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Abstract: China has one of the highest rates of natural dis-
asters in the world. In recent years, the Chinese govern-
ment has placed a high value on improving emergency
natural disaster relief. The goal of this research was to
resolve a key issue for emergency natural disaster relief:
the emergency vehicle routing problem (EmVRP) with re-
lief materials in sudden disasters. First, we provided a de-
scription of the EmVRP, and de�ned the boundary con-
ditions. On this basis, we constructed an optimization
model of EmVRP with relief materials in sudden disasters.
To reach the best solution in the least amount of time,
we proposed an enhancedmonarch butter�y optimization
(EMBO) algorithm, incorporating two modi�cations to the
basic MBO: a self-adaptive strategy and a crossover oper-
ator. Finally, the EMBO algorithm was used to solve the
EmVRP.Our experiments using two examples EmVRPwith
relief materials in a sudden-onset disaster proved the suit-
ability of EMBO. In addition, an array of comparative stud-
ies showed that the proposed EMBOalgorithm can achieve
satisfactory solutions in less time than the basic MBO al-
gorithm and seven other intelligent algorithms.
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1 Introduction
When natural disasters occur, an e�cient logistics

system is vital for emergency relief work. Although rapid
advances in science and technology have improved our
ability to predict some natural disasters with increasing
certainty, sudden natural disasters are still a major threat
to the survival of regional populations and to the main-
tenance of social and economic development. Even when
a disaster can be predicted in advance, obstacles such as
short warning times and long transport distances make it
di�cult to protect threatened populations in the interval
between the forecast and the event. Therefore, an e�cient
emergency natural disaster relief logistics system is key to
providing rescue and post-disaster relief for many people.

Studies of emergent natural disaster relief logistics
systems have concentrated primarily on two areas of con-
cern [75]. First, researchers have explored methods for
evaluating the degree of impact of a natural disaster. The
evaluation results determine the level of demand for emer-
gency relief, and the logistics of distribution. Second, stud-
ies have examined the topologies of emergency logistics
distribution networks, including the emergency vehicle
routing problem (EmVRP). This paper focuses on �nding
the most e�cient way to assign vehicles to bring relief
materials and goods to disaster sites from various storage
areas such as depots, railway stations, airports, anddocks.

One of the most representative studies on emergency
logisticswas the LP (linear programming)model proposed
by Rathi et al. [41]. In that study, the authors assigned
each vehicle to each route to obtain the optimal network.
A traditional optimization algorithm was adopted in this
model, but the process fell easily into the local optimum.
Equi et al. [8] studied the optimal number of trips and the
number of vehicles needed to complete each travel route in
the context of a given number of supply centers. While it
may be feasible to target those receiving relief after a nat-
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ural disaster, it is di�cult to di�erentiate the amount of
relief provided among bene�ciaries. This is because much
of the relief consists of food, clothing, and medicine, all
goods for which the absorptive capacity of households is
limited. Empirical tests using data from Honduras follow-
ingHurricaneMitch con�rm this hypothesis. The probabil-
ity of receiving relief was negatively correlatedwithwealth
and positively correlated with assets losses (with a higher
weight placed on losses than pre-disaster wealth) and the
fact that households su�ered damage to their dwelling.
By contrast, controlling for whether households su�ered
damage to their dwelling, the amount of relief receivedwas
related neither to pre-Mitch wealth, nor to assets losses
[36].

Current studies of the EmVRP have provided greater
depth by considering changes of various factors in the
models, and by using more advanced algorithms. How-
ever, studies that consider a combination of the EmVRP
and the logistics of emergency materials distribution are
still relatively scarce. Moreover, themodels that have been
produced to date for the mechanisms and optimization of
emergency distribution have not been able to meet real-
world demands in terms of objective function and bound-
ary conditions [75].

In contrast, themonarch butter�y optimization (MBO)
algorithm proposed by Wang et al. in 2015 [55] is a novel
and promising swarm-based intelligent method [48]. Al-
though the MBO algorithm was proposed only two years
prior to the writing of this paper, some researchers have
implemented several in-depth studies from algorithm im-
provements and engineering application [12–14].

In fact, the EmVRPwith relief materials in sudden dis-
asters is an NP-hard problem [75] that is di�cult to solve
using traditional methods. In this paper, we proposed
an enhanced monarch butter�y optimization (EMBO) al-
gorithm to tackle the EmVRP problem. In the EMBO al-
gorithm, the crossover operator used in evolutionary al-
gorithms (EAs) is incorporated into the basic MBO al-
gorithm to generate a new o�spring population for the
next generation. In addition, the self-adaptive scheme is
used to establish the butter�y adjusting rate. We used the
proposed EMBO algorithm to solve the EmVRP with relief
materials in sudden disasters, and we provided compar-
ative studies between the basic MBO algorithm and seven
other intelligent algorithms to demonstrate the superiority
of EMBO in terms of accuracy.

The remainder of this paper is structured as follows.
The next section reviews the related preliminaries, includ-
ing the EmVRP andMBO algorithm. Section 3 provides the
description of the EmVRP with relief materials in sudden
disasters, followed by themain framework ofMBO and the

proposed EMBO algorithm, as shown in Section 4. Sub-
sequently, Section 5 details how to use EMBO to solve the
EmVRP with relief materials in sudden disasters. Then, in
Section 6, an array of experiments on EmVRP are carried
out. The �nal section summarizes our current work, and
provides our future work orientation.

2 Preliminaries

2.1 EmVRP

In the Introduction above, we described brie�y some
of the prior work focused on EmVRP. In this section, we
review examples of other signi�cant contributions to the
�eld.

Hale and Mober [23] studied the selection of emer-
gency logistics supply nodes, with particular attention to
the number of nodes (sites) for storage of emergency sup-
plies. Their research proposed a quantitative model. For
vehicle routing within a time window (VRPTW) involving
a limited number of vehicles, Lau et al. [30] constructed a
model and put forward the related solutions. In addition,
they implemented a substantial number of fundamental
studies on the variants of the traditional VRP problem.

Based on the features of multi-resource and multi-
point rescue, Dai et al. [6] constructed a mathematical
model to solve the multi-resource emergency problem.
Fu et al. [15] divided emergency logistics distribution is-
sues into three categories: road conditions, vehicle condi-
tions, and the state of materials. They proposed a static,
dynamic, and functional model in accordance with each
emergency issue category. To address actual challenges
of VRP with time windows, Li [32] put forward a method
based on a�nity group match, and further proved that
the immune algorithmcanprovide an e�ective solution for
routing vehicle within a time frame.

Özdamar et al. [38] studied distribution decision sup-
port systems after natural disasters. A model was estab-
lished by considering disaster relief materials compre-
hensively, regarding vehicles as both relief materials and
transportation resources. In addition, Ghiani [21], Ikou
[24], and Özyurt [39] proposed several di�erent algorithms
to solve the EmVRP problem.

Though many scholars have carried out several in-
depth studies regarding emergency relief, few of them
has used swarm intelligence algorithm to solve emer-
gency vehicle routing problemwith relief materials in sud-
den disasters. In this paper, one of the most representat-
ive swarm intelligence algorithms, called monarch butter-
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�y optimization (MBO), is introduced to solve emergency
vehicle routing problem with relief materials in sudden
disasters. Next, the mainframe of MBO algorithm will be
provided.

2.2 MBO algorithm

Since MBO [55] was proposed, many scholars have ex-
plored this approach. In this section, some of the most
representative work regardingMBO is summarized and re-
viewed.

Yi et al. [70] combined quantum computation the-
ory into MBO algorithm, and proposed a novel quantum-
inspired MBO methodology, called QMBO, by incorporat-
ing quantum computation into the basic MBO algorithm.
In QMBO, a certain number of the worst butter�ies were
updated by quantum operators. The path planning navig-
ation problem forUnmannedCombatAir Vehicles (UCAVs)
was modeled into an optimization problem, and then its
optimal path could be obtained by the proposed QMBO al-
gorithm. Furthermore, B-Spline curves were utilized to re-
�ne the obtained path, making it more suitable for UCAVs.
The UCAV path obtained by QMBO was studied and ana-
lyzed in comparisonwith the basicMBO. The experimental
results showed that QMBO can �nd a much shorter path
than MBO.

Ghetas et al. [20] incorporated the harmony search
(HS) algorithm into the basic MBO algorithm, and pro-
posed a variant of MBO, called MBHS, to deal with
the standard benchmark problems. In MBHS, the HS al-
gorithmwas considered as amutation operator to improve
the butter�y adjusting operator, with the aim of accelerat-
ing the convergence rate of MBO.

Feng et al. [10] presented a novel binary MBO (BMBO)
methodused to address the 0-1 knapsack problem (0-1 KP).
In BMBO, each butter�y individual was represented as a
two-tuple string. Several individual allocation techniques
were used to improve BMBO’s performance. In order to
keep the number of infeasible solutions to a minimum, a
novel repair operator was applied. The comparative study
of BMBO with other optimization techniques showed the
superiority of the former in solving the 0-1 KP.

Wang et al. [62] put forward another variant of the
MBO method in combination with GCMBO. In GCMBO,
twomodi�cation strategies, including a self-adaptive cros-
sover (SAC) operator and a greedy strategy, were utilized to
improve its search ability.

Feng et al. [14] combined chaos theory [50] with the
basic MBO algorithm, and then proposed a novel chaotic
MBO (CMBO) algorithm. The proposed CMBO algorithm

enhanced the search e�ectiveness signi�cantly. In CMBO,
in order to tune two main operators, the best chaotic map
was selected from 12 maps. Meanwhile, some of the worst
individuals were improved by using a Gaussian mutation
operator to avoid premature convergence.

Ghanem and Jantan [19] combined ABCwith elements
from MBO to proposed a new hybrid metaheuristic al-
gorithm named Hybrid ABC/MBO (HAM). The combined
methodused anupdated butter�y adjusting operator, con-
sidered to be a mutation operator, with the aim of sharing
the information with the employee bees in ABC.

Wang et al. [59] proposed a discrete version of
MBO (DMBO) that was applied successfully to tackle the
Chinese TSP (CTSP). They also studied and analyzed the
parameter butter�y adjusting rate (BAR). The chosen BAR
was used to �nd the best solution for the CTSP.

Feng et al. [12] proposed a type of multi-strategy MBO
(MMBO) technique for the discounted 0-1 knapsack prob-
lem (DKP). In MMBO, two modi�cations, including neigh-
borhood mutation and Gaussian perturbation, were util-
ized to retain the diversity of the population. An array
of experimental results showed that the neighborhood
mutation and Gaussian perturbation were quite capable
of providing signi�cant improvement in the exploration
and exploitation of the MMBO approach, respectively. Ac-
cordingly, two kinds of NMBOwere proposed: NCMBO and
GMMBO, respectively.

Feng et al. [13] combined MBO with seven kinds of DE
mutation strategies, using the intrinsic mechanism of the
search process of MBO and the character of the di�erential
mutation operator. They presented a novel DEMBO based
on MBO and an improved DE mutation strategy. In this
work, themigration operatorwas replacedby adi�erential
mutation operator with the aim of improving its global op-
timization ability. The overall performance of DEMBOwas
fully assessed using thirty typical discounted 0-1 knap-
sack problem instances. The experimental results demon-
strated thatDEMBOcould enhance the search abilitywhile
not increasing the time complexity. Meanwhile, the ap-
proximation ratio of all the 0-1 KP instances obtained by
DEMBO was close to 1.0.

Wang et al. [49] proposed a new population initial-
ization strategy in order to improve MBO’s performance.
Firstly, the whole search space is equally divided into NP
(population size) parts at each dimension. Subsequently,
two random distributions (T and F distribution) are used
tomutate the equally divided population. Accordingly, �ve
variants of MBOs are proposed with a new initialization
strategy.

Feng et al. [11] presented OMBO, a generalized
opposition-based learning (OBL) [56] MBO with Gaussian
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perturbation. The authors used the OBL strategy on the
portion of the individuals in the late stage of evolution,
and used Gaussian perturbation on the individuals with
poor �tness in each evolution. OBL guaranteed the higher
convergence speed of OMBO, and Gaussian perturbation
avoided the possibility of falling into a local optimum. For
the sake of testing and verifying the e�ectiveness ofOMBO,
three categories of 15 large-scale 0-1 KP cases from 800 to
2,000 dimensions were used. The experimental results in-
dicated that OMBO could �nd high-quality solutions.

Chen et al. [4] proposed a new variant of MBO by in-
troducing a greedy strategy to solve dynamic vehicle rout-
ing problems (DVRPs). In contrast to the basic MBO al-
gorithm, the proposed algorithm accepted only butter�y
individuals that had better �tness than before implement-
ation of the migration and butter�y adjusting operator.
Also, a later perturbation procedure was introduced to
make a trade-o� between global and local search.

Meng et al. [34] proposed an improved MBO (IMBO)
for the sake of enhancing the optimization ability of MBO.
In IMBO, the authors divided the two subpopulations in a
dynamic and random fashion at each generation, instead
of using the �xed strategy applied in the original MBO ap-
proach. Also, the butter�y individualswere updated in two
di�erent ways for the sake of maintaining the diversity of
the population.

Faris et al. [9] modi�ed the position updating strategy
used in the basic MBO algorithm by utilizing both the
previous solutions and the butter�y individuals with the
best �tness at the time. For the sake of fully exploring
the search behavior of the Improved MBO (IMBO), it was
benchmarked by 23 functions. Furthermore, the IMBOwas
applied to train neural networks. The IMBO-based trainer
was veri�ed on 15 machine learning datasets from the UCI
repository. The experimental results showed that the IMBO
algorithm could enhance the learning ability of neural net-
works signi�cantly.

Ehteram et al. [7] used the MBO algorithm to address
the utilization of a multi-reservoir system for the sake of
improving production of hydroelectric energy. They stud-
ied three periods of dry (1963-64), wet (1951-52), and nor-
mal (1985-86) conditions in a 4-reservoir system. The ex-
periments indicated that MBO can generate more energy
when compared with particle swarm optimization (PSO)
and a genetic algorithm (GA).

Xue et al. [67] added a self-adaptive strategy to the ba-
sic ABC algorithm in accordance with the global optimal
solution, so anewvariant ofABCnamedSABC-GBwaspro-
posed. SABC-GB has shown its superiority to other meta-
heuristic algorithms when dealing the complicated optim-
ization problems.

In addition to the MBO algorithm studied in this pa-
per, many other intelligent algorithms [65] have been pro-
posed, such as elephant herding optimization (EHO) [33,
57], simulated annealing (SA) [27], evolutionary strategy
(ES) [2], particle swarm optimization (PSO) [26, 44], moth
search (MS) algorithm [47], bat algorithm (BA) [35, 68], dif-
ferential evolution (DE) [43, 53], biogeography-based op-
timization (BBO) [42, 52], krill herd (KH) [16, 51, 54], cuckoo
search (CS) [5, 69], arti�cial bee colony (ABC) [25, 64],
genetic algorithm (GA) [22], �reworks algorithm (FWA)
[46], earthworm optimization algorithm (EWA) [61], and
harmony search (HS) [18, 63]. These algorithms are used
widely in various engineering applications [73, 74].

In this paper, the model of emergency vehicle rout-
ing problem with relief materials in sudden disasters is
provided. Also,wewill further improve the performance of
the basic MBO algorithm by introducing the self-adaptive
strategy and crossover operator to form a novel enhanced
MBO (EMBO) algorithm. The proposed EMBO algorithm is
then used to tackle EmVRP problem in comparison with
the basic MBO algorithm and seven other intelligent al-
gorithms.

3 EmVRP with relief materials in
sudden disasters

3.1 Problem description

If the scale of a sudden natural disaster is large, the
distribution of emergency materials may require a variety
of transport modes as well as the conversion of various
transportation modes. In our current work, we focused on
onemode of transportation only, assuming that relief sup-
plies brought by rail, air, and water had already arrived at
train stations, airports, and docks in the general disaster
area. Therefore, those terminals (depots, railway stations,
airports, and docks) were also seen as material storage fa-
cilities. Our goal was to determine how to assign vehicles
fromparking areas (suchas garages) to transport reliefma-
terials and goods from the various storage sites (depots,
railway stations, airports, and docks) to the primary dis-
aster points. An overview of the whole system involved in
the emergency VRP with materials in sudden disasters is
shown in Fig. 1 [75].

As shown in Fig. 1, the emergency relief material dis-
tribution system is a three-layer structure. Transporting
the materials is essentially a vehicle routing problem in-
volving movement from multiple parking areas (garages)
to multiple storage sites, and then to multiple disaster
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Figure 1: The structure of three hierarchy of vehicle scheduling for emergency relief goods.

points. Layer 1 includes the parking areas; all the vehicles
assigned to carrying relief materials start from the parking
lots. The number of vehicle types may vary, but the num-
ber is known.

Layer 2 ismadeupof thematerial reserve storage sites,
including all wharfs, train stations, airports, and similar
facilities. We assume that the relief supplies at each re-
servepoint are varied, and that thenumber of certain types
of materials is unchanged during the emergency period.
Thebottom layer, Layer 3, comprises the a�ected areas that
are the destinations for relief distribution. After a disaster,
demand for all kinds of emergency supplies will be gener-
ated at all the impact points according to the disaster as-
sessment. This demand will determine the need to move
reserves at all levels and locations, which in turn will call
for a certain number of vehicles to begin distribution of aid
materials.

From Layer 1 to Layer 2, there is vehicle �ow only, with
nomaterial �ow, i.e., the vehicles run fromLayer 1 to Layer
2, but they are not loaded. Moreover, this �ow is one-way,
with the vehicles moving only from the parking areas to
the various material reserve sites. They do not return to

the parking areas during the emergency period. However,
both vehicle �ow and material �ow occur between Layer 2
and Layer 3. Materials move in a one-way unidirectional
�ow from Layer 2 to Layer 3, while the vehicles form a
two-way �ow between these two layers. After a vehicle ar-
rives at a disaster point, it does not immediately return to
the parking areas, but instead remains in the arrival spot
on standby. Once a new distribution task is ordered, the
vehiclewill go back to the appropriatematerial storage site
to be loaded and start a new distribution.

Therefore, after a vehicle arrives at an a�ected area
from a reserve area, there are two possible states for the
vehicle. Either it remains in the impacted area waiting for
new orders, or it may be given a new task immediately, in
which case it returns right way to the reserve to begin the
next round of distribution, as shown by the dotted line in
Fig. 1. In our current work, we assumed that the vehicle is
running along the unloaded reverse �ow. In this process,
the �ow of vehicles is signi�cantly di�erent from that of
common commercial logistics.

Bothmaterials and vehicles �owbetween Layers 2 and
3. However, there is no connection between each point
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of the same layer because the demand for supplies after
a sudden disasters is much greater than the normal cus-
tomer demand for small batches commonly encountered
in business logistics. This di�erence also is re�ected by the
characteristics of the emergency relief supplies demanded
by the a�ected points. The primary goal of post-disaster
distribution is to meet the needs of all the disaster sites
as much as possible while shortening the running time of
the entire distribution system. In this way, losses are re-
duced at each disaster point, and the cost of vehicle opera-
tions is reduced aswell. Vehicles canbe reused throughout
the distribution system, i.e., the vehicle �ow is repeated
between the second and the third layers until all the needs
of the disaster sites are met.

3.2 De�nition and explanation of boundary
conditions of model

Under the guidance of the distribution system model
of the EmVRPwith reliefmaterials in sudden disasters, the
boundary conditions of the vehicle distribution system are
de�ned as follows:

(1) There are multiple supply points and demand
points in the network. The supply and demand of emer-
gency materials are known at each point, and the total
supply can meet the needs of the a�ected areas.

(2) There are many parking areas, and each parking
area may have a variety of vehicles. The number of parked
vehicles is su�cient to meet the need for materials distri-
bution, and each vehicle has a number.

(3) There are a variety of emergency supplies to be de-
livered. Each is di�erent in weight and volume, and each
has di�erent loading e�ciency. It is assumed that the load-
ing e�ciency of the material at the supply site is the same
as the unloading e�ciency at the disaster site.

(4) Each disaster site can be served by multiple
vehicles.

(5) Eachdelivery task carries only one kindofmaterial.
(6) After the completion of a distribution task, if the

vehicle still has supplies, then it will continue to complete
the delivery task; otherwise, it will return to the starting
point at the parking area to wait for the next dispatch.

(7) There is neither vehicle �ow nor material �ow
between the points of each layer.

3.3 The model of the EmVRP with relief
materials in sudden disasters

The model of the emergency VRP with relief materi-
als in sudden disasters consists mainly of four parts: the
symbol de�nition, objective function, constraint condi-
tion, and the model description.
(1) Symbol de�nition

The model of the EmVRP with relief materials in sud-
den disasters includes the de�nition of �ve kinds of sym-
bols: set, parameters related to transportation, parameters
related to relief materials, parameters related to distance,
and decision variables.
1) Set

The set of materials/goods: G = {G1, G2, ..., Gp} ;
The set of supply sites (i.e., relief materials re-

serve sites/points, material storage sites/points): S =
{S1, S2, ..., Sn};

The set of disaster sites (a�ected areas/points): D =
{D1, D2, ..., Dm};

The set of parking areas (garages, parking lots): K =
{K1, K2, ..., Kk};

The set of vehicles: L = {L1, L2, ..., Ll};
The set of edges: E = {(k, i)(i, j)|k ∈ K, i ∈ S, j ∈ D}.

2) Parameters related to transportation
Vl: the maximum volume of the vehicle l;
capl: the maximum dead weight tonnage of the

vehicle l;
vl: the speed of the vehicle l.

3) Parameters related to relief materials
wg: the unit weight of material type g;
cg: the unit volume of material type g;
tg: the time needed for loading and unloading mater-

ial g.
4) Parameters related to distance

dki: the distance from the parking area to the material
supply site;

dij: the distance between the supply site and the de-
mand point.
5) Decision variables

xlijg: the quantity of material g that is conveyed from
the supply site i to j by vehicle l;

zlijg =
{

1 Vehicle l delivers g from supply site i to j
0 Otherwise

,

l ∈ L, i ∈ S, j ∈ D, g ∈ G

ylki =
{

1 Vehicle l passes edge (k, i)
0 Otherwise

, l ∈

L, k ∈ K, i ∈ S

ylij =
{

1 Vehicle l passes edge (i, j)
0 Otherwise

, l ∈ L, i ∈

S, j ∈ D
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(2) Objective function

min T =
∑
l∈L

∑
k∈K

∑
i∈S

dki
vl
ylki (1)

+
∑
l∈L

∑
i∈S

∑
j∈D

∑
g∈G

tgxlijgylizlijg (2)

+2 ×
∑
l∈L

∑
i∈S

∑
j∈D

dij
vl
ylij (3)

+
∑
l∈L

∑
i∈S

∑
j∈D

∑
g∈G

tgxlijgyljzlijg (4)

(3) Constraint condition

xlijgwg ≤ capl (5)

xlijgcg ≤ Vl (6)

∑
g∈G

zlijg = 1 (7)

∑
i∈S

ylki = 1 (8)

ylki ∈ {0, 1} , ylij ∈ {0, 1} , zlijg ∈ {0, 1} (9)

yli ∈ {0, 1} , ylj ∈ {0, 1} (10)

1 ≤ l ≤ |L|, 1 ≤ i ≤ |S|, 1 ≤ j ≤ |D|, 1 ≤ g ≤ |G| (11)

(4) Model description
For the model of the EmVRP with relief materials in

sudden disasters, the goal is to meet the needs of the af-
fected points in the shortest total running time possible.
The total running time of a vehicle includes the travel time
from the parking areas tomaterial reserve sites, travel time
from material reserve areas to the a�ected areas, loading
time at reserve sites, and unloading time at the a�ected
areas.

For the objective function in the model of the EmVRP
with relief materials in sudden disasters, Eq. 1 represents
the time from the parking area to the reserve site; Eq. 2 rep-
resents the loading time at the reserve site; Eq. 3 represents
the time from the material reserve site to the a�ected site;
and Eq. 4 represents the unloading time of the material
at the a�ected area. In our current work, we suppose the
vehicles will take the same time moving from the a�ected
point to reserve point.

For the constraint conditions, Eq. 5 means that the
goods transported by each vehicle cannot exceed themax-
imum load capacity of the vehicle; Eq. 6 means that the
goods delivered by each vehicle should not exceed the
maximum volume of the vehicle; Eq. 7 means that each
vehicle carries only one material at a time from the ma-
terial reserve site to the a�ected area; Eq. 8 means that the
vehicles starting from the garage can only reach amaterial
reserve site, which is a one-way non-circular �ow between
the �rst and second layers; and Eqs. 9-10 indicate that the
variables of this problem satisfy the 0-1 integer constraint.
Eq. 11 represents the range of the indexes in constraints. |·|
represents the number of elements contained in a set.

To solve the problem of the model constructed in this
paper, it is necessary to construct a heuristic algorithm
with simple operation and excellent search performance.
At present, the heuristic algorithms used to solve the
vehicle scheduling problem include primarily the genetic
algorithm (GA), neural network method, ant colony al-
gorithm (ACO), tabu search (TS), and simulated annealing
algorithm (SA). Among them, the most popular strategies
involve the application of modern intelligent algorithms
to vehicle scheduling. Many scholars have proven that the
performance achieved using intelligent algorithms is bet-
ter than the results from other traditional optimization al-
gorithms. Therefore, this paper employed anew intelligent
algorithm,monarch butter�y optimization (MBO), to solve
the above-established EmVRP model. The required solu-
tions can be represented by a butter�y individual, while a
butter�y individual can be represented by di�erent park-
ing areas, reserve sites, and the a�ected areas.

3.4 Di�erence between emergency VRP and
regular VRP

Emergency VRP is a special vehicle routing activity
caused by outbreak of emergencies. Due to its suddenness
and lack of information, it is quite di�erent from that of
regular VRP (RVRP) [29].

The goal of RVRP is to minimize costs or maximize
pro�ts [75]. The distribution network is permanent, and its
network structure is designed by the needs of the customer
[75]. Participants are mainly all kinds of economic entities
closely related to each other, such as manufacturers, dis-
tributors and transport companies [75]. Thedriving force of
logistics is demand, and facilities planning, �eet size and
vehicle routing need to be planned in the long, medium
and short term, respectively [75]. The quantity and variety
of materials are limited, the means of transportation are
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used for a long time, and the information in the external
environment is full and not easy to change [75].

Thegoal of emergencyVRP is tomeet the requirements
of minimizing the delay time (primary goal) and minim-
izing the cost (secondary goal) [75]. The distribution net-
work of logistics facilities is temporary, the network struc-
ture is simple and the functions are simpli�ed [75]. The
main participants are not closely linked to the interests of
institutions or organizations, such as government depart-
ments, non-governmental organizations, donors and insti-
tutions that are temporarily established [75]. The driving
force of logistics is divided into two kinds, the re�ection
stage is system propelling, and the recovery stage is de-
mand promotion [75]. Usually, resource reserve planning
is made [75]. In wartime or emergency, material transport-
ation and vehicle scheduling plan are urgent, making the
best possible decisions under shorter term and limited in-
formation, and the plan scheme will often change greatly
in the implementation process [75]. There are the quantity
and variety of material stock, the means of transportation
are temporarily collected, the information in the external
environment is inadequate and easy to change [75].

4 Enhanced MBO algorithm
In this part of our research, we proposed a new vari-

ant of the basic MBO approach, called the enhanced
MBO (EMBO), that includes a crossover operator and self-
adaptive strategy. First, we will describe the main frame-
work of the original MBO approach, and then we will give
a full description of the proposed EMBO approach.

Here, t is the current generation. rand is a random
number. NP is the number of butter�ies in the population,
and p is the ratio of butter�ies in Subpopulation 1. BAR is
the butter�y adjusting rate. Cr is the crossover rate.

4.1 MBO algorithm

4.1.1 Migration operator

The number of butter�ies located at Land 1 and Land
2 can be calculated as ceil(p * NP) (NP1, Subpopulation 1)
andNP−NP1 (NP2, Subpopulation 2), respectively.We can
use SP1 and SP2 to denote Subpopulation 1 and Subpopu-
lation 2, respectively. Here, ceil(x) rounds x to the nearest

integer not less than x. Therefore, when r ≤ p, then xt+1i,k is
generated by the following equation [55]:

xt+1i,k = xtr1 ,k , (12)

where xt+1i,k is the kth element of xi, and xtr1 ,k is the kth ele-
ment of xr1 . Butter�y r1 is chosen from SP1 in a random
fashion. In Eq. 12, r can be given in the following form:

r = rand * peri, (13)

where peri is the migration period [55]. In comparison,
when r > p, then xtr1 ,k can be given by

xt+1i,k = xtr2 ,k , (14)

where xtr2 ,k is the kth element of xr2 , and butter�y r2 is
chosen from SP2 in a random fashion.

4.1.2 Butterfly adjusting operator

For butter�y j, if rand is not more than p, the kth ele-
ment k can be given as [55]

xt+1j,k = xtbest,k , (15)

where xt+1j,k is the kth element of xj. Similarly, xtbest,k is
the kth element of the best individual xbest. On the other
hand, when rand is bigger than p, it can be expressed as

xt+1j,k = xtr3 ,k , (16)

where xtr3 ,k is the kth element of xr3 . Here, r3 ∈
{1, 2, . . . , NP2}.

In this case, when rand is bigger than BAR, it can be
calculated in another form [55]:

xt+1j,k = xt+1j,k +α × (dxk − 0.5) , (17)

where dx is the walk step of butter�y j.
According to the above description, the structure of

MBO can be provided in Algorithm 1.

4.2 EMBO algorithm

MBO has been shown to have its own advantages over
other intelligent algorithms for benchmarking and other
application engineering problems [55]. However, as men-
tioned before, sometimes MBO may be stuck at local op-
tima on certain problems [55]. In this paper, a self-adaptive
strategy and crossover operators were combined with the
basic MBO approach for the sake of enhancing the search
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Initialization. Set the generation counter t = 1, and set the maximum generation tmax, NP1, NP2, BAR, peri,
and p;

Population evaluation. Calculate the �tness according to the objective function;
while t < tmax do

Sort the butter�y population;
Divide population into SP1 and SP2;
for i = 1 to NP1 do

Implement migration operator;
end
for j = 1 to NP2 do

Implement butter�y adjusting operator;
end
Calculate the �tness of newly-generated butter�y individuals;
t = t + 1;

end
Print the �nal solution.

Algorithm 1: Monarch Butter�y Optimization

ability of MBO. This enhancedMBO (EMBO) algorithmwill
be described in detail later in this paper.

4.2.1 Self-adaptive butterfly adjusting operator

One of the most important parameters in the basic
MBO algorithm is the butter�y adjusting rate (BAR). In
MBO, the value of BAR is the same as for p, which is
unchanged during the whole optimization process. Here,
a self-adaptive scheme is introduced �rst to adjust the
parameter BAR. The value of BAR changes self-adaptively
as the optimization process continues between the initial
value BAR0 and the maximum 1, as given mathematically
below:

BAR = BAR0 + (1 − BAR0) ×
t

tmax
, (18)

where BAR0 is the initial butter�y adjusting rate; t and
tmax are the current and maximum generation, respect-
ively.

From Eq. 18, we can see, though BAR is always chan-
ging during the whole MBO process, its value remains in
the range (BAR0, 1].

4.2.2 Crossover operator

As we are aware, for EAs, two of the most import-
ant operators are the crossover operator and mutation
operator [37], both of which have a great in�uence on
the behavior and performance of EAs [3, 58, 60]. In the
presentwork,we introduced the crossover operator origin-

ally used in EAs to the butter�y adjusting operator of the
basic MBO algorithm. The introduced crossover operator
fully explores the information of the butter�y individual,
which can be given as shown:

xt+1j2 =xt+1j1 × (1 − Cr) + xtj × Cr (19)

where xt+1j2 is another butter�y by xt+1j1 and xtj . For the sake
of description, the butter�y individual generated by the
standard butter�y adjusting operator is called xt+1j1 .

At the same time, the crossover rate (Cr) is a critical
factor for how the crossover operator behaves, which de-
termines theperformance of the EAs to someextent. A sub-
stantial number of strategies have been designed to ad-
just the crossover rate, with the goal of improving the EAs’
search e�ectiveness. In the present work, a self-adaptive
scheme was used to adjust the crossover rate. Therefore,
according to the �tness of butter�y j in SP2

(
f (xtj )

)
, the

self-adaptive crossover rate canbe calculated as shownbe-
low.

Cr = 0.8 + 0.2 ×
f (xtj ) − f (xbest)

f (xworst) − f (xbest)
, (20)

where xbest and xworst are the best and the worst butter-
�y with the �tness of f (xbest) and (xworst), respectively. In
addition, from Eq. 20, the minimum and maximum of the
crossover rate Cr are 0.2 and 0.8, respectively.

Up to now, two butter�y individuals ( xt+1j1 and xt+1j2 )
have been generated. Next, we discuss how to select one
as the newly-generated butter�y xt+1j,new for the next gener-
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ation. In this paper, we used a greedy scheme that could
be expressed as

xt+1j,new =
{
xt+1j1 , f (xt+1j1 ) < f (xt+1j2 )
xt+1j2 , f (xt+1j2 ) < f (xt+1j1 )

, (21)

where f (xt+1j1 ) and f (xt+1j2 ) are the �tness of the butter�y xt+1j1
and xt+1j2 , respectively.

After incorporating the crossover operator and self-
adaptive scheme into the butter�y adjusting operator,
an updated butter�y adjusting operator, called the self-
adaptive butter�y adjusting (SABA) operator, was then
proposed, as shown in Algorithm 2.

According to the previous description, the main step
of the EMBO algorithm is given in Algorithm 3.

5 The EMBO for emergency VRP
with relief materials in sudden
disasters
The original MBO approach was designed for continu-

ous optimization problems [55], while the EmVRP studied
in this paper is a classical discrete optimization problem.
Therefore, the main framework of EMBOmust be adjusted
inmany aspects to tackle the EmVRP, including individual
encoding and decoding. Next, we demonstrate how to use
EMBO to solve the EmVRP.

5.1 Individual coding and initial solutions
construction

In our work, we utilize an improved natural num-
ber coding strategy [75]. A butter�y individual is a string
representing an emergency relief material transportation
scheme. In general, a butter�y individual is also called a
chromosome in EAs.

A butter�y individual is made up of two substrings.
The �rst substring has an element that represents the
vehicle number. If there are K vehicles, the �rst element
is an integer selected from 1 to K. The second substring
has 3n elements, and n represents the number of tasks
completed by the vehicle. For example, vehicle 2 at park-
ing area 1 arrives at material storage site I3 to transport
material G1 to the a�ected area J2. Then vehicle 2 goes to
material storage site I1 to transport material G2 to the af-
fected area J4. This process can be represented as K1 − I3 −
G1 − J2 − I1 − G2 − J4, and its corresponding butter�y indi-
vidual can be expressed as 2-3-1-2-1-2-4. The (3n − 1)th ele-

ment represents the number of the material reserve site,
the (3n)th element represents the material type number,
and the (3n + 1)th element represents the number of the
disaster site (a�ected area). The element segments of all
vehicles are arranged in parallel from small to large in or-
der to form a single butter�y individual.

Suppose there are 3 vehicles that are numbered 1, 2,
3, located in the parking lot K2, K1, andK3, respectively;
there are 2 materials that are numbered G1 and G2 ; there
are 2 reserve sites that are numbered I1 and I2 ; and there
are 3 disaster sites that are numbered J1, J2, and J3. The
following butter�y individuals can be generated:

Butter�y individual 1:


1 − 2 − 1 − 1 − 1 − 2 − 2 − 2 − 1 − 3
2 − 1 − 2 − 3
3 − 2 − 1 − 2 − 1 − 2 − 1 − 1 − 2 − 2

 (22)

Its corresponding solution is:


K2 − I2 − G1 − J1 − I1 − G2 − J2 − I2 − G1 − J3
K1 − I1 − G2 − J3
K3 − I2 − G1 − J2 − I1 − G2 − J1 − I1 − G2 − J2

 (23)

Butter�y individual 2:


1 − 1 − 2 − 3 − 1 − 2 − 2
2 − 3 − 2 − 1
3 − 1 − 1 − 3 − 1 − 2 − 1 − 2 − 2 − 2

 (24)

Its corresponding solution is:


K2 − I1 − G2 − J3 − I1 − G2 − J2
K1 − I3 − G2 − J1
K3 − I1 − G1 − J3 − I1 − G2 − J1 − I2 − G2 − J2

 (25)

Butter�y individual 1 represents vehicle 1 from park-
ing lot K2, which arrives atmaterial storage site I2 to trans-
portmaterial G1 to the a�ected area J1. Then vehicle 1 goes
to material storage site I1 to transport material G2 to the
a�ected area J2. Vehicle 2 from parking lot K1 arrives at
material storage site I1 to transport material G2 to the af-
fected area J3. Vehicle 3 from parking lot K3 arrives at ma-
terial storage site I2 to transportmaterial G1 to the a�ected
area J2, and then vehicle 3 goes to material storage site
I1 to transport material G2 to the a�ected area J2. When
the above transportation tasks have been completed, all
requirements of all the a�ected areas will have been met.
Butter�y individual 2 can be explained in the same way.
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Calculate the butter�y adjusting rate BAR by using Eq. 18.
for j = 1 to NP2 do

Compute the walk step dx.
Calculate the weighting factor.
for k = 1 to D do

if rand ≤ p then
Generate xt+1j1,k by Eq. 15.

end
Choose a butter�y in SP2 (say r3) in a random fashion.
Generate xt+1j1,k by Eq. 16.
if rand > BAR then

xt+1j1,k = x
t+1
j1,k+ω × (dxk − 0.5).

end
end
Generate xt+1j2 by implementing crossover operator by Eq. 19.
Generate xt+1j,new through greedy strategy by Eq. 21.

end
Algorithm 2: SABA operator

Initialization. Set the generation counter t = 1, and set the maximum generation tmax, NP1, NP2, BAR0, peri,
and p.

Population evaluation. Evaluate the butter�y individuals with their objective functions.
while t < tmax do

Sort the butter�y population.
Divide population into SP1 and SP2.
for i = 1 to NP1 do

Generate xt+1i,new by implementing migration operator.
end
For all individuals in SP2, implement the updated butter�y adjusting operator to generate xt+1j,new as
Algorithm 2.

Evaluate the butter�y population.
t = t + 1.

end
Print the �nal solution.

Algorithm 3: EMBO approach

Now, we will describe how to generate the initial solu-
tions. First, vehicle l is selected randomly from the park-
ing areas. This selection will be considered the starting
point. Second, the reserve site Si (i = 1, 2, ..., n) is selected
randomly from reserve site set S. Finally, the a�ected area
Dj (j = 1, 2, ...,m) is selected randomly from the a�ected
area setD. This selection process is repeated until a whole
butter�y individual is constructed, so the initial solution
of the EmVRP is obtained. After all the butter�y individu-
als have been generated, the initial butter�y population is
formed.

5.2 The EMBO for emergency VRP with relief
materials in sudden disasters

In this section, we discuss how to use EMBO to solve
the EmVRPwith relief materials in sudden disasters. First,
the initialization process is implemented, including the
parameters and initial population, as described previ-
ously. Next, the optimization process is implemented to
update butter�y individuals in the population. Then the
newly generated butter�y individuals are evaluated ac-
cording to the objective functions. The implementation of
the EMBO algorithm is repeated until the given require-
ments are met. Finally, the optimal butter�y individual is
decoded in order to get the �nal solution scheme for the
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EmVRP with relief materials in sudden disasters as given
in Algorithm 4.

In Algorithm 4, Line 4 encoding is essentially the pop-
ulation initialization process needed so that the EMBO al-
gorithm can solve the EmVRP. Through this encoding, the
initial population is generated. Line 4 describes the decod-
ing process that transforms the butter�y individual into
the actual solution scheme for the EmVRP. Encoding and
decoding are opposite processes.

6 Simulation results
In this portion of our work, we used the proposed

EMBO algorithm to solve the EmVRP with relief materi-
als in sudden disasters. In addition, to show the advant-
ages of the EMBO algorithm, we performed several stud-
ies comparing the basic MBO algorithm with seven other
intelligent algorithms. Finally, to show the robustness of
the proposed EMBO algorithm, we reviewed the e�ects of
parametric settings on the performance of EMBO.

6.1 An EmVRP with relief materials in
sudden disasters (case 1)

To test our approach, we solved a hypothetical Em-
VRP with relief materials in a sudden-onset disaster [75]
that can be described as follows. Suppose a sudden nat-
ural disaster occurred. There are 4 disaster spots in need
of emergency materials. These locations can be identi�ed
as J1, J2, J3, and J4, respectively. The relief materials have
been transported to the local airport and railway station by
aircraft and railway. There are a total of 3 reserve sites, de-
noted by I1, I2, and I3, respectively, including the airport
and railway station together with the local relief supply re-
serve area. A total of 20 vehicles are collected, and they
are located randomly in 3 parking locations numbered K1,
K2, and K3. There are 4 kinds of materials to be delivered:
tents, quilts, clothing, and food, represented asG1,G2,G3,
and G4, respectively. The number of tasks to be completed
by each vehicle is not more than 5. Tables 1-5 provide the
related information for the above EmVRP example.

Table 3: The demand of emergency supplies in every a�ected point.

A�ected point Tent Quilt Clothes Food

J1 2000 10000 6000 3000
J2 5000 20000 6000 8000
J3 3000 10000 8000 4000
J4 4000 10000 6000 5000

Table 4: Reserves of emergency supplies in every reserve point.

Reserve point Tent Quilt Clothes Food

I1 4000 200000 8000 8000
I2 3000 10000 6000 4000
I2 8000 20000 12000 9000

Table 5: The distance between every point.

Distance (km) I1 I2 I3 J1 J2 J3 J4
K1 45 60 70
K2 60 50 80
K3 70 80 60
I1 60 50 70 80
I2 70 60 55 65
I3 100 80 50 60

6.2 The shortest time used by nine
algorithms on the EmVRP with relief
materials in sudden disasters

For the sake of carrying out a fair comparison, all
the approaches were compiled usingMATLAB R2017a (9.2)
running under the Windows 10 Enterprise operating sys-
tem on a PC with an Intel(R) Core(TM) i5-4590 CPU operat-
ing at 3.30 GHz, 8.00GB of RAM, and a hard drive of 1024
GB.

In all experiments for MBO and EMBO, we used the
same parameter settings: probability p = 5/12, elitism
number Keep = 2, BAR0 =

(√
5−1

)
/2, population size

NP = 50, dimension D = 320, and maximum generation
tmax = 100.

In this paper, the proposed EMBO algorithm will be
compared with seven intelligent algorithms when dealing
with emergencyvehicle routingproblemwith reliefmateri-
als in sudden disasters. The seven comparative algorithms
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Initialization. Set the generation counter t = 1, and set the maximum generation tmax, NP1, NP2, BAR0, peri,
and p.

Encoding. Initialize the population according to the encoding method in Section 5.1.
Population evaluation. Calculate the shortest time used by each butter�y individual.
while t < tmax do

Sort the butter�y population.
Divide population into SP1 and SP2;
for i = 1 to NP1 do

Generate xt+1i,new by implementing migration operator.
end
For all individuals in SP2, implement the updated butter�y adjusting operator to generate xt+1j,new as
Algorithm 2.

Calculate the shortest time used by each butter�y individual.
t = t + 1.

end
Decoding. Decode the optimal butter�y individual in order to get the �nal best solution scheme for the
emergency VRP.

Print the �nal optimal scheduling scheme solution.
Algorithm 4: EMBO algorithm for emergency VRP with relief materials in sudden disasters

Table 1: Related parameters of vehicles.

Vehicle number Parking lot Speed (km/h) Load capacity (ton) Volume (m3)

1 K2 50 4 30
2 K1 45 5 34
3 K2 55 3 27
4 K3 40 6 40
5 K1 50 4 30
6 K2 55 3 27
7 K3 35 7 45
8 K2 50 4 30
9 K1 45 5 34
10 K2 45 5 34
11 K3 40 6 40
12 K1 45 5 34
13 K2 55 3 27
14 K3 40 6 40
15 K1 50 4 30
16 K2 55 3 27
17 K3 35 7 45
18 K2 50 4 30
19 K1 45 5 34
20 K2 45 5 34

can be described below. ABC (arti�cial bee colony) [25] is
an intelligent optimization algorithm based on the smart
behavior of honey bee swarm. BA (bat algorithm) [17] is
a new powerful and e�cient meta-heuristic optimization
algorithm inspired by the echolocation behavior of bats
with varying pulse rates of emission and loudness. BBO

(biogeography-based optimization) [42] is a new evolution
algorithm developed for the global optimization inspired
by the immigration and emigration of species between is-
lands (or habitats) in search of more compatible islands.
CS (cuckoo search) [69] is ameta-heuristic optimization al-
gorithm inspired by the obligate brood parasitism of some
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Table 2: Related parameters of emergency supplies.

Materials Tent Quilt Clothes Food

Weight (kg) 30 6 5 10
Volume (m3) 1.1 0.15 0.3 0.5

Unit material loading (unloading) time (min) 0.2 0.2 0.1 0.1

cuckoo species by laying their eggs in the nests of other
host birds (of other species). DE (di�erential evolution)
[43] is a simple but excellent optimization method that
uses the di�erence between two solutions to probabilist-
ically adapt a third solution. An ES (evolutionary strategy)
[2] is an algorithm that generally distributes equal import-
ance to mutation and recombination, and that allows two
or more parents to reproduce an o�spring. PSO (particle
swarm optimization) [26, 71, 72] is also a swarm intelli-
gence algorithm which is based on the swarm behavior of
�sh, and bird schooling in nature.

Theparameters for the other sevenalgorithmswere set
as follows.

– For ABC, the population size NP = 50, the number of
food sources FoodNumber = NP/2, maximum search
times limit = 100.

– For BA, loudness A = 0.5, pulse rate r = 0.5, and scal-
ing factor ε = 0.001.

– For BBO, habitat modi�cation probability = 1, immig-
rationprobability boundsper gene= [0, 1], step size for
numerical integration of probabilities =1, maximum
migration rate for each island = 1, and mutation prob-
ability = 0.005.

– For CS, the discovery rate pa = 0.25.
– For DE, the weighting factor F = 0.5, and crossover

constant CR = 0.5.
– For ES, the number of o�spring produced in each gen-

eration λ = 10, and the standard deviation for chan-
ging solutions is σ = 1 .

– For PSO, the inertial constant = 0.3, the cognitive con-
stant = 1, and the social constant for swarm interaction
= 1.

For one implementation of EMBO, the convergent
trend of the best and average time of the EMBOapproach is
shown in Fig. 2. In Fig. 2, the best and mean time after 100
generations were 109.4341 and 109.489, respectively. Fur-
thermore, the EMBO algorithm converged to the least time
after about 20 generations. These �ndings indicated that
the EMBO algorithm could solve the emergency VRP prob-
lem well.
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Figure 2: The convergent trend of the best and average time for
EMBO algorithm.

In addition, the shortest time over 30 independent
runs was obtained by EMBO and the eight other intelli-
gent algorithms, and the results are displayed in Table 6.
From Table 6, although EMBO had the biggest std value,
it is clear that EMBO was able to complete the task with
the least time among the nine intelligent algorithms for the
average, best, and worst performance. For the other eight
intelligent algorithms, BBO, CS, and DE had similar per-
formances that were inferior only to the EMBO algorithm.
Also, MBO performed similarly to PSO, which was better
than ABC, BA, and ES.

The convergent trend of the average time obtained by
the nine algorithms is shown in Fig. 3. From Fig. 3, it is
clear that EMBO converged in the fastest fashion among
the nine intelligent algorithms. This convergent trend was
consistent with the results provided in Table 6.

6.3 Another EmVRP with relief materials in
sudden disasters (case 2)

Like case 1 studied in Section 6.1, another emergency
VRP problem is further used to verify our proposed EMBO
algorithm. In case 2, there are 5 disaster spots in need of
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Table 6: The least time used by nine intelligent algorithms for the emergency VRP with relief materials in sudden disasters.

ABC BA BBO CS DE EMBO ES MBO PSO

Best 158.31 154.10 142.64 143.43 142.52 109.06 163.93 152.08 157.19
Mean 162.96 161.27 145.69 145.26 144.68 118.18 165.89 154.51 159.03
Worst 167.35 167.86 148.29 150.21 146.10 140.77 167.25 158.24 162.23
Std 2.2516 3.1246 1.6231 1.3777 0.8202 13.2842 0.8953 1.5353 1.4138
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Figure 3: Results obtained by nine algorithms.

emergency materials. These locations can be identi�ed as
J1, J2, J3, J4, and J5, respectively. The relief materials have
been transported to the local airport and railway station
by aircraft and railway. There are a total of 4 reserve sites,
denoted by I1, I2, I3, and I4, respectively. A total of 25
vehicles are collected, and they are located randomly in
3 parking locations numbered K1, K2, and K3. There are 4
kinds of materials to be delivered: tents, quilts, clothing,
and food, represented as G1, G2, G3, and G4, respectively.
The number of tasks to be completed by each vehicle is not
more than 5. The parameters of emergency supplies used
in case 2 is the samewith case 1, as shown inTable 2. Tables
7-10 provide the other related information for case 2.

Table 8: The demand of emergency supplies in every a�ected point
for case 2.

A�ected point Tent Quilt Clothes Food

J1 3000 9000 7000 4000
J2 6000 19000 7000 7000
J3 4000 9000 9000 5000
J4 5000 9000 7000 4000
J5 4000 11000 6500 5000

Table 9: Reserves of emergency supplies in every reserve point for
case 2.

Reserve point Tent Quilt Clothes Food

I1 5000 19000 9000 9000
I2 4000 11000 7000 5000
I3 9000 21000 11000 10000
I4 7000 20000 10000 9000
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Table 7: Related parameters of vehicles for case 2.

Vehicle number Parking lot Speed (km/h) Load capacity (ton) Volume (m3)

1 K1 45 5 34
2 K2 45 5 34
3 K3 50 4 30
4 K2 35 7 45
5 K1 55 3 27
6 K3 50 4 30
7 K2 40 6 40
8 K1 55 3 27
9 K3 45 5 34
10 K2 40 6 40
11 K1 45 5 34
12 K2 45 5 34
13 K3 50 4 45
14 K2 35 7 27
15 K1 55 3 30
16 K3 50 4 40
17 K2 40 6 27
18 K1 55 3 34
19 K2 45 5 30
20 K2 50 4 28
21 K1 45 5 29
22 K2 55 3 38
23 K3 50 6 43
24 K2 40 3 31
25 K1 55 5 37

Table 10: The distance between every point for case 2.

Distance (km) I1 I2 I3 I4 J1 J2 J3 J4 J5
K1 50 65 70 75
K2 65 55 50 85
K3 75 85 65 65
I1 55 55 70 75 60
I2 65 65 60 60 55
I3 95 85 55 55 80
I4 65 55 60 70 90

For the software, hardware environments and para-
meter settings used in nine intelligent algorithms, they are
the same with case 1.

In addition, the shortest time over 30 independent
runswas obtained by EMBO and the eight other intelligent
algorithms, and the results are displayed in Table 11. From
Table 11, it is clear that EMBOwas able to complete the task
with the least time among the nine intelligent algorithms
for the average, best, and worst performance. Also, EMBO

had the smallest Std value for this case. For the other eight
intelligent algorithms, BBO, BA, andMBO had similar per-
formances that were inferior only to the EMBO algorithm.
Comparing with case 1, EMBO algorithm takes less time to
complete the task, and the reason is that �vemore vehicles
are added to case 2.
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Table 11: The least time used by nine intelligent algorithms for case 2.

ABC BA BBO CS DE EMBO ES MBO PSO

Best 137.03 96.13 91.00 102.65 104.84 85.66 114.38 93.72 119.67
Mean 148.29 113.33 95.38 108.85 113.96 86.39 119.28 99.19 140.33
Worst 164.45 126.22 100.37 110.78 125.30 87.97 122.79 104.32 155.02
Std 6.6743 6.9830 2.0991 1.5518 5.4081 0.5022 2.1377 2.6460 7.4307

6.4 Parameter study

As we are aware, for all the intelligent algorithms, the
parameter setting is of signi�cant importance to their per-
formance. In this section, the e�ectiveness of the initial
butter�y adjusting rate BAR0, probability p, elitism Keep,
population size NP, and maximum generation tmax are
analyzed for the proposed EMBO algorithm on case 1.

6.4.1 Influence of the initial butterfly adjusting rate
BAR0 for EMBO

First, we examined the initial butter�y adjusting rate
BAR0. The other parameters were set as follows: elitism
number Keep = 2, probability p = 5/12, population size
NP = 50, and maximum generation tmax = 100. The �-
nal times required by EMBO with di�erent values of BAR0
were recorded as shown in Table 12 and Fig. 4. From Table
12, when BAR0 was equal to 0.6 or 0.7, EMBO could �nd
the optimal scheduling scheme with the least time. Look-
ing carefully at Fig. 4, we can observe that the perform-
ance of EMBO was signi�cantly improved with the incre-
ment of BAR0. However, EMBO had a similar performance
when BAR0 was between 0.6 and 1.0. Considering matters
overall, we set the initial butter�y adjusting rate BAR0 to(√

5−1
)
/2 for this present work.

It should bementioned that the initial butter�y adjust-
ing rate BAR0 was between 0 and 1.0.When the initial but-
ter�y adjusting rate BAR0 = 0, the updating Eq. 18 would
degenerate into the following equation:

BAR = t
tmax

. (26)

In this case, the butter�y adjusting rate BAR is chan-
ging in a linear fashion. On the other hand, when the
initial butter�y adjusting rate BAR0 = 1.0, the butter-
�y adjusting rate BAR is equal to the initial butter�y ad-
justing rate BAR0. The butter�y adjusting rate BAR will
not change during the whole optimization process. Essen-
tially, this description �ts a basic MBO algorithm.
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Figure 4: Results obtained by EMBO with di�erent BAR0.

6.4.2 Influence of the probability p for EMBO

In EMBO, there is another probability p that decides
the number of NP1 and NP2. In other words, there are NP1
and NP2 butter�ies that implement the migration oper-
ator and butter�y adjusting operator, respectively. Here,
we studied the probability p. The other parameters were
set as follows: population size NP = 50, the initial but-
ter�y adjusting rate BAR0 =

(√
5−1

)
/2, elitism number

Keep = 2, and maximum generation tmax = 100. The �-
nal times achieved by EMBO with di�erent p are shown in
Table 13 and Fig. 5. From Table 13, when probability p was
equal to 0.7, 0.8 or 0.7, we see that EMBO could �nd the
optimal scheduling scheme with the least time. Examin-
ing Fig. 5 carefully, we can observe that the performance
of EMBO improved signi�cantly with the increment of p.
However, EMBO had a similar performance when p was
between 0.5 and 1.0. Considered overall, the probability p
was set to 5/12 in this paper.

It should be mentioned that the probability p was
between 0.1 and 0.9. For MBO, when probability p = 0,
all the individuals will be updated only by the butter�y
adjusting operator. When probability p = 1.0, all the in-
dividuals will be updated only by the migration operator.



408 | Jiao-Hong Yi, Jian Wang, and Gai-Ge Wang

Table 12: The least time used by the proposed EMBO algorithm for the EmVRP with relief materials in sudden disasters with di�erent BAR0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Best 135.36 135.39 134.07 135.52 109.44 109.34 108.58 109.02 108.85 110.42 110.46
Mean 138.17 138.09 138.10 137.63 133.57 114.28 109.51 109.51 109.47 110.91 110.91
Worst 140.69 140.84 140.55 139.91 140.86 137.88 110.14 109.94 109.94 111.03 111.03
Std 1.5266 1.3504 1.3326 0.8532 9.7697 10.3059 0.3526 0.2779 0.3323 0.1675 0.1856
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Figure 5: Results obtained by EMBO with di�erent p.

No special attention was paid to these two extreme cases
of p = 0 and p = 1.0.

6.4.3 Influence of the elitism Keep for EMBO

As we can see, most intelligent algorithms involve an
elitism strategy that has a great in�uence on the perform-
ance. Here, the elitism Keep was studied in the range of
[0, 10]. The other parameters were set as follows: prob-
ability p = 5/12, initial butter�y adjusting rate BAR0 =(√

5−1
)
/2, population size NP = 50, and maximum gen-

eration tmax = 100. The �nal times attained by EMBOwith
di�erent Keep values are shown in Table 14 and Fig. 6.
From Table 14, when the parameter Keep was equal to 0, 3
or 8, EMBO could �nd the optimal scheduling schemewith
the least time. Looking carefully at Fig. 6, though the trend
of EMBO is less obvious, generally speaking the perform-
ance of EMBO improvedwith the increment of Keep. How-
ever, on average, EMBO had a similar performance when
Keep was equal to 1 and 3. Therefore, we set the elitism
Keep to 2 for this research.
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Figure 6: Results obtained by EMBO with di�erent Keep.

6.4.4 Influence of the population size NP for EMBO

Subsequently, we studied the population size NP in
the range of [10, 100] with interval 10. The other paramet-
ers were set as follows: the initial butter�y adjusting rate
BAR0 =

(√
5−1

)
/2, probability p = 5/12, elitism number

Keep = 2, and maximum generation tmax = 100. The �nal
times obtained by EMBO with di�erent NP were recorded
as shown in Table 15 and Fig. 7. FromTable 15, when popu-
lation sizeNP was equal to 90, 100, 20, and 10, EMBOcould
�nd the optimal scheduling scheme with the least time.
Examining Fig. 7, we can observe that the performance of
EMBO decreased and then improved with the increment
of NP. Furthermore, overall the proposed EMBO algorithm
was capable of obtaining satisfactory solutions within a
reasonable time when the population size NP = 10. Un-
der this condition, fewer computational resources were
required, indicating that EMBO could solve the EmVRP
while consuming only limited computational resources.
Considered altogether, we set the population size NP to 50
in our present work.
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Table 13: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with di�er-
ent p.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Best 136.05 109.57 109.43 109.16 108.89 108.92 108.62 108.81 109.33
Mean 137.97 136.86 127.41 117.89 111.30 109.73 109.58 108.58 110.08
Worst 140.56 141.69 139.68 139.36 138.08 116.14 110.47 110.54 110.67
Std 1.0755 7.4311 13.6690 12.6734 6.4444 1.2843 0.3514 0.4003 0.3664

Table 14: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with di�er-
ent Keep.

0 1 2 3 4 5 6 7 8 9 10

Best 108.89 109.19 109.19 109.16 109.23 109.07 109.06 108.92 109.21 109.15 109.43
Mean 114.14 112.52 115.36 112.39 112.40 126.95 120.49 121.27 123.02 118.78 121.51
Worst 137.74 137.92 139.75 137.83 138.34 138.35 138.55 138.79 137.49 137.94 139.17
Std 10.2456 8.4974 11.5944 8.4129 13.8968 12.2843 13.5096 13.5515 13.6949 13.0870 13.5949

Table 15: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with di�er-
ent NP.

10 20 30 40 50 60 70 80 90 100

Best 110.25 109.63 109.16 109.19 109.20 109.16 109.16 108.89 108.85 108.85
Mean 111.38 111.37 111.95 112.60 114.34 118.55 119.17 115.55 115.27 117.76
Worst 116.17 139.58 139.23 137.49 139.86 138.85 137.51 136.82 135.96 135.97
Std 1.8294 5.4166 7.2907 8.3299 10.4997 12.9187 13.0635 11.3207 10.9097 12.2106

Table 16: The least time used by the proposed EMBO algorithm for the emergency VRP with relief materials in sudden disasters with di�er-
ent tmax.

20 40 60 80 100 120 140 160 180 200

Best 110.09 109.65 109.39 108.59 109.06 109.20 108.89 109.12 109.12 108.85
Mean 110.68 110.32 109.85 114.43 112.41 116.01 116.56 117.99 122.81 120.91
Worst 111.03 114.64 110.30 141.23 139.51 137.50 138.50 136.32 135.83 136.52
Std 0.2450 0.8589 0.2236 10.8763 8.7851 11.6742 11.7442 12.2216 12.6813 12.3809

6.4.5 Influence of the maximum generation tmax for
EMBO

Last, we studied the maximum generation tmax in the
range of [20, 200] with interval 20. The other paramet-
ers were set as follows: the initial butter�y adjusting rate
BAR0 =

(√
5−1

)
/2, elitism number Keep = 2, probability

p = 5/12, and population size NP = 50. The �nal times
used by EMBO with di�erent tmax are shown in Table 16
and Fig. 8. From Table 16, when the maximum generation
tmax was equal to 80, 60, and 60, EMBOwas able to get the
optimal scheduling scheme with the least time. Looking

carefully at Fig. 8, generally the performance of EMBOwas
signi�cantly reducedwith the increment of tmax. However,
when tmax was equal to 20, 40, and 60, EMBOprovided bet-
ter performance than at the other tmax values. This �nd-
ing goes against common expectations. For most intelli-
gent algorithms, their performance will exceed, or at least
be equal to, the performance given before the increment of
generations. We propose the reason for this �nding is that
maximumgeneration tmax has an in�uence on the value of
the butter�y adjusting rate BAR, which, in turn, has a big
impact on MBO’s performance. Under this condition, the
situationbecomes complicated. Considered as awhole,we
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Figure 7: Results obtained by EMBO with di�erent NP.
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Figure 8: Results obtained by EMBO with di�erent tmax.

set the maximum generation tmax to 100 in our present
work.

7 Conclusions
In this paper, we constructed a model of the EmVRP

( emergency vehicle routing problem) with relief materi-
als in sudden disasters, and then solved the problem us-
ing the intelligent EMBO algorithm. For EMBO, we incor-
porated twomodi�cations into the basicMBO algorithm: a
self-adaptive strategy and a crossover operator. Our exper-
iments using two examples EmVRPwith relief materials in
a sudden-onset disaster proved the suitability of EMBO. In
addition, an array of comparative studies showed that the
proposed EMBO algorithm can achieve satisfactory solu-

tions in less time than the basic MBO algorithm and seven
other intelligent algorithms.

Consistent with on our interest in the EmVRP with
relief materials in sudden disasters, we look toward the
following future work. First, more e�cient optimization
strategies, such as a self-adaptive strategy, should be in-
corporated into our original approach, thereby allowing
the method to solve the EmVRP more e�ciently and ac-
curately. Second, new methods should be designed to
solve the EmVRPwith relief materials in sudden disasters.
Third, the performance of EMBO should be studied and
analyzed further for cases where the probability p is equal
to 0 and 1.00. Fourthly, the performance of the basic MBO
algorithm should be studied and analyzed more extens-
ively with regard to the probability p and other paramet-
ers. Fifthly, in the current work, though the crossover rate
is changed during the search process, it does not take into
account the state of the search process. In our future re-
search, the state of the search process should be taken into
account and a more intelligent crossover operator should
be developed. Sixthly, in our current work, the emergency
VRP is just solved by our proposed MBO algorithm. That
is to say, in this version of the paper there is no an equi-
librium betweenmethods and decisionmaking processes.
In our future work, we will build the equilibrium between
methods and decisionmaking processes. Seventhly, in our
current work, all the parameters fall into the small range,
therefore, try-and-error method can well solve it. In our
future work, if there are more complicated parameters to
be adjusted, irace and other parametric techniques will be
used. At last, in our currentwork,we just use our proposed
MBO algorithm to solve the relatively idealized mathem-
atical model. So, other factors is canceled in our current
work. In our future work, we will reconsider these factors
to our mathematical model (such as congestion or unre-
liable road network [28, 40, 45]), which is much closer to
real world problems. Eighth, for other road network, like
grid of streets [31, 66], we will study them in our future
studies. Ninth, we will learn from other models (like [1]) to
improve the model used in our current work. These stud-
ies will contribute to the best implementation of MBO and
EMBO.

References
[1] Ofer Amram, Nadine Schuurman, and Syed M Hameed. Mass

casualty modelling: a spatial tool to support triage decision
making. International Journal of Health Geographics, 10(1):40,
2011. ISSN 1476-072X.



Emergency VRP with Relief Materials in Sudden Disasters by MBO | 411

[2] H. Beyer. The theory of evolution strategies. Springer, New York,
2001.

[3] Xingjuan Cai, Xiao-zhi Gao, and Yu Xue. Improved bat algorithm
with optimal forage strategy and random disturbance strategy.
International Journal of Bio-Inspired Computation, 8(4):205–
214, 2016. 10.1504/IJBIC.2016.078666.

[4] Shifeng Chen, Rong Chen, and Jian Gao. Amonarch butterfly op-
timization for the dynamic vehicle routing problem. Algorithms,
10(3):107, 2017. ISSN 1999-4893. 10.3390/a10030107.

[5] Zhihua Cui, Bin Sun, Gai-Ge Wang, Yu Xue, and Jinjun Chen.
A novel oriented cuckoo search algorithm to improve dv-hop
performance for cyber-physical systems. Journal of Parallel
and Distributed Computing, 103:42–52, 2017. ISSN 07437315.
10.1016/j.jpdc.2016.10.011.

[6] Geng-Xin Dai and Qing-Li Da. The study of combinatorial
scheduling problem in emergency systems. System Engineer-
ing - Theory & Practice, 20(9):52–55, 2000. ISSN 1000-6788.

[7] Mohammad Ehteram, Hojat Karami, Sayed-Farhad Mousavi,
Saeed Farzin, and Ozgur Kisi. Optimization of energy
management and conversion in the multi-reservoir sys-
tems based on evolutionary algorithms. Journal of
Cleaner Production, 168:1132–1142, 2017. ISSN 09596526.
10.1016/j.jclepro.2017.09.099.

[8] Luisa Equi, Giorgio Gallo, Silvia Marziale, and Andres Wein-
traub. A combined transportation and scheduling problem.
European Journal of Operational Research, 97(1):94–104, 1997.
ISSN 0377-2217.

[9] Hossam Faris, Ibrahim Aljarah, and Seyedali Mirjalili. Improved
monarch butterfly optimization for unconstrained global search
and neural network training. Applied Intelligence, 48(2):445–
464, 2018. ISSN 0924-669X 1573-7497. 10.1007/s10489-017-
0967-3.

[10] Yanhong Feng, Gai-Ge Wang, Suash Deb, Mei Lu, and Xiangjun
Zhao. Solving 0-1 knapsack problem by a novel binary mon-
arch butterfly optimization. Neural Computing and Applic-
ations, 28(7):1619–1634, 2017. ISSN 0941-0643 1433-3058.
10.1007/s00521-015-2135-1.

[11] Yanhong Feng, Gai-Ge Wang, Junyu Dong, and Ling Wang.
Opposition-based learning monarch butterfly optimization with
gaussian perturbation for large-scale 0-1 knapsack problem.
Computers & Electrical Engineering, 67:454–468, 2018. ISSN
00457906. 10.1016/j.compeleceng.2017.12.014.

[12] Yanhong Feng, Gai-Ge Wang, Wenbin Li, and Ning Li. Multi-
strategy monarch butterfly optimization algorithm for discoun-
ted 0-1 knapsack problem. Neural Computing and Applica-
tions, 30(10):3019–3036, 2018. ISSN 0941-0643 1433-3058.
10.1007/s00521-017-2903-1.

[13] Yanhong Feng, Juan Yang, Yichao He, and Gai-Ge Wang. Mon-
arch butterfly optimization algorithm with di�erential evolu-
tion for the discounted 0-1 knapsack problem. Acta Elec-
tronica Sinica, 46(6):1343–1350, 2018. 10.3969/j.issn.0372-
2112.2018.06.010.

[14] Yanhong Feng, Juan Yang, Congcong Wu, Mei Lu, and Xiang-Jun
Zhao. Solving 0-1 knapsack problems by chaotic monarch but-
terfly optimization algorithm. Memetic Computing, 10(2):135–
150, 2018. ISSN 1865-9284 1865-9292. 10.1007/s12293-016-
0211-4.

[15] Ke-Jun Fu, Xu-Ping Wang, and Xiang-Pei HU. Modeling of logist-
ics distribution process based on emergency event. Logistics
Technology, (10):263–266, 2005.

[16] Amir Hossein Gandomi and Amir Hossein Alavi. Krill herd:
a new bio-inspired optimization algorithm. Communications
in Nonlinear Science and Numerical Simulation, 17(12):4831–
4845, 2012. ISSN 1007-5704. 10.1016/j.cnsns.2012.05.010.

[17] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi, and
Siamak Talatahari. Bat algorithm for constrained optimiza-
tion tasks. Neural Computing & Applications, 22(6):1239–1255,
2013. ISSN 0941-0643. 10.1007/s00521-012-1028-9.

[18] Z.W. Geem, J.H. Kim, and G.V. Loganathan. A new heuristic op-
timization algorithm: harmony search. Simulation, 76(2):60–
68, 2001. ISSN 0037-5497. 10.1177/003754970107600201.

[19] WaheedA. H.M.GhanemandAman Jantan. Hybridizing arti�cial
bee colony with monarch butterfly optimization for numerical
optimization problems. Neural Computing and Applications,
2016. ISSN0941-0643 1433-3058. 10.1007/s00521-016-2665-1.

[20] Mohamed Ghetas, Chan Huah Yong, and Putra Sumari.
Harmony-based monarch butterfly optimization algorithm. In
2015 IEEE International Conference on Control System, Com-
puting and Engineering (ICCSCE), pages 156–161. IEEE. ISBN
978-1-4799-8251-6. 10.1109/ICCSCE.2015.7482176.

[21] Gianpaolo Ghiani, Francesca Guerriero, Gilbert Laporte, and
Roberto Musmanno. Real-time vehicle routing: Solution con-
cepts, algorithms and parallel computing strategies. European
Journal of Operational Research, 151(1):1–11, 2003. ISSN 0377-
2217.

[22] D.E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine learning. Addison-Wesley, New York, 1998.

[23] Trevor Hale and Christopher R Moberg. Improving supply chain
disaster preparedness: A decision process for secure site loc-
ation. International Journal of Physical Distribution & Logistics
Management, 35(3):195–207, 2005. ISSN 0960-0035.

[24] Ikou Kaku, Yiyong Xiao, and Guoping Xia. The deterministic
annealing algorithms for vehicle routing problems. Interna-
tional Journal of Smart Engineering System Design, 5(4):327–
339, 2003. ISSN 1025-5818.

[25] Dervis Karaboga and Bahriye Basturk. A powerful and e�-
cient algorithm for numerical function optimization: arti�cial
bee colony (abc) algorithm. Journal of Global Optimization,
39(3):459–471, 2007. ISSN 0925-5001. 10.1007/s10898-007-
9149-x.

[26] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Proceeding of the IEEE International Conference on Neural Net-
works, volume 4, pages 1942–1948. IEEE. ISBN 0780327683.

[27] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983. ISSN
0036-8075.

[28] V. A. Knight, P. R. Harper, and L. Smith. Ambulance al-
location for maximal survival with heterogeneous outcome
measures. Omega, 40(6):918–926, 2012. ISSN 03050483.
10.1016/j.omega.2012.02.003.

[29] Gilbert Laporte. The vehicle routing problem: An overview
of exact and approximate algorithms. European Journal of
Operational Research, 59(3):345–358, 1992. ISSN 0377-2217.
10.1016/0377-2217(92)90192-C.

[30] Hoong Chuin Lau, Melvyn Sim, and Kwong Meng Teo. Vehicle
routing problem with time windows and a limited number of
vehicles. European Journal of Operational Research, 148(3):
559–569, 2003. ISSN 0377-2217.

[31] Marcin Lewandowski, Bartłomiej Płaczek, and Marcin Bernas.
Decentralized control of tra�c signals with priority for ambu-

http://dx.doi.org/10.1504/IJBIC.2016.078666
http://dx.doi.org/10.3390/a10030107
http://dx.doi.org/10.1016/j.jpdc.2016.10.011
http://dx.doi.org/10.1016/j.jclepro.2017.09.099
http://dx.doi.org/10.1007/s10489-017-0967-3
http://dx.doi.org/10.1007/s10489-017-0967-3
http://dx.doi.org/10.1007/s00521-015-2135-1
http://dx.doi.org/10.1016/j.compeleceng.2017.12.014
http://dx.doi.org/10.1007/s00521-017-2903-1
http://dx.doi.org/10.3969/j.issn.0372-2112.2018.06.010
http://dx.doi.org/10.3969/j.issn.0372-2112.2018.06.010
http://dx.doi.org/10.1007/s12293-016-0211-4
http://dx.doi.org/10.1007/s12293-016-0211-4
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1007/s00521-012-1028-9
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/s00521-016-2665-1
http://dx.doi.org/10.1109/ICCSCE.2015.7482176
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.omega.2012.02.003
http://dx.doi.org/10.1016/0377-2217(92)90192-C


412 | Jiao-Hong Yi, Jian Wang, and Gai-Ge Wang

lances. Journal of Medical Informatics & Technologies, 26:9–17,
2017. ISSN 1642-6037.

[32] Quan-Liang Li. Immune algorithm for vehicle routing problem
with time windows. System Engineering - Theory & Practice, 26
(10):119–124, 2006.

[33] Nand K. Meena, Sonam Parashar, Anil Swarnkar, Nikhil Gupta,
and K. R. Niazi. Improved elephant herding optimization for
multiobjective der accommodation in distribution systems. IEEE
Transactions on Industrial Informatics, 14(3):1029–1039, 2018.
ISSN 1551-3203 1941-0050. 10.1109/tii.2017.2748220.

[34] Liping Meng, Yong Wang, and Huajuan Huang. Improved
monarch butterfly optimization by using strategy of dynamic-
dividing population. Computer Engineering and Applications,
53(18):149–156, 2017.

[35] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Xin-She
Yang. Binary bat algorithm. Neural Computing and Applic-
ations, 25(3-4):663–681, 2013. ISSN 0941-0643 1433-3058.
10.1007/s00521-013-1525-5.

[36] Saul SMorris and QuentinWodon. The allocation of natural dis-
aster relief funds: Hurricane mitch in honduras. World Develop-
ment, 31(7):1279–1289, 2003. ISSN 0305-750X.

[37] Nadia Nedjah and Luiza De Macedo Mourelle. Encodings and
genetic operators for e�cient evolutionary design of digital cir-
cuits. International Journal of Bio-Inspired Computation, 9(4):
197–210, 2017. 10.1504/ijbic.2017.084319. URL https://www.
inderscienceonline.com/doi/abs/10.1504/IJBIC.2017.084319.

[38] Linet Ozdamar, Ediz Ekinci, and Beste Kucukyazici. Emergency
logistics planning in natural disasters. Annals of Operations Re-
search, 129(1):217–245, 2004. ISSN 0254-5330.

[39] Zeynep Ozyurt, Deniz Aksen, and Necati Aras. Open Vehicle
Routing Problem with Time Deadlines: Solution Methods and an
Application, pages 73–78. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006. ISBN 978-3-540-32539-0. 10.1007/3-540-
32539-5_12.

[40] Adam Piórkowski. Construction of a dynamic arrival time cov-
erage map for emergency medical services. Open Geosciences,
10(1):167–173, 2018. ISSN 2391-5447. 10.1515/geo-2018-0013.

[41] Ajay K Rathi, Richard L Church, and Rajendra S Solanki. Al-
locating resources to support a multicommodity flow with time
windows. Logistics and Transportation Review, 28(2):167–188,
1992. ISSN 0047-4991.

[42] Dan Simon. Biogeography-based optimization. IEEE Transac-
tions on Evolutionary Computation, 12(6):702–713, 2008. ISSN
1089-778X. 10.1109/TEVC.2008.919004.

[43] Rainer Storn and Kenneth Price. Di�erential evolution-a simple
and e�cient heuristic for global optimization over continuous
spaces. Journal of Global Optimization, 11(4):341–359, 1997.
ISSN 0925-5001. 10.1023/a:1008202821328.

[44] Yifei Sun, Licheng Jiao, Xiaozheng Deng, and Rongfang
Wang. Dynamic network structured immune particle
swarm optimisation with small-world topology. Inter-
national Journal of Bio-Inspired Computation, 9(2):93–
105, 2017. 10.1504/ijbic.2017.083100. URL https://www.
inderscienceonline.com/doi/abs/10.1504/IJBIC.2017.083100.

[45] Rajeshwari Sundar, Santhoshs Hebbar, and Varaprasad Golla.
Implementing intelligent tra�c control system for congestion
control, ambulance clearance, and stolen vehicle detection.
IEEE Sensors Journal, 15(2):1109–1113, 2015. ISSN 1530-437X
1558-1748 2379-9153. 10.1109/jsen.2014.2360288.

[46] Ying Tan. Fireworks Algorithm-A Novel Swarm Intelligence Op-
timization Method. Springer-Verlag Berlin Heidelberg, Berlin,
2015. ISBN Hardcover ISBN 978-3-662-46352-9 eBook ISBN
978-3-662-46353-6. 10.1007/978-3-662-46353-6.

[47] Gai-Ge Wang. Moth search algorithm: a bio-inspired metaheur-
istic algorithm for global optimization problems. Memetic Com-
puting, 10(2):151–164, 2018. 10.1007/s12293-016-0212-3.

[48] Gai-GeWang and Ying Tan. Improvingmetaheuristic algorithms
with information feedback models. IEEE Transactions on Cyber-
netics, 49(2):542–555, 2019. ISSN Print ISSN: 2168-2267 Online
ISSN: 2168-2275. 10.1109/TCYB.2017.2780274.

[49] Gai-Ge Wang, Guo-Sheng Hao, Shi Cheng, and Zhihua Cui. An
improved monarch butterfly optimization with equal partition
and f/t mutation. In Eight International Conference on Swarm
Intelligence (ICSI 2017). Springer.

[50] Gai-GeWang, Amir Hossein Gandomi, and Amir Hossein Alavi. A
chaotic particle-swarm krill herd algorithm for global numerical
optimization. Kybernetes, 42(6):962–978, 2013. ISSN 0368-
492X. 10.1108/K-11-2012-0108.

[51] Gai-Ge Wang, Amir H. Gandomi, and Amir H. Alavi. Stud krill
herd algorithm. Neurocomputing, 128:363–370, 2014. ISSN
09252312. 10.1016/j.neucom.2013.08.031.

[52] Gai-Ge Wang, Amir Hossein Gandomi, and Amir Hossein
Alavi. An e�ective krill herd algorithm with migration oper-
ator in biogeography-based optimization. Applied Mathemat-
ical Modelling, 38(9-10):2454–2462, 2014. ISSN 0307-904X.
10.1016/j.apm.2013.10.052. URL http://www.sciencedirect.
com/science/article/pii/S0307904X13006756.

[53] Gai-Ge Wang, Amir Hossein Gandomi, Amir Hossein Alavi, and
Guo-Sheng Hao. Hybrid krill herd algorithm with di�erential
evolution for global numerical optimization. Neural Computing
and Applications, 25(2):297–308, 2014. ISSN 0941-0643 1433-
3058. 10.1007/s00521-013-1485-9.

[54] Gai-Ge Wang, Lihong Guo, Amir Hossein Gandomi, Guo-Sheng
Hao, and Heqi Wang. Chaotic krill herd algorithm. In-
formation Sciences, 274:17–34, 2014. ISSN 00200255.
10.1016/j.ins.2014.02.123.

[55] Gai-Ge Wang, Suash Deb, and Zhihua Cui. Monarch butterfly
optimization. Neural Computing and Applications, 2015. ISSN
0941-0643 1433-3058. 10.1007/s00521-015-1923-y.

[56] Gai-Ge Wang, Suash Deb, Amir H. Gandomi, and Amir H. Alavi.
Opposition-based krill herd algorithmwith cauchymutation and
position clamping. Neurocomputing, 177:147–157, 2016. ISSN
09252312. 10.1016/j.neucom.2015.11.018.

[57] Gai-Ge Wang, Suash Deb, Xiao-Zhi Gao, and Leandro dos San-
tos Coelho. A new metaheuristic optimization algorithm
motivated by elephant herding behavior. International
Journal of Bio-Inspired Computation, 8(6):394–409, 2016.
10.1504/IJBIC.2016.10002274.

[58] Gai-Ge Wang, Amir Hossein Gandomi, Xin-She Yang, and
Amir Hossein Alavi. A new hybrid method based on krill herd
and cuckoo search for global optimization tasks. International
Journal of Bio-Inspired Computation, 8(5):286–299, 2016. ISSN
1758-0366. 10.1504/IJBIC.2016.10000414.

[59] Gai-Ge Wang, Guo-Sheng Hao, Shi Cheng, and Quande Qin. A
discrete monarch butterfly optimization for Chinese TSP prob-
lem, volume 9712 of Lecture Notes in Computer Science, pages
165–173. Springer International Publishing, Cham, 2016. ISBN
978-3-319-41000-5. 10.1007/978-3-319-41000-5_16.

http://dx.doi.org/10.1109/tii.2017.2748220
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.1504/ijbic.2017.084319
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2017.084319
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2017.084319
http://dx.doi.org/10.1007/3-540-32539-5_12
http://dx.doi.org/10.1007/3-540-32539-5_12
http://dx.doi.org/10.1515/geo-2018-0013
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1504/ijbic.2017.083100
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2017.083100
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2017.083100
http://dx.doi.org/10.1109/jsen.2014.2360288
http://dx.doi.org/10.1007/978-3-662-46353-6
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://dx.doi.org/10.1108/K-11-2012-0108
http://dx.doi.org/10.1016/j.neucom.2013.08.031
http://dx.doi.org/10.1016/j.apm.2013.10.052
http://www.sciencedirect.com/science/article/pii/S0307904X13006756
http://www.sciencedirect.com/science/article/pii/S0307904X13006756
http://dx.doi.org/10.1007/s00521-013-1485-9
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1016/j.neucom.2015.11.018
http://dx.doi.org/10.1504/IJBIC.2016.10002274
http://dx.doi.org/10.1504/IJBIC.2016.10000414
http://dx.doi.org/10.1007/978-3-319-41000-5_16


Emergency VRP with Relief Materials in Sudden Disasters by MBO | 413

[60] Gai-Ge Wang, Xingjuan Cai, Zhihua Cui, Geyong Min, and Jin-
jun Chen. High performance computing for cyber physical so-
cial systems by using evolutionary multi-objective optimization
algorithm. IEEE Transactions on Emerging Topics in Comput-
ing, 2017. ISSN Print ISSN: 2168-6750 Online ISSN: 2168-6750.
10.1109/TETC.2017.2703784.

[61] Gai-Ge Wang, Suash Deb, and Leandro dos Santos Coelho.
Earthworm optimization algorithm: a bio-inspired metaheur-
istic algorithm for global optimization problems. Interna-
tional Journal of Bio-Inspired Computation, 12(1):1–22, 2018.
10.1504/IJBIC.2015.10004283.

[62] Gai-Ge Wang, Suash Deb, Xinchao Zhao, and Zhihua Cui. A new
monarch butterfly optimization with an improved crossover op-
erator. Operational Research: An International Journal, 18(3):
731–755, 2018. ISSN 1109-2858 1866-1505. 10.1007/s12351-
016-0251-z.

[63] GaigeWang, LihongGuo,HeqiWang,HongDuan, Luo Liu, and Ji-
ang Li. Incorporating mutation scheme into krill herd algorithm
for global numerical optimization. Neural Computing and Ap-
plications, 24(3-4):853–871, 2014. ISSN 0941-0643 1433-3058.
10.1007/s00521-012-1304-8.

[64] Heqi Wang and Jiao-Hong Yi. An improved optimization method
based on krill herd and arti�cial bee colony with informa-
tion exchange. Memetic Computing, 10(2):177–198, 2018.
10.1007/s12293-017-0241-6.

[65] RuiWang, Robin C. Purshouse, and Peter J. Fleming. Preference-
inspired coevolutionary algorithms for many-objective optim-
ization. IEEE Transactions on Evolutionary Computation, 17
(4):474–494, 2013. ISSN 1089-778X 1089-778X 1941-0026.
10.1109/tevc.2012.2204264.

[66] Bradford S. Westgate, Dawn B. Woodard, David S. Matteson,
andShaneG.Henderson. Travel timeestimation for ambulances
using bayesian data augmentation. The Annals of Applied
Statistics, 7(2):1139–1161, 2013. ISSN 1932-6157. 10.1214/13-
aoas626.

[67] Yu Xue, Jiongming Jiang, Binping Zhao, and Tinghuai Ma. A self-
adaptive arti�cial bee colony algorithm based on global best for
global optimization. Soft Computing, 2017. ISSN 1432-7643
1433-7479. 10.1007/s00500-017-2547-1.

[68] Xin-She Yang. Nature-inspired metaheuristic algorithms.
Luniver Press, Frome, 2nd edition, 2010. ISBN 1905986106.

[69] X.S. Yang and S. Deb. Engineering optimisation by cuckoo
search. International Journal of Mathematical Modelling and
Numerical Optimisation, 1(4):330–343, 2010. ISSN 2040-3607.
10.1504/IJMMNO.2010.03543.

[70] Jiao-Hong Yi, Mei Lu, and Xiang-Jun Zhao. Quantum inspired
monarch butterfly optimization for ucav path planning naviga-
tion problem. International Journal of Bio-Inspired Computa-
tion, 2017.

[71] Yong Zhang, Dunwei Gong, Ying Hu, andWanqiu Zhang. Feature
selection algorithm based on bare bones particle swarm optim-
ization. Neurocomputing, 148:150–157, 2015. ISSN 09252312.
10.1016/j.neucom.2012.09.049.

[72] Yong Zhang, D. W. Gong, and J. Cheng. Multi-objective particle
swarm optimization approach for cost-based feature selection
in classi�cation. IEEE/ACM Trans Comput Biol Bioinform, 14(1):
64–75, 2017. ISSN 1557-9964 (Electronic) 1545-5963 (Linking).
10.1109/TCBB.2015.2476796.

[73] Yong Zhang, Xian-fang Song, and Dun-wei Gong. A return-
cost-based binary �refly algorithm for feature selection. In-

formation Sciences, 418-419:561–574, 2017. ISSN 00200255.
10.1016/j.ins.2017.08.047.

[74] Yong Zhang, Dun-wei Gong, Jian-yong Sun, and Bo-yang Qu.
A decomposition-based archiving approach for multi-objective
evolutionary optimization. Information Sciences, 430-431:397–
413, 2018. ISSN 00200255. 10.1016/j.ins.2017.11.052.

[75] Tong Zhao. The study on optimized emergency logistics distri-
bution system of burst natural disasters recuing in China. Ph.d,
2011.

http://dx.doi.org/10.1109/TETC.2017.2703784
http://dx.doi.org/10.1504/IJBIC.2015.10004283
http://dx.doi.org/10.1007/s12351-016-0251-z
http://dx.doi.org/10.1007/s12351-016-0251-z
http://dx.doi.org/10.1007/s00521-012-1304-8
http://dx.doi.org/10.1007/s12293-017-0241-6
http://dx.doi.org/10.1109/tevc.2012.2204264
http://dx.doi.org/10.1214/13-aoas626
http://dx.doi.org/10.1214/13-aoas626
http://dx.doi.org/10.1007/s00500-017-2547-1
http://dx.doi.org/10.1504/IJMMNO.2010.03543
http://dx.doi.org/10.1016/j.neucom.2012.09.049
http://dx.doi.org/10.1109/TCBB.2015.2476796
http://dx.doi.org/10.1016/j.ins.2017.08.047
http://dx.doi.org/10.1016/j.ins.2017.11.052

	1 Introduction
	2 Preliminaries
	2.1 EmVRP
	2.2 MBO algorithm

	3 EmVRP with relief materials in sudden disasters
	3.1 Problem description
	3.2 Definition and explanation of boundary conditions of model
	3.3 The model of the EmVRP with relief materials in sudden disasters
	3.4 Difference between emergency VRP and regular VRP

	4 Enhanced MBO algorithm
	4.1 MBO algorithm
	4.1.1 Migration operator
	4.1.2 Butterfly adjusting operator

	4.2 EMBO algorithm
	4.2.1 Self-adaptive butterfly adjusting operator
	4.2.2 Crossover operator


	5 The EMBO for emergency VRP with relief materials in sudden disasters
	5.1 Individual coding and initial solutions construction
	5.2 The EMBO for emergency VRP with relief materials in sudden disasters

	6 Simulation results
	6.1 An EmVRP with relief materials in sudden disasters (case 1)
	6.2 The shortest time used by nine algorithms on the EmVRP with relief materials in sudden disasters
	6.3 Another EmVRP with relief materials in sudden disasters (case 2)
	6.4 Parameter study
	6.4.1 Influence of the initial butterfly adjusting rate BAR0 for EMBO
	6.4.2 Influence of the probability p for EMBO
	6.4.3 Influence of the elitism Keep for EMBO
	6.4.4  Influence of the population size NP for EMBO
	6.4.5 Influence of the maximum generation tmax for EMBO


	7 Conclusions

