantly. In CMBO,
in order to tune two main operators, the best chaotic map
was selected from 12 maps. Meanwhile, some of the worst
individuals were improved by using a Gaussian mutation
operator to avoid premature convergence.

Ghanem and Jantan [19] combined ABC with elements
from MBO to proposed a new hybrid metaheuristic al-
gorithm named Hybrid ABC/MBO (HAM). The combined
method used an updated butterfly adjusting operator, con-
sidered to be a mutation operator, with the aim of sharing
the information with the employee bees in ABC.

Wang et al. [59] proposed a discrete version of
MBO (DMBO) that was applied successfully to tackle the
Chinese TSP (CTSP). They also studied and analyzed the
parameter butterfly adjusting rate (BAR). The chosen BAR
was used to find the best solution for the CTSP.

Feng et al. [12] proposed a type of multi-strategy MBO
(MMBO) technique for the discounted 0-1 knapsack prob-
lem (DKP). In MMBO, two modifications, including neigh-
borhood mutation and Gaussian perturbation, were util-
ized to retain the diversity of the population. An array
of experimental results showed that the neighborhood
mutation and Gaussian perturbation were quite capable
of providing significant improvement in the exploration
and exploitation of the MMBO approach, respectively. Ac-
cordingly, two kinds of NMBO were proposed: NCMBO and
GMMBO, respectively.

Feng et al. [13] combined MBO with seven kinds of DE
mutation strategies, using the intrinsic mechanism of the
search process of MBO and the character of the differential
mutation operator. They presented a novel DEMBO based
on MBO and an improved DE mutation strategy. In this
work, the migration operator was replaced by a differential
mutation operator with the aim of improving its global op-
timization ability. The overall performance of DEMBO was
fully assessed using thirty typical discounted 0-1 knap-
sack problem instances. The experimental results demon-
strated that DEMBO could enhance the search ability while
not increasing the time complexity. Meanwhile, the ap-
proximation ratio of all the 0-1 KP instances obtained by
DEMBO was close to 1.0.

Wang et al. [49] proposed a new population initial-
ization strategy in order to improve MBO’s performance.
Firstly, the whole search space is equally divided into Np
(population size) parts at each dimension. Subsequently,
two random distributions (T and F distribution) are used
to mutate the equally divided population. Accordingly, five
variants of MBOs are proposed with a new initialization
strategy.

Feng et al. [11] presented OMBO, a generalized
opposition-based learning (OBL) [56] MBO with Gaussian
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perturbation. The authors used the OBL strategy on the
portion of the individuals in the late stage of evolution,
and used Gaussian perturbation on the individuals with
poor fitness in each evolution. OBL guaranteed the higher
convergence speed of OMBO, and Gaussian perturbation
avoided the possibility of falling into a local optimum. For
the sake of testing and verifying the effectiveness of OMBO,
three categories of 15 large-scale 0-1 KP cases from 800 to
2,000 dimensions were used. The experimental results in-
dicated that OMBO could find high-quality solutions.

Chen et al. [4] proposed a new variant of MBO by in-
troducing a greedy strategy to solve dynamic vehicle rout-
ing problems (DVRPs). In contrast to the basic MBO al-
gorithm, the proposed algorithm accepted only butterfly
individuals that had better fitness than before implement-
ation of the migration and butterfly adjusting operator.
Also, a later perturbation procedure was introduced to
make a trade-off between global and local search.

Meng et al. [34] proposed an improved MBO (IMBO)
for the sake of enhancing the optimization ability of MBO.
In IMBO, the authors divided the two subpopulations in a
dynamic and random fashion at each generation, instead
of using the fixed strategy applied in the original MBO ap-
proach. Also, the butterfly individuals were updated in two
different ways for the sake of maintaining the diversity of
the population.

Faris et al. [9] modified the position updating strategy
used in the basic MBO algorithm by utilizing both the
previous solutions and the butterfly individuals with the
best fitness at the time. For the sake of fully exploring
the search behavior of the Improved MBO (IMBO), it was
benchmarked by 23 functions. Furthermore, the IMBO was
applied to train neural networks. The IMBO-based trainer
was verified on 15 machine learning datasets from the UCI
repository. The experimental results showed that the IMBO
algorithm could enhance the learning ability of neural net-
works significantly.

Ehteram et al. [7] used the MBO algorithm to address
the utilization of a multi-reservoir system for the sake of
improving production of hydroelectric energy. They stud-
ied three periods of dry (1963-64), wet (1951-52), and nor-
mal (1985-86) conditions in a 4-reservoir system. The ex-
periments indicated that MBO can generate more energy
when compared with particle swarm optimization (PSO)
and a genetic algorithm (GA).

Xue et al. [67] added a self-adaptive strategy to the ba-
sic ABC algorithm in accordance with the global optimal
solution, so anew variant of ABC named SABC-GB was pro-
posed. SABC-GB has shown its superiority to other meta-
heuristic algorithms when dealing the complicated optim-
ization problems.
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In addition to the MBO algorithm studied in this pa-
per, many other intelligent algorithms [65] have been pro-
posed, such as elephant herding optimization (EHO) [33,
57], simulated annealing (SA) [27], evolutionary strategy
(ES) [2], particle swarm optimization (PSO) [26, 44], moth
search (MS) algorithm [47], bat algorithm (BA) [35, 68], dif-
ferential evolution (DE) [43, 53], biogeography-based op-
timization (BBO) [42, 52], krill herd (KH) [16, 51, 54], cuckoo
search (CS) [5, 69], artificial bee colony (ABC) [25, 64],
genetic algorithm (GA) [22], fireworks algorithm (FWA)
[46], earthworm optimization algorithm (EWA) [61], and
harmony search (HS) [18, 63]. These algorithms are used
widely in various engineering applications [73, 74].

In this paper, the model of emergency vehicle rout-
ing problem with relief materials in sudden disasters is
provided. Also, we will further improve the performance of
the basic MBO algorithm by introducing the self-adaptive
strategy and crossover operator to form a novel enhanced
MBO (EMBO) algorithm. The proposed EMBO algorithm is
then used to tackle EmVRP problem in comparison with
the basic MBO algorithm and seven other intelligent al-
gorithms.

3 EmVRP with relief materials in
sudden disasters

3.1 Problem description

If the scale of a sudden natural disaster is large, the
distribution of emergency materials may require a variety
of transport modes as well as the conversion of various
transportation modes. In our current work, we focused on
one mode of transportation only, assuming that relief sup-
plies brought by rail, air, and water had already arrived at
train stations, airports, and docks in the general disaster
area. Therefore, those terminals (depots, railway stations,
airports, and docks) were also seen as material storage fa-
cilities. Our goal was to determine how to assign vehicles
from parking areas (such as garages) to transport relief ma-
terials and goods from the various storage sites (depots,
railway stations, airports, and docks) to the primary dis-
aster points. An overview of the whole system involved in
the emergency VRP with materials in sudden disasters is
shown in Fig. 1 [75].

As shown in Fig. 1, the emergency relief material dis-
tribution system is a three-layer structure. Transporting
the materials is essentially a vehicle routing problem in-
volving movement from multiple parking areas (garages)
to multiple storage sites, and then to multiple disaster
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Layer | Parking lot 1 Parking lot 2 Parking lot &
Layer 2 Material reserve points (including storage depots, railway stations, airports)
| 7| 7| 7|
/ / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
I / /
Layer 3 Affected Affected Affected Affected Affected
J
area | area 2 area 3 area 4 area m
» T >
The vehicle is moving forward The vehicle is moving reverse unloaded

Figure 1: The structure of three hierarchy of vehicle scheduling for emergency relief goods.

points. Layer 1 includes the parking areas; all the vehicles
assigned to carrying relief materials start from the parking
lots. The number of vehicle types may vary, but the num-
ber is known.

Layer 2 is made up of the material reserve storage sites,
including all wharfs, train stations, airports, and similar
facilities. We assume that the relief supplies at each re-
serve point are varied, and that the number of certain types
of materials is unchanged during the emergency period.
The bottom layer, Layer 3, comprises the affected areas that
are the destinations for relief distribution. After a disaster,
demand for all kinds of emergency supplies will be gener-
ated at all the impact points according to the disaster as-
sessment. This demand will determine the need to move
reserves at all levels and locations, which in turn will call
for a certain number of vehicles to begin distribution of aid
materials.

From Layer 1to Layer 2, there is vehicle flow only, with
no material flow, i.e., the vehicles run from Layer 1 to Layer
2, but they are not loaded. Moreover, this flow is one-way,
with the vehicles moving only from the parking areas to
the various material reserve sites. They do not return to

the parking areas during the emergency period. However,
both vehicle flow and material flow occur between Layer 2
and Layer 3. Materials move in a one-way unidirectional
flow from Layer 2 to Layer 3, while the vehicles form a
two-way flow between these two layers. After a vehicle ar-
rives at a disaster point, it does not immediately return to
the parking areas, but instead remains in the arrival spot
on standby. Once a new distribution task is ordered, the
vehicle will go back to the appropriate material storage site
to be loaded and start a new distribution.

Therefore, after a vehicle arrives at an affected area
from a reserve area, there are two possible states for the
vehicle. Either it remains in the impacted area waiting for
new orders, or it may be given a new task immediately, in
which case it returns right way to the reserve to begin the
next round of distribution, as shown by the dotted line in
Fig. 1. In our current work, we assumed that the vehicle is
running along the unloaded reverse flow. In this process,
the flow of vehicles is significantly different from that of
common commercial logistics.

Both materials and vehicles flow between Layers 2 and
3. However, there is no connection between each point
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of the same layer because the demand for supplies after
a sudden disasters is much greater than the normal cus-
tomer demand for small batches commonly encountered
in business logistics. This difference also is reflected by the
characteristics of the emergency relief supplies demanded
by the affected points. The primary goal of post-disaster
distribution is to meet the needs of all the disaster sites
as much as possible while shortening the running time of
the entire distribution system. In this way, losses are re-
duced at each disaster point, and the cost of vehicle opera-
tions is reduced as well. Vehicles can be reused throughout
the distribution system, i.e., the vehicle flow is repeated
between the second and the third layers until all the needs
of the disaster sites are met.

3.2 Definition and explanation of boundary
conditions of model

Under the guidance of the distribution system model
of the EmVRP with relief materials in sudden disasters, the
boundary conditions of the vehicle distribution system are
defined as follows:

(1) There are multiple supply points and demand
points in the network. The supply and demand of emer-
gency materials are known at each point, and the total
supply can meet the needs of the affected areas.

(2) There are many parking areas, and each parking
area may have a variety of vehicles. The number of parked
vehicles is sufficient to meet the need for materials distri-
bution, and each vehicle has a number.

(3) There are a variety of emergency supplies to be de-
livered. Each is different in weight and volume, and each
has different loading efficiency. It is assumed that the load-
ing efficiency of the material at the supply site is the same
as the unloading efficiency at the disaster site.

(4) Each disaster site can be served by multiple
vehicles.

(5) Each delivery task carries only one kind of material.

(6) After the completion of a distribution task, if the
vehicle still has supplies, then it will continue to complete
the delivery task; otherwise, it will return to the starting
point at the parking area to wait for the next dispatch.

(7) There is neither vehicle flow nor material flow
between the points of each layer.

DE GRUYTER

3.3 The model of the EmVRP with relief
materials in sudden disasters

The model of the emergency VRP with relief materi-
als in sudden disasters consists mainly of four parts: the
symbol definition, objective function, constraint condi-
tion, and the model description.

(1) Symbol definition

The model of the EmVRP with relief materials in sud-
den disasters includes the definition of five kinds of sym-
bols: set, parameters related to transportation, parameters
related to relief materials, parameters related to distance,
and decision variables.

1) Set

The set of materials/goods: G = {G1, G2, ..., Gp} ;

The set of supply sites (i.e., relief materials re-
serve sites/points, material storage sites/points): S =
{81,825 .-, Sn};

The set of disaster sites (affected areas/points): D =
{Dl, Dz, ceey Dm};

The set of parking areas (garages, parking lots): K =
{I(l, I(z, ceny Kk};

The set of vehicles: L = {L1, Ly, ..., L;};

The set of edges: E = {(k, i)(i, )|k € K,i €S, j € D}.
2) Parameters related to transportation

V;: the maximum volume of the vehicle ;

cap;: the maximum dead weight tonnage of the
vehicle [;

v;: the speed of the vehicle I.

3) Parameters related to relief materials

wg: the unit weight of material type g;

cg: the unit volume of material type g;

tg: the time needed for loading and unloading mater-
ial g.

4) Parameters related to distance

dy;: the distance from the parking area to the material
supply site;

d;;: the distance between the supply site and the de-
mand point.

5) Decision variables

Xjijg: the quantity of material g that is conveyed from

the supply site i to j by vehicle [;
i = 1 Vehicle I delivers g from supply site itoj
vg 0 Otherwise
leL,ieS,jeD,geG
1 Vehicle I passes edge (k, i)

) , 1
Yiki 0 Otherwise
L, keK,ieS
1 Vehicle I passes edge (i, j) .
.= L
Vi 0 Otherwise ylel ie

S,jeD

s
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(2) Objective function

min T = Z Z Z dTIEiJ’lki @)

leL keK ieS

* Z Z Z Z teXiijgY1iZijg 2

leL icS jeD geG

d::
+2 % Z Z Z TIIJYII']' (3)

leL i€S jeD
YN NN texijeyizuge (%)
ICL icS jeD g€

(3) Constraint condition

X1ijgWg < cap; 5)
X1ijgCg < Vi (6)
> zigg=1 @)
€6
> vni=1 8
ies

Yii €10, 1}, yi; € {0, 1}, z350 € {0, 1} )

yii €{0,1},y;; € {0,1} (10)

1<l<|L,1<i<|S|,1<j<D,1<g<|G (1)

(4) Model description

For the model of the EmVRP with relief materials in
sudden disasters, the goal is to meet the needs of the af-
fected points in the shortest total running time possible.
The total running time of a vehicle includes the travel time
from the parking areas to material reserve sites, travel time
from material reserve areas to the affected areas, loading
time at reserve sites, and unloading time at the affected
areas.

For the objective function in the model of the EmVRP
with relief materials in sudden disasters, Eq. 1 represents
the time from the parking area to the reserve site; Eq. 2 rep-
resents the loading time at the reserve site; Eq. 3 represents
the time from the material reserve site to the affected site;
and Eq. 4 represents the unloading time of the material
at the affected area. In our current work, we suppose the
vehicles will take the same time moving from the affected
point to reserve point.
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For the constraint conditions, Eq. 5 means that the
goods transported by each vehicle cannot exceed the max-
imum load capacity of the vehicle; Eq. 6 means that the
goods delivered by each vehicle should not exceed the
maximum volume of the vehicle; Eq. 7 means that each
vehicle carries only one material at a time from the ma-
terial reserve site to the affected area; Eq. 8 means that the
vehicles starting from the garage can only reach a material
reserve site, which is a one-way non-circular flow between
the first and second layers; and Egs. 9-10 indicate that the
variables of this problem satisfy the 0-1 integer constraint.
Eg. 11 represents the range of the indexes in constraints. ||
represents the number of elements contained in a set.

To solve the problem of the model constructed in this
paper, it is necessary to construct a heuristic algorithm
with simple operation and excellent search performance.
At present, the heuristic algorithms used to solve the
vehicle scheduling problem include primarily the genetic
algorithm (GA), neural network method, ant colony al-
gorithm (ACO), tabu search (TS), and simulated annealing
algorithm (SA). Among them, the most popular strategies
involve the application of modern intelligent algorithms
to vehicle scheduling. Many scholars have proven that the
performance achieved using intelligent algorithms is bet-
ter than the results from other traditional optimization al-
gorithms. Therefore, this paper employed a new intelligent
algorithm, monarch butterfly optimization (MBO), to solve
the above-established EmVRP model. The required solu-
tions can be represented by a butterfly individual, while a
butterfly individual can be represented by different park-
ing areas, reserve sites, and the affected areas.

3.4 Difference between emergency VRP and
regular VRP

Emergency VRP is a special vehicle routing activity
caused by outbreak of emergencies. Due to its suddenness
and lack of information, it is quite different from that of
regular VRP (RVRP) [29].

The goal of RVRP is to minimize costs or maximize
profits [75]. The distribution network is permanent, and its
network structure is designed by the needs of the customer
[75]. Participants are mainly all kinds of economic entities
closely related to each other, such as manufacturers, dis-
tributors and transport companies [75]. The driving force of
logistics is demand, and facilities planning, fleet size and
vehicle routing need to be planned in the long, medium
and short term, respectively [75]. The quantity and variety
of materials are limited, the means of transportation are
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used for a long time, and the information in the external
environment is full and not easy to change [75].

The goal of emergency VRP is to meet the requirements
of minimizing the delay time (primary goal) and minim-
izing the cost (secondary goal) [75]. The distribution net-
work of logistics facilities is temporary, the network struc-
ture is simple and the functions are simplified [75]. The
main participants are not closely linked to the interests of
institutions or organizations, such as government depart-
ments, non-governmental organizations, donors and insti-
tutions that are temporarily established [75]. The driving
force of logistics is divided into two kinds, the reflection
stage is system propelling, and the recovery stage is de-
mand promotion [75]. Usually, resource reserve planning
is made [75]. In wartime or emergency, material transport-
ation and vehicle scheduling plan are urgent, making the
best possible decisions under shorter term and limited in-
formation, and the plan scheme will often change greatly
in the implementation process [75]. There are the quantity
and variety of material stock, the means of transportation
are temporarily collected, the information in the external
environment is inadequate and easy to change [75].

4 Enhanced MBO algorithm

In this part of our research, we proposed a new vari-
ant of the basic MBO approach, called the enhanced
MBO (EMBO), that includes a crossover operator and self-
adaptive strategy. First, we will describe the main frame-
work of the original MBO approach, and then we will give
a full description of the proposed EMBO approach.

Here, t is the current generation. rand is a random
number. Np is the number of butterflies in the population,
and p is the ratio of butterflies in Subpopulation 1. BAR is
the butterfly adjusting rate. Cr is the crossover rate.

4.1 MBO algorithm
4.1.1 Migration operator

The number of butterflies located at Land 1 and Land
2 can be calculated as ceil(p * Np) (NP1, Subpopulation 1)
and Np-NP; (NP, Subpopulation 2), respectively. We can
use SP1 and SP2 to denote Subpopulation 1 and Subpopu-
lation 2, respectively. Here, ceil(x) rounds x to the nearest
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integer not less than x. Therefore, when r < p, then xffkl is

generated by the following equation [55]:

t+1 t

Xi,k = Xrl,k s (12)

where x{%! is the kth element of x;, and x{_ , is the kth ele-

ment of x,,. Butterfly r; is chosen from SP1 in a random
fashion. In Eq. 12, r can be given in the following form:

r =rand * peri, (13)

where peri is the migration period [55]. In comparison,
when 7 > p, then x{ _, can be given by

t+1

X =X ks (14)

where x{ , is the kth element of xv,, and butterfly r, is
chosen from SP2 in a random fashion.

4.1.2 Butterfly adjusting operator

For butterfly j, if rand is not more than p, the kth ele-
ment k can be given as [55]
t+1

X',k

| (15)

o t
- Xbest,k ’

where x{%' is the kth element of x;. Similarly, X}, , is

the kth element of the best individual x;est. On the other
hand, when rand is bigger than p, it can be expressed as

t+1

Xj,k = X?g,k , (16)

where xg, « is the kth element of x,,. Here, r3 €
{1,2,...,NP;}.

In this case, when rand is bigger than BAR, it can be
calculated in another form [55]:

Xt = xiax (dxg - 0.5) (17)

where dx is the walk step of butterfly j.
According to the above description, the structure of
MBO can be provided in Algorithm 1.

4.2 EMBO algorithm

MBO has been shown to have its own advantages over
other intelligent algorithms for benchmarking and other
application engineering problems [55]. However, as men-
tioned before, sometimes MBO may be stuck at local op-
tima on certain problems [55]. In this paper, a self-adaptive
strategy and crossover operators were combined with the
basic MBO approach for the sake of enhancing the search
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Initialization. Set the generation counter ¢ = 1, and set the maximum generation tmax, NP1, NP,, BAR, peri,

and p;

Population evaluation. Calculate the fitness according to the objective function;

while t < tmax do
Sort the butterfly population;
Divide population into SP1 and SP2;
fori=1to NP, do
‘ Implement migration operator;
end
forj=1to NP, do
‘ Implement butterfly adjusting operator;
end

t=t+1;
end
Print the final solution.

Calculate the fitness of newly-generated butterfly individuals;

Algorithm 1: Monarch Butterfly Optimization

ability of MBO. This enhanced MBO (EMBO) algorithm will
be described in detail later in this paper.

4.2.1 Self-adaptive butterfly adjusting operator

One of the most important parameters in the basic
MBO algorithm is the butterfly adjusting rate (BAR). In
MBO, the value of BAR is the same as for p, which is
unchanged during the whole optimization process. Here,
a self-adaptive scheme is introduced first to adjust the
parameter BAR. The value of BAR changes self-adaptively
as the optimization process continues between the initial
value BAR, and the maximum 1, as given mathematically
below:

t

tmax

BAR = BARy + (1 - BARy) x s (18)

where BAR is the initial butterfly adjusting rate; ¢ and
tmax are the current and maximum generation, respect-
ively.

From Eq. 18, we can see, though BAR is always chan-
ging during the whole MBO process, its value remains in
the range (BARy, 1].

4.2.2 Crossover operator

As we are aware, for EAs, two of the most import-
ant operators are the crossover operator and mutation
operator [37], both of which have a great influence on
the behavior and performance of EAs [3, 58, 60]. In the
present work, we introduced the crossover operator origin-

ally used in EAs to the butterfly adjusting operator of the
basic MBO algorithm. The introduced crossover operator
fully explores the information of the butterfly individual,
which can be given as shown:

x€§'1=x}{1 x(1-Cr)+xjxCr (19)

]

t+1

where x[;" is another butterfly by x{;" and x; . For the sake

of description, the butterfly individual generated by the
standard butterfly adjusting operator is called x}ql

At the same time, the crossover rate (Cr) is a critical
factor for how the crossover operator behaves, which de-
termines the performance of the EAs to some extent. A sub-
stantial number of strategies have been designed to ad-
just the crossover rate, with the goal of improving the EAs’
search effectiveness. In the present work, a self-adaptive
scheme was used to adjust the crossover rate. Therefore,
according to the fitness of butterfly j in SP2 (f(x})), the
self-adaptive crossover rate can be calculated as shown be-

low.

f(X]t) ~ f(Xpest)
f(Xworst) = f(Xpest) ’

where xp,; and Xxy0rs¢ are the best and the worst butter-
fly with the fitness of f (x}.s¢) and (xworst), respectively. In
addition, from Eq. 20, the minimum and maximum of the
crossover rate Cr are 0.2 and 0.8, respectively.

Up to now, two butterfly individuals ( x};* and x{3*
have been generated. Next, we discuss how to select one

as the newly-generated butterfly xffnlew for the next gener-

Cr=0.8+0.2x (20)
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ation. In this paper, we used a greedy scheme that could
be expressed as

t+1
X{+1 _ le ’
j,new — t+1

ij ,

FOGY < FO3?
fOGH <fOih 7

where f (x}{l) and f(x}; 1) are the fitness of the butterfly x}{l
and x}}l , respectively.

After incorporating the crossover operator and self-
adaptive scheme into the butterfly adjusting operator,
an updated butterfly adjusting operator, called the self-
adaptive butterfly adjusting (SABA) operator, was then
proposed, as shown in Algorithm 2.

According to the previous description, the main step

of the EMBO algorithm is given in Algorithm 3.

(1)

5 The EMBO for emergency VRP
with relief materials in sudden
disasters

The original MBO approach was designed for continu-
ous optimization problems [55], while the EmVRP studied
in this paper is a classical discrete optimization problem.
Therefore, the main framework of EMBO must be adjusted
in many aspects to tackle the EmVRP, including individual
encoding and decoding. Next, we demonstrate how to use
EMBO to solve the EmVRP.

5.1 Individual coding and initial solutions
construction

In our work, we utilize an improved natural num-
ber coding strategy [75]. A butterfly individual is a string
representing an emergency relief material transportation
scheme. In general, a butterfly individual is also called a
chromosome in EAs.

A butterfly individual is made up of two substrings.
The first substring has an element that represents the
vehicle number. If there are K vehicles, the first element
is an integer selected from 1 to K. The second substring
has 3n elements, and n represents the number of tasks
completed by the vehicle. For example, vehicle 2 at park-
ing area 1 arrives at material storage site I3 to transport
material G; to the affected area J,. Then vehicle 2 goes to
material storage site I; to transport material G, to the af-
fected area J,. This process can be represented as Ky — I3 —
Gy -J, - I, - G; - J4, and its corresponding butterfly indi-
vidual can be expressed as 2-3-1-2-1-2-4. The (3n - 1)th ele-
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ment represents the number of the material reserve site,
the (3n)th element represents the material type number,
and the (3n + 1)th element represents the number of the
disaster site (affected area). The element segments of all
vehicles are arranged in parallel from small to large in or-
der to form a single butterfly individual.

Suppose there are 3 vehicles that are numbered 1, 2,
3, located in the parking lot K, K, and K3, respectively;
there are 2 materials that are numbered G, and G, ; there
are 2 reserve sites that are numbered I; and I, ; and there
are 3 disaster sites that are numbered /1, J,, and J3. The
following butterfly individuals can be generated:

Butterfly individual 1:

1-2-1-1-1-2-2-2-1-3
2-1-2-3 (22)
3-2-1-2-1-2-1-1-2-2
Its corresponding solution is:
Kry-L-Gi-J1-Ii-G2-],-1L-G1-]3
Ki-I1 -Gy -]J3 (23)
Ki-I,-G1-Jo-I1-G2-J1-11 -Gy~
Butterfly individual 2:
1-1-2-3-1-2-2
2-3-2-1 (24)
3-1-1-3-1-2-1-2-2-2
Its corresponding solution is:
K;-I1 -G, -]J3-11 -G, -]
Ki-I-G-]1 (25)

K3-11-G1-J3-I1 -G, -J1-1L -G - ]

Butterfly individual 1 represents vehicle 1 from park-
ing lot K,, which arrives at material storage site I, to trans-
port material G, to the affected area J;. Then vehicle 1 goes
to material storage site I; to transport material G, to the
affected area J,. Vehicle 2 from parking lot K; arrives at
material storage site I to transport material G, to the af-
fected area J3. Vehicle 3 from parking lot K5 arrives at ma-
terial storage site I, to transport material G, to the affected
area J,, and then vehicle 3 goes to material storage site
I; to transport material G, to the affected area J,. When
the above transportation tasks have been completed, all
requirements of all the affected areas will have been met.
Butterfly individual 2 can be explained in the same way.
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Calculate the butterfly adjusting rate BAR by using Eq. 18.

forj=1to NP, do
Compute the walk step dx.

Calculate the weighting factor.
fork=1toDdo
if rand < p then

Generate xj " by Eq. 15.
end

Generate x{1'; by Eq. 16.
if rand > BAR then

x}{}k = xﬂ}k+w x (dx; - 0.5).
end
end
Generate x{;"
Generate x{*1

j,new
end

through greedy strategy by Eq. 21.

Choose a butterfly in SP2 (say r3) in a random fashion.

by implementing crossover operator by Eq. 19.

Algorithm 2: SABA operator

Initialization. Set the generation counter t = 1, and set the maximum generation tmax, NP1, NP,, BARg, peri,

and p.

Population evaluation. Evaluate the butterfly individuals with their objective functions.

while ¢ < tnax do
Sort the butterfly population.

Divide population into SP1 and SP2.
fori=1to NP, do

t+1

For all individuals in SP2, implement the updated butterfly adjusting operator to generate x; as

j,new

| Generate x{* ,, by implementing migration operator.
end
Algorithm 2.
Evaluate the butterfly population.
t=t+1.
end

Print the final solution.

Algorithm 3: EMBO approach

Now, we will describe how to generate the initial solu-
tions. First, vehicle [ is selected randomly from the park-
ing areas. This selection will be considered the starting
point. Second, thereservesite S; (i = 1, 2, ..., n)is selected
randomly from reserve site set S. Finally, the affected area
D;(j=1,2,...,m)is selected randomly from the affected
area set D. This selection process is repeated until a whole
butterfly individual is constructed, so the initial solution
of the EmVRP is obtained. After all the butterfly individu-
als have been generated, the initial butterfly population is
formed.

5.2 The EMBO for emergency VRP with relief
materials in sudden disasters

In this section, we discuss how to use EMBO to solve
the EmVRP with relief materials in sudden disasters. First,
the initialization process is implemented, including the
parameters and initial population, as described previ-
ously. Next, the optimization process is implemented to
update butterfly individuals in the population. Then the
newly generated butterfly individuals are evaluated ac-
cording to the objective functions. The implementation of
the EMBO algorithm is repeated until the given require-
ments are met. Finally, the optimal butterfly individual is
decoded in order to get the final solution scheme for the
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EmVRP with relief materials in sudden disasters as given
in Algorithm 4.

In Algorithm 4, Line 4 encoding is essentially the pop-
ulation initialization process needed so that the EMBO al-
gorithm can solve the EmVRP. Through this encoding, the
initial population is generated. Line 4 describes the decod-
ing process that transforms the butterfly individual into
the actual solution scheme for the EmVRP. Encoding and
decoding are opposite processes.

6 Simulation results

In this portion of our work, we used the proposed
EMBO algorithm to solve the EmVRP with relief materi-
als in sudden disasters. In addition, to show the advant-
ages of the EMBO algorithm, we performed several stud-
ies comparing the basic MBO algorithm with seven other
intelligent algorithms. Finally, to show the robustness of
the proposed EMBO algorithm, we reviewed the effects of
parametric settings on the performance of EMBO.

6.1 An EmVRP with relief materials in
sudden disasters (case 1)

To test our approach, we solved a hypothetical Em-
VRP with relief materials in a sudden-onset disaster [75]
that can be described as follows. Suppose a sudden nat-
ural disaster occurred. There are 4 disaster spots in need
of emergency materials. These locations can be identified
as J1, J2, J3, and J4, respectively. The relief materials have
been transported to the local airport and railway station by
aircraft and railway. There are a total of 3 reserve sites, de-
noted by I, I, and I3, respectively, including the airport
and railway station together with the local relief supply re-
serve area. A total of 20 vehicles are collected, and they
are located randomly in 3 parking locations numbered K,
K>, and K3. There are 4 kinds of materials to be delivered:
tents, quilts, clothing, and food, represented as G, G», G3,
and G4, respectively. The number of tasks to be completed
by each vehicle is not more than 5. Tables 1-5 provide the
related information for the above EmVRP example.
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Table 3: The demand of emergency supplies in every affected point.

Affected point Tent  Quilt Clothes Food
1 2000 10000 6000 3000
)2 5000 20000 6000 8000
I3 3000 10000 8000 4000
J4 4000 10000 6000 5000

Table 4: Reserves of emergency supplies in every reserve point.

Reserve point  Tent Quilt Clothes Food
I 4000 200000 8000 8000
I 3000 10000 6000 4000
I 8000 20000 12000 9000

Table 5: The distance between every point.

Distance (km) | |, I3 1 | PR E Y

Ky 45 60 70
Ky 60 50 80
Ks 70 80 60
Iy 60 50 70 80
I, 70 60 55 65
I3 100 80 50 60

6.2 The shortest time used by nine
algorithms on the EmVRP with relief
materials in sudden disasters

For the sake of carrying out a fair comparison, all
the approaches were compiled using MATLAB R2017a (9.2)
running under the Windows 10 Enterprise operating sys-
tem on a PC with an Intel(R) Core(TM) i5-4590 CPU operat-
ing at 3.30 GHz, 8.00GB of RAM, and a hard drive of 1024
GB.

In all experiments for MBO and EMBO, we used the
same parameter settings: probability p = 5/12, elitism
number Keep = 2, BARy = (v/5-1) /2, population size
Np = 50, dimension D = 320, and maximum generation
tmax = 100.

In this paper, the proposed EMBO algorithm will be
compared with seven intelligent algorithms when dealing
with emergency vehicle routing problem with relief materi-
als in sudden disasters. The seven comparative algorithms
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Initialization. Set the generation counter ¢ = 1, and set the maximum generation tmax, NP1, NP,, BAR, peri,
and p.

Encoding. Initialize the population according to the encoding method in Section 5.1.

Population evaluation. Calculate the shortest time used by each butterfly individual.

while ¢ < tpax do

Sort the butterfly population.

Divide population into SP1 and SP2;

fori=1toNP; do
‘ Generate xf”’nlew by implementing migration operator.

end

For all individuals in SP2, implement the updated butterfly adjusting operator to generate x]{*nlew as
Algorithm 2.

Calculate the shortest time used by each butterfly individual.

t=t+1.
end

Decoding. Decode the optimal butterfly individual in order to get the final best solution scheme for the
emergency VRP.

Print the final optimal scheduling scheme solution.
Algorithm 4: EMBO algorithm for emergency VRP with relief materials in sudden disasters

Table 1: Related parameters of vehicles.

Vehicle number Parking lot Speed (km/h) Load capacity (ton) Volume (m?)

1 K> 50 4 30
2 Ky 45 5 34
3 K> 55 3 27
4 Ks 40 6 40
5 Ky 50 4 30
6 K> 55 3 27
7 Ks 35 7 45
8 K> 50 4 30
9 Ky 45 5 34

10 K> 45 5 34

11 Ks 40 6 40

12 Ky 45 5 34

13 K> 55 3 27

14 Ks 40 6 40

15 Ks 50 4 30

16 K> 55 3 27

17 Ks 35 7 45

18 K> 50 4 30

19 Ky 45 5 34

20 K> 45 5 34

can be described below. ABC (artificial bee colony) [25] is  (biogeography-based optimization) [42] is a new evolution
an intelligent optimization algorithm based on the smart algorithm developed for the global optimization inspired
behavior of honey bee swarm. BA (bat algorithm) [17] is by the immigration and emigration of species between is-
a new powerful and efficient meta-heuristic optimization lands (or habitats) in search of more compatible islands.
algorithm inspired by the echolocation behavior of bats CS (cuckoo search) [69] is a meta-heuristic optimization al-
with varying pulse rates of emission and loudness. BBO gorithm inspired by the obligate brood parasitism of some
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Table 2: Related parameters of emergency supplies.

DE GRUYTER

Materials

Tent Quilt Clothes Food

Weight (kg)
Volume (m?3)

Unit material loading (unloading) time (min)

30 6 5 10
1.1 0.15 0.3 0.5
0.2 0.2 0.1 0.1

cuckoo species by laying their eggs in the nests of other
host birds (of other species). DE (differential evolution)
[43] is a simple but excellent optimization method that
uses the difference between two solutions to probabilist-
ically adapt a third solution. An ES (evolutionary strategy)
[2] is an algorithm that generally distributes equal import-
ance to mutation and recombination, and that allows two
or more parents to reproduce an offspring. PSO (particle
swarm optimization) [26, 71, 72] is also a swarm intelli-
gence algorithm which is based on the swarm behavior of
fish, and bird schooling in nature.

The parameters for the other seven algorithms were set
as follows.

— For ABC, the population size Np = 50, the number of
food sources FoodNumber = Np/2, maximum search
times limit = 100.

— For BA, loudness A = 0.5, pulse rate r = 0.5, and scal-
ing factor € = 0.001.

— For BBO, habitat modification probability = 1, immig-
ration probability bounds per gene = [0, 1], step size for
numerical integration of probabilities =1, maximum
migration rate for each island = 1, and mutation prob-
ability = 0.005.

— For CS, the discovery rate pg = 0.25.

- For DE, the weighting factor F = 0.5, and crossover
constant CR = 0.5.

— For ES, the number of offspring produced in each gen-
eration A = 10, and the standard deviation for chan-
ging solutionsiso=1.

— For PSO, the inertial constant = 0.3, the cognitive con-
stant = 1, and the social constant for swarm interaction
=1.

For one implementation of EMBO, the convergent
trend of the best and average time of the EMBO approach is
shown in Fig. 2. In Fig. 2, the best and mean time after 100
generations were 109.4341 and 109.489, respectively. Fur-
thermore, the EMBO algorithm converged to the least time
after about 20 generations. These findings indicated that
the EMBO algorithm could solve the emergency VRP prob-
lem well.
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Figure 2: The convergent trend of the best and average time for
EMBO algorithm.

In addition, the shortest time over 30 independent
runs was obtained by EMBO and the eight other intelli-
gent algorithms, and the results are displayed in Table 6.
From Table 6, although EMBO had the biggest std value,
it is clear that EMBO was able to complete the task with
the least time among the nine intelligent algorithms for the
average, best, and worst performance. For the other eight
intelligent algorithms, BBO, CS, and DE had similar per-
formances that were inferior only to the EMBO algorithm.
Also, MBO performed similarly to PSO, which was better
than ABC, BA, and ES.

The convergent trend of the average time obtained by
the nine algorithms is shown in Fig. 3. From Fig. 3, it is
clear that EMBO converged in the fastest fashion among
the nine intelligent algorithms. This convergent trend was
consistent with the results provided in Table 6.

6.3 Another EmVRP with relief materials in
sudden disasters (case 2)

Like case 1 studied in Section 6.1, another emergency
VRP problem is further used to verify our proposed EMBO
algorithm. In case 2, there are 5 disaster spots in need of
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Table 6: The least time used by nine intelligent algorithms for the emergency VRP with relief materials in sudden disasters.

ABC BA BBO cs DE EMBO ES MBO PSO

Best 158.31 154.10 142.64 143.43 142.52 109.06 163.93 152.08 157.19
Mean 162.96 161.27 145.69 145.26 144.68 118.18 165.89 154.51 159.03
Worst 167.35 167.86 148.29 150.21 146.10 140.77 167.25 158.24 162.23
Std 2.2516 3.1246 1.6231 1.3777 0.8202 13.2842 0.8953 1.5353 1.4138

e Table 8: The demand of emergency supplies in every affected point
e Beo for case 2.
cs
————— DE
* - EMBO . .
——es Affected point  Tent Quilt  Clothes Food
— b —PSO I 3000 9000 7000 4000
@ )5 6000 19000 7000 7000
Js 4000 9000 9000 5000
In 5000 9000 7000 4000
Js 4000 11000 6500 5000

Table 9: Reserves of emergency supplies in every reserve point for
case 2.

Time

Reserve point Tent  Quilt Clothes Food

%,
e pssrers e rnsernr Iy 5000 19000 9000 9000
I, 4000 11000 7000 5000
M0 0 0 3 40 s e 70 80 90 100 I3 9000 21000 11000 10000
Generations Iy 7000 20000 10000 9000

(b)

Figure 3: Results obtained by nine algorithms.

emergency materials. These locations can be identified as
J1,J2, 713, J4, and Js, respectively. The relief materials have
been transported to the local airport and railway station
by aircraft and railway. There are a total of 4 reserve sites,
denoted by I, I, I3, and I, respectively. A total of 25
vehicles are collected, and they are located randomly in
3 parking locations numbered K;, K>, and K3. There are 4
kinds of materials to be delivered: tents, quilts, clothing,
and food, represented as G1, G,, G3, and G4, respectively.
The number of tasks to be completed by each vehicle is not
more than 5. The parameters of emergency supplies used
in case 2is the same with case 1, as shown in Table 2. Tables
7-10 provide the other related information for case 2.
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Table 7: Related parameters of vehicles for case 2.
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Vehicle number Parking lot Speed (km/h) Load capacity (ton) Volume (m?)
1 Ky 45 5 34
2 K> 45 5 34
3 Ks 50 4 30
4 K> 35 7 45
5 K1 55 3 27
6 Ks 50 4 30
7 K> 40 6 40
8 K1 55 3 27
9 K3 45 5 34
10 K> 40 6 40
11 Ky 45 5 34
12 K5 45 5 34
13 Ks 50 4 45
14 K> 35 7 27
15 K1 55 3 30
16 Ks 50 4 40
17 K5 40 6 27
18 K1 55 3 34
19 K> 45 5 30
20 K> 50 4 28
21 K1 45 5 29
22 K5 55 3 38
23 Ks 50 6 43
24 K, 40 3 31
25 Ky 55 5 37

Table 10: The distance between every point for case 2.

Distance (km) |1 L I3

K1 50 65 70
K> 65 55 50
Ks 75 85 65

75

85

65
55 55 70 75 60
65 65 60 60 55
95 85 55 55 80
65 55 60 70 90

For the software, hardware environments and para-
meter settings used in nine intelligent algorithms, they are
the same with case 1.

In addition, the shortest time over 30 independent
runs was obtained by EMBO and the eight other intelligent
algorithms, and the results are displayed in Table 11. From
Table 11, it is clear that EMBO was able to complete the task
with the least time among the nine intelligent algorithms
for the average, best, and worst performance. Also, EMBO

had the smallest Std value for this case. For the other eight
intelligent algorithms, BBO, BA, and MBO had similar per-
formances that were inferior only to the EMBO algorithm.
Comparing with case 1, EMBO algorithm takes less time to
complete the task, and the reason is that five more vehicles
are added to case 2.
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Table 11: The least time used by nine intelligent algorithms for case 2.

Emergency VRP with Relief Materials in Sudden Disasters by MBO =— 407

ABC BA BBO cs DE EMBO ES MBO PSO
Best 137.03 96.13 91.00 102.65 104.84 85.66 114.38 93.72 119.67
Mean 148.29 113.33 95.38 108.85 113.96 86.39 119.28 99.19 140.33
Worst  164.45 126.22 100.37 110.78 125.30 87.97 122.79 104.32 155.02
Std  6.6743 6.9830 2.0991 1.5518 5.4081 0.5022 2.1377 2.6460 7.4307

6.4 Parameter study

As we are aware, for all the intelligent algorithms, the
parameter setting is of significant importance to their per-
formance. In this section, the effectiveness of the initial
butterfly adjusting rate BAR, probability p, elitism Keep,
population size Np, and maximum generation tmax are
analyzed for the proposed EMBO algorithm on case 1.

6.4.1 Influence of the initial butterfly adjusting rate
BAR, for EMBO

First, we examined the initial butterfly adjusting rate
BARy. The other parameters were set as follows: elitism
number Keep = 2, probability p = 5/12, population size
Np = 50, and maximum generation fmax = 100. The fi-
nal times required by EMBO with different values of BAR
were recorded as shown in Table 12 and Fig. 4. From Table
12, when BAR( was equal to 0.6 or 0.7, EMBO could find
the optimal scheduling scheme with the least time. Look-
ing carefully at Fig. 4, we can observe that the perform-
ance of EMBO was significantly improved with the incre-
ment of BARq. However, EMBO had a similar performance
when BAR( was between 0.6 and 1.0. Considering matters
overall, we set the initial butterfly adjusting rate BAR to
(v/5-1) /2 for this present work.

It should be mentioned that the initial butterfly adjust-
ing rate BAR, was between 0 and 1.0. When the initial but-
terfly adjusting rate BARy = 0, the updating Eq. 18 would
degenerate into the following equation:

t

tmax

BAR = (26)

In this case, the butterfly adjusting rate BAR is chan-
ging in a linear fashion. On the other hand, when the
initial butterfly adjusting rate BARy = 1.0, the butter-
fly adjusting rate BAR is equal to the initial butterfly ad-
justing rate BAR. The butterfly adjusting rate BAR will
not change during the whole optimization process. Essen-
tially, this description fits a basic MBO algorithm.
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Figure 4: Results obtained by EMBO with different BAR.

6.4.2 Influence of the probability p for EMBO

In EMBO, there is another probability p that decides
the number of NP; and NP,. In other words, there are NP,
and NP, butterflies that implement the migration oper-
ator and butterfly adjusting operator, respectively. Here,
we studied the probability p. The other parameters were
set as follows: population size Np = 50, the initial but-
terfly adjusting rate BARy = (v/5-1) /2, elitism number
Keep = 2, and maximum generation fmax = 100. The fi-
nal times achieved by EMBO with different p are shown in
Table 13 and Fig. 5. From Table 13, when probability p was
equal to 0.7, 0.8 or 0.7, we see that EMBO could find the
optimal scheduling scheme with the least time. Examin-
ing Fig. 5 carefully, we can observe that the performance
of EMBO improved significantly with the increment of p.
However, EMBO had a similar performance when p was
between 0.5 and 1.0. Considered overall, the probability p
was set to 5/12 in this paper.

It should be mentioned that the probability p was
between 0.1 and 0.9. For MBO, when probability p = 0,
all the individuals will be updated only by the butterfly
adjusting operator. When probability p = 1.0, all the in-
dividuals will be updated only by the migration operator.
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Table 12: The least time used by the proposed EMBO algorithm for the EmVRP with relief materials in sudden disasters with different BAR.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Best 135.36 135.39 134.07 135.52 109.44 109.34 108.58 109.02 108.85 110.42 110.46
Mean 138.17 138.09 138.10 137.63 133.57 114.28 109.51 109.51 109.47 110.91 110.91
Worst  140.69 140.84 140.55 139.91 140.86 137.88 110.14 109.94 109.94 111.03 111.03
Std 1.5266 1.3504 1.3326 0.8532 9.7697 10.3059 0.3526 0.2779 0.3323 0.1675 0.1856
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Figure 5: Results obtained by EMBO with different p.

No special attention was paid to these two extreme cases
ofp=0andp = 1.0.

6.4.3 Influence of the elitism Keep for EMBO

As we can see, most intelligent algorithms involve an
elitism strategy that has a great influence on the perform-
ance. Here, the elitism Keep was studied in the range of
[0, 10]. The other parameters were set as follows: prob-
ability p = 5/12, initial butterfly adjusting rate BARy =
(v/5-1) /2, population size Np = 50, and maximum gen-
eration tmax = 100. The final times attained by EMBO with
different Keep values are shown in Table 14 and Fig. 6.
From Table 14, when the parameter Keep was equal to O, 3
or 8, EMBO could find the optimal scheduling scheme with
the least time. Looking carefully at Fig. 6, though the trend
of EMBO is less obvious, generally speaking the perform-
ance of EMBO improved with the increment of Keep. How-
ever, on average, EMBO had a similar performance when
Keep was equal to 1 and 3. Therefore, we set the elitism
Keep to 2 for this research.

Figure 6: Results obtained by EMBO with different Keep.

6.4.4 Influence of the population size Np for EMBO

Subsequently, we studied the population size Np in
the range of [10, 100] with interval 10. The other paramet-
ers were set as follows: the initial butterfly adjusting rate
BAR, = (V/5-1) /2, probability p = 5/12, elitism number
Keep = 2, and maximum generation tmax = 100. The final
times obtained by EMBO with different Np were recorded
as shown in Table 15 and Fig. 7. From Table 15, when popu-
lation size Np was equal to 90, 100, 20, and 10, EMBO could
find the optimal scheduling scheme with the least time.
Examining Fig. 7, we can observe that the performance of
EMBO decreased and then improved with the increment
of Np. Furthermore, overall the proposed EMBO algorithm
was capable of obtaining satisfactory solutions within a
reasonable time when the population size Np = 10. Un-
der this condition, fewer computational resources were
required, indicating that EMBO could solve the EmVRP
while consuming only limited computational resources.
Considered altogether, we set the population size Np to 50
in our present work.
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Table 13: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with differ-

entp.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Best 136.05 109.57 109.43 109.16 108.89 108.92 108.62 108.81 109.33
Mean 137.97 136.86 127.41 117.89 111.30 109.73 109.58 108.58 110.08
Worst 140.56 141.69 139.68 139.36 138.08 116.14 110.47 110.54 110.67
Std 1.0755 7.4311 13.6690 12.6734 6.4444 1.2843 0.3514 0.4003 0.3664

Table 14: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with differ-
ent Keep.

0 1 2 3 4 5 6 7 8 9 10
Best 108.89 109.19 109.19 109.16 109.23 109.07 109.06 108.92 109.21 109.15 109.43
Mean 11414 112.52 115.36 112.39 112.40 126.95 120.49 121.27 123.02 118.78 121.51
Worst  137.74 137.92 139.75 137.83 138.34 138.35 138.55 138.79 137.49 137.94 139.17
Std 10.2456 8.4974 11.5944 8.4129 13.8968 12.2843 13.5096 13.5515 13.6949 13.0870 13.5949

Table 15: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with differ-
ent Np.

10 20 30 40 50 60 70 80 90 100
Best 110.25 109.63 109.16 109.19 109.20 109.16 109.16 108.89 108.85 108.85
Mean 111.38 111.37 111.95 112.60 114.34 118.55 119.17 115.55 115.27 117.76
Worst  116.17 139.58 139.23 137.49 139.86 138.85 137.51 136.82 135.96 135.97
Std 1.8294 5.4166 7.2907 8.3299 10.4997 12.9187 13.0635 11.3207 10.9097 12.2106

Table 16: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with differ-

ent tmax.

20 40 60 80 100 120 140 160 180 200
Best 110.09 109.65 109.39 108.59 109.06 109.20 108.89 109.12 109.12 108.85
Mean 110.68 110.32 109.85 114.43 112.41 116.01 116.56 117.99 122.81 120.91
Worst  111.03 114.64 110.30 141.23 139.51 137.50 138.50 136.32 135.83 136.52
Std 0.2450 0.8589 0.2236 10.8763 8.7851 11.6742 11.7442 12.2216 12.6813 12.3809

6.4.5 Influence of the maximum generation tmax for
EMBO

Last, we studied the maximum generation tmax in the
range of [20, 200] with interval 20. The other paramet-
ers were set as follows: the initial butterfly adjusting rate
BARg = (V/5-1) /2, elitism number Keep = 2, probability
p = 5/12, and population size Np = 50. The final times
used by EMBO with different ¢tmax are shown in Table 16
and Fig. 8. From Table 16, when the maximum generation
tmax Was equal to 80, 60, and 60, EMBO was able to get the
optimal scheduling scheme with the least time. Looking

carefully at Fig. 8, generally the performance of EMBO was
significantly reduced with the increment of tmax. However,
when tmax was equal to 20, 40, and 60, EMBO provided bet-
ter performance than at the other tmax values. This find-
ing goes against common expectations. For most intelli-
gent algorithms, their performance will exceed, or at least
be equal to, the performance given before the increment of
generations. We propose the reason for this finding is that
maximum generation tmax has an influence on the value of
the butterfly adjusting rate BAR, which, in turn, has a big
impact on MBO’s performance. Under this condition, the
situation becomes complicated. Considered as a whole, we
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set the maximum generation tmax to 100 in our present
work.

7 Conclusions

In this paper, we constructed a model of the EmVRP
( emergency vehicle routing problem) with relief materi-
als in sudden disasters, and then solved the problem us-
ing the intelligent EMBO algorithm. For EMBO, we incor-
porated two modifications into the basic MBO algorithm: a
self-adaptive strategy and a crossover operator. Our exper-
iments using two examples EmVRP with relief materials in
a sudden-onset disaster proved the suitability of EMBO. In
addition, an array of comparative studies showed that the
proposed EMBO algorithm can achieve satisfactory solu-
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tions in less time than the basic MBO algorithm and seven
other intelligent algorithms.

Consistent with on our interest in the EmVRP with
relief materials in sudden disasters, we look toward the
following future work. First, more efficient optimization
strategies, such as a self-adaptive strategy, should be in-
corporated into our original approach, thereby allowing
the method to solve the EmVRP more efficiently and ac-
curately. Second, new methods should be designed to
solve the EmVRP with relief materials in sudden disasters.
Third, the performance of EMBO should be studied and
analyzed further for cases where the probability p is equal
to 0 and 1.00. Fourthly, the performance of the basic MBO
algorithm should be studied and analyzed more extens-
ively with regard to the probability p and other paramet-
ers. Fifthly, in the current work, though the crossover rate
is changed during the search process, it does not take into
account the state of the search process. In our future re-
search, the state of the search process should be taken into
account and a more intelligent crossover operator should
be developed. Sixthly, in our current work, the emergency
VRP is just solved by our proposed MBO algorithm. That
is to say, in this version of the paper there is no an equi-
librium between methods and decision making processes.
In our future work, we will build the equilibrium between
methods and decision making processes. Seventhly, in our
current work, all the parameters fall into the small range,
therefore, try-and-error method can well solve it. In our
future work, if there are more complicated parameters to
be adjusted, irace and other parametric techniques will be
used. At last, in our current work, we just use our proposed
MBO algorithm to solve the relatively idealized mathem-
atical model. So, other factors is canceled in our current
work. In our future work, we will reconsider these factors
to our mathematical model (such as congestion or unre-
liable road network [28, 40, 45]), which is much closer to
real world problems. Eighth, for other road network, like
grid of streets [31, 66], we will study them in our future
studies. Ninth, we will learn from other models (like [1]) to
improve the model used in our current work. These stud-
ies will contribute to the best implementation of MBO and
EMBO.
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