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Abstract: Personal Dead Reckoning based on foot-
mounted Inertial Measurement Units is a research hotspot
in the field of positioning and navigation in recent years.
This paper conducts a targeted research on the applica-
tion of current mainstream attitude and heading reference
system (AHRS) algorithm in the foot inertial navigation
positioning. Through open datasets, the positioning ac-
curacy and directional accuracy of 9-state complementary
Kalman filter (CKF) are compared and analyzed among the
conventional algorithm, Mahony algorithm, and Madg-
wick algorithm, in which the Madgwick algorithm can
achieve the best positioning results. And on this basis, for
the Madgwick algorithm, it is verified that it can help im-
prove the positioning accuracy of 15-state CKF under the
assistive technologies of zero angular rate update (ZARU)
and heuristic heading reduction (HDR). The adaptive zero-
speed detection algorithm is designed, and the threshold
value of zero-speed detection is set dynamically through
tracking the variable of speed in CKF, which can detect
the time period of zero-speed state more accurately, thus
further improving the correction of directional errors. Fi-
nally, the effectiveness of the proposed algorithm is further
proved by actual data.

Keywords: Foot-mounted IMU; AHRS; Complementary
Kalman filter; Mahony; Madgwick

1 Introduction
Pedestrian indoor navigation systems constructed around
foot-mounted inertial measurement units (IMUs) have
shown promising results [1–3]. In order to overcome the
accumulation of errors, the Zero Velocity Update (ZUPT)
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is generally used to modify the system error. This method
was first proposed by E. Foxlin [4] in 2005 and applied in
the NavShoe project. Since then, a large number of stud-
ies on this kind of foot-mounted indoor inertial navigation
and positioning system have appeared, of which, some
successful ones are as follows.

A double-layer Bayesian position estimation frame-
work based on foot inertial sensors was proposed by
Robertson et al. [5] in 2008, inwhich, the Kalman filter and
the particle filter was used in the bottom layer and the top
layer, respectively. In 2009, a new Personal Dead Reckon-
ing (PDR) technology called FootSLAM was created based
on the Simultaneous Localization andMapping (SLAM) al-
gorithm, and the particle filter algorithm was used to cor-
rect the trajectory data acquired previously [6]. In 2010,
the PlaceSLAM, a system for pedestrians to upload maps
online, was provided by them. Besides, a set of reference
datasets was also provided, and the positioning accuracy
was verified by using optical positioning systemwith high
accuracy [7]. In 2011, based on FootSLAM and PlaceSLAM,
the Wi-Fi support for the system was introduced and a
large-scale map was constructed by iterative calculations,
named WiSLAM [8]. In 2013, map information for some
large sites was successfully generated by the improved
FootSLAM program [9].

An open-source and real-time inertial navigation sys-
tem based on foot-mounted ZUPTwas proposed in 2012 by
Nilsson, Skog et al. [10] from the Signal Processing Labora-
tory of the Swedish Royal Institute of Technology. The cost
of samples was about 800 US dollars, and the navigation
error range was 0.2%–1% within a short distance which
was less than 100meters. At the same time, the limitations
and the error model of ZUPT were also analyzed [11], and
the algorithm robustness was enhanced by eliminating
drift errors with an optimized algorithm [12]. In 2013, a po-
sitioning algorithmbased on double foot-mounted inertial
sensors was proposed [13]. For this algorithm, the distance
between the two feetwasused to constrain theheading an-
gle offset of the inertial devices, which greatly improved
the accuracy of autonomous positioning. In 2014, a posi-
tioning method based on multiple-IMU was developed by
theNilsson team [14],which could further improve the reli-
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ability and accuracy of autonomous positioning, besides,
its positioning experiment platform was open-sourced. In
2016, the estimation formula and analysis of MIMU sys-
temswere presented by Nilsson et al. [15]. The formulation
makes it possible to analyze the fundamental properties of
such systems and to derive efficient estimators.

The main factor that reduces performance of the foot-
mounted PDR is an error in estimation of the sensor ori-
entation [16]. In particular, the yaw, which represents the
heading error, is more critical. The accumulation of the
heading error will cause a large shift in the overall tra-
jectory even if the integral error of each step is small. Al-
though ZUPT can indirectly compensate the position er-
ror and heading error by correcting velocity, it still has
four disadvantages as followings [17, 18]. First, the error
can be corrected by ZUPT only when the velocity is close
to zero. Second, only the roll and the pitch angles can be
corrected by ZUPT, while the yaw angle cannot be. Third,
Zero-velocity hypothesis in some cases can be incorrect
due to the small movements in zero-velocity-phase, which
in the end could lead to modelling error. Forth, due to the
different features of different gait such as running, climb-
ing and etc., a uniform zero-velocity detector cannot cor-
rectly detect all the zero velocity situations, and as a re-
sult, a zero velocity maybe missed detected or an effective
velocity maybe incorrectly set to zero.

How to further improve the accuracy of direction com-
putation in the foot-mounted PDR algorithm is the fo-
cus of this paper. Gyroscopes in the IMU can calculate
the direction by integral; however, the prolonged integral
data is liable to drift, thus causing a big directional error.
Accelerometers and magnetometers can also be used to
calculate the direction, but the data obtained from them
are especially vulnerable to noisy data, thus causing a
big error in the direction. state-of-art Attitude and Head-
ing Reference Systems(AHRS), such as Kalman filter, Ma-
hony, Madgwick and etc., combines the accelerometer, gy-
roscope and magnetometer measurements with two abso-
lute fields, the Earth magnetic field and the gravity field,
whose directions and intensities are known, help estimat-
ing the orientation. They have made full use of the long-
term reliability of accelerometers and magnetometers in
calculating the direction and the short-term reliability of
gyroscope data, thus generating the direction computa-
tion results with higher accuracy.

Therefore, several state-of-art Attitude and Heading
Reference Systems (AHRS) such as common algorithm,
Mahony [19] andMadgwick [20] are introduced to the foot-
mounted PDR algorithm in this paper, as shown in Fig-
ure 1. The pink box in Figure 1 is the Complementary
Kalman Filter(CKF) algorithm [21] used to estimate the po-

sition, velocity and direction deviations during the PDR.
The calculation errors in attitude, direction and position
can be effectively eliminated by substituting the above de-
viations into the INS Navigation Equation. In addition, the
key of the CKF algorithm is the conditional constraints on
the state variables, and the Magnetic Angular Rate Up-
date (MARU) [22], Zero Angular Rate Update (ZARU) [23],
Heuristic Heading Reduction (HDR) [23] and ZUPT are
commonly used.

Figure 1: Algorithm flowchart

The main work of this paper includes:

1. The application of foot-mounted PDR algorithm is
summarized through the comparison of 9-state CKF
algorithm and AHRS algorithm. TheMadgwick algo-
rithm has higher accuracy because it has higher ac-
curacy in calculating heading.

2. TheAHRS algorithm is introduced based on the orig-
inal computing framework of foot-mounted PDR al-
gorithm. The advantage of using AHRS algorithm is
that it can compensate attitude errors continuously
instead of only at the stage of ZUPT, thus improving
the directional accuracy on the whole.

3. As for the ZUPT algorithm, the dynamic setup of
zero-speed detection threshold is proposed by track-
ing the velocity change of pedestrians, which im-
proves the accuracy of zero-speed detection and can
detect the time period of zero-speed state more ac-
curately, thus further improving the correction of di-
rectional errors and reducing the positioning devia-
tion.

The remainder of the paper is organized as follows. In
Section 2, foot-mounted IMU positioning algorithm based
on CKF is discussed, and the method of introducing AHRS
algorithm to CKF is presented. In Section 3, the princi-
ple of the mainstream AHRS algorithm is discussed. Sub-
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sequently, several experiments are analysed in Section 4.
Section 5 concludes the paper.

2 Inertial Navigation and
Zero-Velocity Updating

2.1 Introduction of AHRS algorithm to
dynamic model

Following the method in previous research [24], the nine
state of the CKF algorithm is defined as X =

[︀
δpnδvnϵa

]︀
,

where δpn is the position error, δvn is the velocity error,
ϵa is the direction error. The state vector is under the nav-
igation frame (n-frame). The direction, velocity and posi-
tion under n-frame can be obtained by integrating the gy-
roscope and acceleration data. The INS navigation equa-
tion is defined as:

ṗn = vn (1)

v̇n = Cnb f
b + gn (2)

Ċnb = C
n
b[ω

b × ] (3)

where gn is the gravity vector under n-frame, f b =[︁
f bx , f by , f bz

]︁
is the acceleration vector under b-frame, ωb =[︁

ωbx , ωby , ωbz
]︁
is the angular velocity under the body frame

(b-frame), [ωb × ] is the skew-symmetric matrix of angular
velocity, defined as:

[ωb × ] =

⎡⎢⎣ 0 −ωbz ωby
ωbz 0 −ωbx
−ωby ωbx 0

⎤⎥⎦ (4)

For the acceleration and the observation of the gyro-
scope at moment k, the drifts are required to be removed
first, as shown in the following formula:

f̂ bk = f̃ bk − ba (5)

ω̂bk = ω̃bk − bg (6)

f̃ bk and ω̃
b
k are original observations of acceleration and an-

gular velocity, respectively; f̂ bk and ω̂
b
k are the correspond-

ing values after deviation compensation. bg is the drift of
the gyroscope; ba is the drift of the acceleration. For the
CKF under State-9, these two values are obtained by the
IMU calibration and used as constants to correct f̃ bk and

ω̃bk . For the CKF under State-15, these two values are the
dynamic state variables of the system.

The transformation of the acceleration from Moment
k to Moment (k+1) is:

f̂ nk+1 = C
n
b(f̃

b
k + 0.5(ω̃

b
kdt ⊗ f̃ bk )) − g

n (7)

⊗ denotes vector cross-product, representing the rotation
correction of acceleration with change in angular velocity.

The transformation of the velocity from moment k to
moment (k+1) is:

vnk+1 = v
n
k + f̂

n
k+1dt (8)

The transformation of the position from moment k to
moment (k+1) is:

pnk+1 = p
n
k + 0.5(v

n
k + v

n
k+1)dt (9)

The transformation of the attitude from moment k to
moment (k+1) is:

Cnb,k+1 = C
n
b,k(I + [ω̃

b
kdt × ]) (10)

Cnb,k+1 is the rotation matrix at moment (k+1), with its
value representing the compensated rotation of the pose
change matrix from moment k to moment (k+1). In order
to improve the accuracy of the attitude, the value of Cnb,k+1
needs periodic normalization.

Equation 10 presents the AHRS Fundamental Ap-
proach. Our idea is to adopt Mahony or Madgwick al-
gorithm instead of Equation 10 to calculate the attitude.
Here, two points are worthy to be noted. First, the realiza-
tion of CKF in [24] is based on the rotation matrix, while
Mahony andMadgwick are based on the quaternion to cal-
culate the attitude, so the calculated attitude results of
each Mahony or Madgwick algorithm are required to be
converted into rotation matrix. Second, the bias correc-
tion is already included in the Mahony and Madgwick al-
gorithms, so it is unnecessary to correct the original ac-
celerometer and gyroscope data in according to Equation 5
and 6.

2.2 Zero-Velocity Detectors

If a zero-velocity state is detected, the error can be calcu-
latedby theKalmangainKk and theobserved zero-velocity
deviation Vk:

Xk =
(︀
δpn δvn ϵa

)︀
= KkVk (11)

The position error, velocity error and direction error
are contained in the vector Xk. Regarding ϵa, a skew-
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symmetricmatrixΩϵ,k for the angular error is constructed:

Ωϵ,k =

⎡⎢⎣ 0 ϵa[3] −ϵa[2]
−ϵa[3] 0 ϵa[1]
ϵa[2] −ϵa[1] 0

⎤⎥⎦ (12)

The attitude, velocity and position are corrected as fol-
lows:

Cnb,k = (I − Ωϵ,k)Cnb,k (13)

vnk = v
n
k − ϵv (14)

pnk = p
n
k − ϵp (15)

It should be noted that since the one used in the Ma-
hony or Madgwick algorithm is quaternion, the corrected
Cnb,k is required to be converted to a quaternion again for
the next attitude calculation.

3 Attitude and Heading Estimation
Methods

3.1 AHRS Fundamental Approach

The principles of attitude calculation are as follows: when
expressing a certain vector n by using different coordinate
systems, the size and direction must be the same. How-
ever, as there are some errors in the transformationmatrix
of these two coordinate systems, when a vector is trans-
formed by a rotation matrix with some errors, it must be
some deviations compared with the theoretical value in
another coordinate system. And the attitude is corrected
just by the correction of this rotation matrix through these
deviations.

Since the rotation matrix is actually expressed by
quaternions in this paper, the goal of attitude calculation
is achieved by correcting the quaternions, and accelerom-
eters and magnetometers are a main measurement object
for attitude calculation.

Initially, assume that the sensor is either at a stand
still or moves at a constant velocity so that only the gravity
vector can be measured by the accelerometer. At the same
time, assumeanon-disturbedmagnetic field and therefore
the only the Earth magnetic field is measured by magne-
tometers. The pitch(θ) and roll(ϕ) can be calculated from
the gravity vector, as shown in the following equation:

ϕ = tan
(︁
f by /f bz

)︁−1
(16)

θ = − sin
(︁
f bx /g

)︁−1
(17)

The value of yaw(ψ) can be obtained by the magne-
tometer instead of the gravity vector. The measurement
of magnetometer, denoted as mb =

[︁
mb
x ,mb

y ,mb
z
]︁
, rep-

resents the value of the geomagnetic field under b-frame.
Since pitch(θ) and roll(ϕ) are known,mb can be converted
to the XOY plane under the n-frame, and its value is de-
noted as mn =

[︀
mn
x ,mn

y ,mn
z
]︀
. The conversion relationship

between the two groups of magnetic data is as follows:⎡⎢⎣mn
x

mn
y

mn
z

⎤⎥⎦ = (18)

⎡⎢⎣cos(θ) 0 −sin(θ)
0 1 0

in(θ) 0 cos(θ)

⎤⎥⎦
−1 ⎡⎢⎣1 0 0)

0 cos(ϕ) 0
0 0 cos(ϕ)

⎤⎥⎦
−1 ⎡⎢⎣mb

x
mb
y

mb
z

⎤⎥⎦
Under the geographic coordinate system, the data of

the geomagnetic field is b = [bx , 0, bz], where by in the
east direction is 0 since the bx direction points to the north
under the geographic system. In fact, the n-frame and the
geographic coordinate system are in a same XOY plane,
and the difference angle happens to be the heading angle
ψ, as shown in Figure 2. Among them,

bx = sqrt
[︁
(mb

x )
2
+ (mb

y )
2]︁

(19)

bz = mn
z (20)

The consistent XOY plane is provided by the correc-
tion of accelerometers, that is, navigation coordinate sys-
tem and geographic coordinate system are in one plane.

Figure 2: Navigation coordinate system and geographic coordinate
system.



52 | X. Li and Y. Wang

Only by this way can Equation 19 be satisfied according to
the relationship of trigonometric function.

The relationship between the data b of the geomag-
netic field and the magnetic field under the b-frame is as
follows:

b = Cnbm
b (21)

The heading angle can be calculated by Equation 21:

ψ = (22)

arctan
(︃

mb
x cos (ϕ) + mb

z sin (ϕ)[︀
mb
x sin(ϕ) − mb

z cos(ϕ)
]︀
sin(θ) − mb

y cos(θ)

)︃

After the initial yaw, pitch and roll are obtained, the
attitude transition matrix Cnb,1 can be constructed as fol-
lows: ⎡⎢⎣cos (θ) * cos(ψ)cos(θ) * sin(ψ)

− sin(θ)
(23)

sin(ϕ) * sin(θ) * cos(ψ) − cos(ϕ) * sin(ψ)
sin(ϕ) * sin(θ) * sin(ψ) + cos(ϕ) * cos(ψ)

sin(ϕ) * cos(θ)

cos(ϕ) * sin(θ) * cos(ψ) + sin(ϕ) * sin(ψ)
cos(ϕ) * sin(θ) * sin(ψ) − sin(ϕ) * cos(ψ)

cos(ϕ) * cos(θ)

⎤⎥⎦
The subsequent attitude transition matrix Cnb,k+1 can

be obtained by Equation 10.

3.2 Madgwick AHRS

For theMadgwick algorithm, the current pose is calculated
in the form of quaternion using a gyroscope:

qt+1 = qt + 0.5qtωtdt (24)

By calculating the difference of accelerometer as well as
the difference of magnetometer between n-frame and b-
frame, the error of pose is corrected. Denote the vector
coordinate under the n-frame and the b-frame as e =
[0, ex , ey , ez] and s = [0, sx , sy , sz], respectively. For the
accelerometer, e = [0, 0, 0, 1] and s = [0, f bx , f by , f bz ];
for the magnetometer, e = [0, bx , 0, bz] and s =
[0,mb

x ,mb
y ,mb

z ]. q is the quaternion of the sensor pose,
and its conversion relationship is as follows:

s = q−1eq (25)

The error equation is defined as:

E (q) = q−1eq − s (26)

The above equation is solved by Gauss Newton method:

qt+1 = qt − µt
∇E

| |∇E| | (27)

where µt is the step size, and∇ is the differential operator.
Combine Equation 24 and Equation 27,

qt+1 = qt + 0.5qtωtdt − β
∇E

| |∇E| |dt (28)

0.5qtωtdt in Equation 28 is calculated and updated by the
gyroscope. β ∇E

||∇E||dt is obtained by the accelerometer and
magnetometer, and it is used to correct the angle error,
where β represents the error weight.

3.3 Mahony AHRS

For the Mahony algorithm, the current pose is also calcu-
lated in the form of quaternion using a gyroscope:

qt+1 = qt + 0.5qtωtdt (29)

By calculating the difference of accelerometer as well as
the difference of magnetometer between n-frame and b-
frame, the error of pose is corrected.

e = f b ⊗ v + mb ⊗ w (30)

⊗ is vector cross-product. e represents the relative rotation
(error) between the measured inertial vector and the pre-
dicted vector. v and w are defined as follows:

v =

⎡⎢⎣vxvy
vz

⎤⎥⎦ = Cbn

⎡⎢⎣00
1

⎤⎥⎦ (31)

w =

⎡⎢⎣wxwy
wz

⎤⎥⎦ = Cbn

⎡⎢⎣bx0
bz

⎤⎥⎦ (32)

After calculating e by the proportion and integration
regulator, the correction deviation δ regarding the gyro-
scope is obtained:

δ = KI
∫︁
edt + Kpe (33)

The final corrected angular velocity is:

ωt = ωt + δ (34)

This equation is substituted intoEquation 29 toupdate
the pose calculation.

For the Mahony or Madgwick algorithm, the quater-
nion of its initial state can be calculated by the AHRS fun-
damental approach, and then its rotation matrix is con-
verted to a quaternion.
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(a) Route1 (b) Route2 (c) Route3

Figure 3: Three experimental routes.

4 Comparison of AHRS Algorithms
with Foot-Mounted IMU

We used the data published in [25] which provides high
precision, ground-truth data obtained optical systems. A
total of 16 sets of data are included in the data set, and the
data are obtained from experiments conducted on differ-
ent floor surfaces such as carpets andhard floors. A variety
of walking modes are adopted in the experiments, includ-
ing slow and fast walking, turns, loops, rectangles, rapid
direction changes, walking backwards, running, and tran-
sitions. Among them, the first, eighth and fifteen sets of
data are used as test objects, and their true trajectories are
shown in Figure 3.

Route1 is a close-to-rectangular walking route with
constant speed and less turning; Route 2 is an elliptical
running route with more turns; Route3 is a more complex
route with mixed walking and running. Due to the use of
the public data set, calibration of magnetometer cannot
be implemented and therefore no magnetometer is used
in the AHRS algorithm.

The experimental design is carried out according to
the following: Firstly, the more applicable algorithm for
foot-mounted PDR, namely Madgwick algorithm, is se-
lected by comparing it with the AHRS algorithm in the 9-
state CKF algorithm; then, the experiment shows that the
directional accuracy of overall trajectory canbe further im-
proved by introducing the Madgwick algorithm in the 15-
state CKF algorithm; and finally, it is verified that the dy-

namic setup of zero-speed detection threshold proposed
in this paper can further improve the correction of direc-
tional errors.

4.1 Analysis and comparison of Route1-2
positioning based on CKF under State-9

The open source CKF algorithm under State-9 in [24] is
adopted, and the related parameters are shown in Table 1.
From the positioning results of Route1 and Route2 in Fig-
ure 4, the positioning trajectory obtained by AHRS funda-
mental algorithm (abbreviated as “Common”) is poor since
the drifts of accelerometer and gyroscope are not tracked
in attitude calculation. The trajectory calculation using

Table 1: List of parameters.

Name Value
Time step 1/100 second
Accelerometer noise 0.01 m/s2

Gyroscope noise 0.01 rad/s
Gravity 9.8 m/s2

Zero-velocity(ZV) measurement noise 0.01m/s
Gyroscope ZV detection threshold δ 0.6rad/s
A turning parameter (β) of Madgwick’s
filter

0.1

A turning parameter (Kp/Ki) of Ma-
hony’s filter

1/0
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(a) Route1 (b) Route2

Figure 4: Comparison of Route trajectories.

Figure 5: Comparison of heading angles of the three algorithms of Route1.

Mahony/Madgwick to conduct pose estimation is relatively
accurate, and the result of Madgwick is the closest to the
true trajectory.

The accuracy of the trajectory is inseparable from the
accuracy of the direction, and the directional calculation

results of the three algorithms are compared in Figure 5-6.
It can be seen that for both Route 1 and Route 2, the differ-
ences of pitch and roll among the three calculation meth-
ods are not significant. This is mainly because the zero-
velocity detection is periodically correcting the deviations
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Figure 6: Comparison of heading angles of the three algorithms of Route2.

(a) Route1 (b) Route2

Figure 7: Comparison of the covariance of heading angles.

of pitch and roll. For the yaw, the direction calculation of
Madgwick algorithm is between that of Mahony and direct
algorithm. Since there is no real direction for reference,
from the results of the positioning trajectory, the calcula-
tion of the direction conducted by theMadgwick algorithm

is themost accurate,which is also reflected in the compari-
son of the yaw covariance of the three algorithms in Figure
7. The covariance as well as the uncertainty of the Madg-
wick algorithm is the smallest.
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(a) 15M (b) 15ZH (c) 15MZH

Figure 8: Comparison of the three AHRS algorithms of Route 1.

(a) 15M (b) 15ZH (c) 15MZH

Figure 9: Comparison of the three AHRS algorithms of Route 2.

4.2 Analysis and comparison of Route1-2
positioning based on CKF under State-15

Theperformance of theAHRSalgorithmsdepends strongly
on the strategies used to reject perturbations, such as sud-
den accelerations or deformations of the Earth magnetic
field, and the ability to estimate the biases of the gyro-
scopes. In the EKF under State-9, only the bias of posi-
tion, velocity and angle are corrected, however, due to
continuous integration of sensor noise and biases, the

drift of gyroscope and accelerometer needs to be corrected
too. Therefore, the CKF algorithm under State-15 [23] is re-
ferred, adding bias estimation of accelerometer and gyro-
scope to the state. The bias estimation is denoted as X =[︀
δpnδvnϵbgba

]︀
, where bg is the gyroscope bias, and ba

is the acceleration bias. In addition, HDR and ZARU men-
tioned in [23] are introduced.

The positioning results of Route1-2 are shown in Fig-
ure 8-9. 15M represents CKF under State-15, and the Madg-
wick algorithm is used to calculate attitude; 15ZH repre-
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sents CKF under State-15, and the Common algorithm is
used to calculate attitude, with HDR and ZARU as aux-
iliary; 15MZH represents that the Madgwick algorithm is
used to calculate attitude, with HDR and ZARU as auxil-
iary. From thepositioning results in Figure 8, the profiles of
the positioning trajectory obtained by the three algorithms
are basically the same,while considering the overall direc-
tion, the trajectory of 15MZH is closer to the real trajectory,
as can be seen from the dashed circle in the figure. From
the three dashed circles in Figure 9, the overall distribu-
tion of trajectory obtained from 15M and 15MZH based on
the Madgwick algorithm is compacter than that of 15ZH,
and the trajectory obtained from15MZH is closer to the true
trajectory in the overall direction.

On the other hand, the positioning accuracy of the
three algorithms can also be reflected by the positioning
results on the Z-axis, as shown in Figure 10. Since thewalk-
ing is on a plane, in theory, data on the Z-axis should be
close to zero. From the positioning results of Route1 and
Route2, it can be seen that the CKF algorithm with the in-
troduction of Madgwick algorithm can reduce more posi-
tioning error to some extent.

4.3 Adaptive zero-velocity detection
algorithm

The zero-velocity detection algorithmbased on angular ve-
locity proposed in [24] is adopted, and ωb =

[︁
ωbx , ωby , ωbz

]︁
is the angular velocity under b-frame. The detection con-
ditions are as follows:{︃

||ωb|| < δ, still − phase
otherwise, swing − phase

(35)

The norm value ||ωb|| of angular velocity of Route1 and
Route2 are respectively shown in Figure 11. Route1 and
Route2 are inwalking state and running state, respectively.
In the walking state with a constant velocity, the delay of
the gait static state is longer, and the static state can be de-
tected by a relatively small threshold δ1. However, in the
running state with an increased velocity, the delay of the
static state is relatively short, and part of the static state
in a gait may be missed by δ1. When the sampling rate is
low, it is possible that the overall static state in a gait is
missed by δ1. These missed static states will reduce the
constraints on velocity, resulting in larger positioning er-
rors. However, it does not mean that the threshold can be
enlarged. If the threshold is too large, such as δ2, the ve-
locity is forced to zero before it reaches zero, causing the
effective velocity value to fail to participate in the position
integration which will also lead to positioning error.

(a) Route1

(b) Route2

Figure 10: Comparison of the errors of positioning height.

Route 3 corresponds to the mixed motion state. As
shown in Figure 12, the part in the red circle and the
parts outside represent the norm values of gyroscope in
running state and non-running state, respectively. Obvi-
ously, it is difficult to use a fixed zero-velocity detection
threshold at this time. The three-axis velocity of Route3 is
tracked by the CKF algorithm, as shown in Figure 13. The
results in Figure 13 are obtained by a fixed zero-velocity
detection threshold, and the change rule of the veloc-
ity can be roughly seen. The Route 3 experiences several
stages, including walking, decelerating, running, deceler-
ating and accelerating. Therefore, it is naturally conceiv-
able to use velocity adaptation to set the zero-velocity de-
tection threshold.



58 | X. Li and Y. Wang

(a)Walking

(b) Running

Figure 11: Norm values of Gyroscope of Route 1 and Route 2.
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Figure 12: Norm value of Gyroscope of Route 3.

Figure 13: Three-axis velocity of Route3.

The extraction process of velocity feature is as follows.
First, calculate the norm value of velocity, as shown in Fig-
ure 14. In order to determine the velocity state at a certain
moment, the average velocity within 1 second can be cal-
culated. The data sampling rate is 100HZ and the corre-
sponding data length is 100. Therefore, the window value
W is equal to 100, and the window value is used to calcu-
late the average velocity of Route 3, as shown in Figure 15.

In order to make the state within the 1 second much
clearer, the maximum velocity in this data window is cal-
culated, as shown in Figure 16 and Equation 36. In Fig-
ure 17, the velocity above the red dashed line correspond
to the running state, the parts between the red and green
dashed lines correspond to the walking state, and the
parts under the green dashed line correspond to the slow
walking state. The corresponding zero-velocity detection
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Figure 14: Norm value of velocity of Route 3.

Figure 15: Average velocity of Route 3 (W=100).

Figure 16:Maximum velocity in each data window of Route 3
(W=100).

threshold δ for angular velocity can be set accordingly.⎧⎪⎪⎨⎪⎪⎩
vw ≥ δrunning , running
δwalking ≤ vw < δrunning , walking
vw < δ walking , slow walking

(36)

Figure 17 shows the positioning trajectories of Route
3 obtained by fixed and adaptive zero-velocity detection
threshold δ for angular velocity (algorithm denoted as
15MZHA). Obviously, the adaptive δ presents amore signif-
icant improvement on the positioning accuracy. This is be-
cause a more accurate correction of the zero-velocity mo-
ment can reduce the covariance of the direction and elimi-
nate more errors of velocity and position, thereby improv-
ing the accuracy of the direction and positioning trajec-
tory.

In the specific implementation of the algorithm, con-
sidering that the velocity is a real-time tracked variable, δ
is initially given an empirical value, and then dynamically
set with the velocity change.

4.4 Test based on actual experimental data

In order to better verify the proposed algorithm, the exper-
imenter walks three times anticlockwise according to the
route in Figure 18. The start and end points are shown in
the top right corner, denoted by a triangle and a circle, re-
spectively. The experimenter walks at normal speed in the
first and third laps, and jogs in the second lap. The foot-
mounted X-IMU is produced by X-IO Company in Britain,
as shown in Figure 19.

The positioning results of 15MZH and 15MZHA are
shown in Figure 20 and 21, respectively. In the overall tra-
jectory, the positioning results of the two algorithms are
basically consistent with the reference trajectory under
the Madgwick algorithm and the assistive technologies of
ZARU and HDR. However, compared with the first lap, the
directional error of the last two laps gets bigger and big-
ger due to the inevitable accumulative error of MEMS-level
IMU itself.

As for the 15MZH algorithm, when jogging in the sec-
ond lap, since it cannot identify the change of pace, it still
uses a fixed zero-speed threshold value to detect the zero-
speed state, which will lead to the missing detection of
many zero-speed states. These quiescent states that fail to
be detectedwill reduce the constraint of speed, thus result-
ing in themuch longer overall positioning trajectory. It can
be known from the area within a broken circle in the left in
Figure 20 that the trajectories of the last two laps almost
overlap. Meanwhile, the missing detection of zero-speed
states will reduce the correction of direction, and it can be
seen from the area within a broken circle in the right in
Figure 20 that the direction is abnormal in the second lap.
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(a) Fixed δ (b) Adaptive δ

Figure 17: Comparison of different zero-velocity detection thresholds δ for angular velocity of Route 3.

Figure 18: The design of the route in the experiment.

5 Conclusions
In this paper, the mainstream AHRS algorithms such as
AHRS fundamental (Common), Mahony and Madgwick

Figure 19: Foot-mounted IMU.

algorithms are introduced to the positioning algorithm
based on foot-mounted IMU. The positioning accuracy of
different AHRS algorithms adopting CKF algorithm under
State-9 is compared and analysed, and it is also verified
that the accuracy of the CKF algorithm under State-15 can
be further improved by Madgwick algorithm. In order to
further reduce the positioning error, a method of adap-
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Figure 20: The positioning results of 15MZH.

Figure 21: The positioning results of 15MZHA.

tively setting the zero-velocity detection threshold accord-
ing to the velocity change is proposed, which improves the
precision of the zero-velocity detection and direction ac-
curacy. The future work will combine GNSS and UWB sys-
tems to realize stable, high-precision indoor and outdoor
emergency positioning andmap building system based on
foot inertial navigation [26, 27].
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