
Open Access. © 2018 A. Qiu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 License

Open Geosci. 2018; 10:491–503

Research Article

Agen Qiu, Zhiran Zhang*, Xinlin Qian, and Wangjun He

Error-bounded and Number-bounded Approximate
Spatial Query for Interactive Visualization
https://doi.org/10.1515/geo-2018-0039
Received Mar 21, 2018; accepted Jul 24, 2018

Abstract: In the big data era, an enormous amount of spa-
tial and spatiotemporal data are generated every day.How-
ever, spatial query result sets that satisfy a query con-
dition are very large, sometimes over hundreds or thou-
sands of terabytes. Interactive visualization of big geospa-
tial data calls for continuous query requests, and large
query results prevent visual efficiency. Furthermore, tra-
ditional methods based on random sampling or line sim-
plification are not suitable for spatial data visualization
with bounded errors and bound vertex numbers. In this
paper, we propose a vertex sampling method—the Bal-
anced Douglas Peucker (B-DP) algorithm—to build hier-
archical structures, where the order and weights of ver-
tices are preserved in binary trees. Then, we develop query
processing algorithms with bounded errors and bounded
numbers, where the vertices are retrieved by binary trees’
breadth-first-searching (BFS) with a maximum-error-first
(MEF) queue. Finally, we conduct an experimental study
withOpenStreetMap (OSM)data to determine the effective-
ness of our query method in interactive visualization. The
results show that the proposed approach canmarkedly re-
duce the query results’ size and maintain high accuracy,
and its performance is robust against the data volume.
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1 Introduction
With the rapid growth in data velocity, volume and variety,
methods to efficient query and visualize massive amounts
of geospatial data are attracting increasing attention. In an
interactive exploration of spatial data, users want to zoom
in or out to a particular area on a map without long wait
times. These operations mean changes to the users’ query
condition—the query scope. A query request will be exe-
cuted on a database when the query scope changes. On
large spatial datasets, waiting for the exact analytical or
query results may take a very long time. It is a dilemma
that allows users to adjust the tradeoff between the query
cost and the approximation quality.

Although various algorithms exist for spatial query-
ing, the heavy calculation burden of spatial querying and
large query result set will take a longer processing time in
space querying and present a lower speed in transmission
and rendering, so the implementation of interactive and
real-time visualization ismore difficult [1–3]. In particular,
when the underlying data amount is large, reporting all
points that satisfy a query condition and displaying them
on screen could be expensive, and it may also reduce the
visual effect of the data, hindering the users’ perception
and cognitive ability at the same time, since there could
be too many points [4]. An approximate spatial query is
a technique that samples a small portion of the data to
process and returns an approximate result with an error
or time bound. Providing approximate answers to spatial
queries gives users the ability to focus their explorations
quickly and effectively. It is even better if the query results
are displayed on screen with a satisfactory visual effect.

Recently, new methods have arisen in the fields of
databases, computers and visualization. Scholars in the
database field propose online aggregation [4–6] and sam-
pling [7–9] methods to solve the storage problem of large
query results [5, 10–12]. Currently, to solve the problem of
a heavy calculation burden in querying, cloud computing,
distributed computation [13–19] and advanced graphical
user interfaces contribute to the scalability of big data [20]
in the computer field. These techniques provide good per-
formance in terms of querying time. However, these tech-
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niques exhaust the computation resources andblock other
time-sensitive jobs. In the fields of spatial databases and
visualization, the combination of querying the data from
databases and data simplification, such as data filtration
and sampling [4, 21], model simplification [22], binning al-
gorithm [23] and mixed methods [24–27], have become ef-
ficient methods to simplify the large query results. Alter-
natively, a majority of sampling methods are used to build
data sketches o�ine and answer queries at runtime.

Data simplification, such as sampling or filtering, can
reduce outliers and retain the basic structure of the data,
thereby reducing the query’s execution time. At the same
time, a reasonable data simplification scheme can extract
less feature data, and the difference between simplified
data and original data is so small that it is practically un-
detectable by the naked eye. Traditional o�ine sampling
methods cannot provide error bounds and only minimize
data [10, 11]. Somemethods, such as online aggregation [5]
and bootstrapping [28], can provide error bounds; how-
ever, they aim to query and provide interactive visualiza-
tion of nonspatial data. These methods cannot be directly
applied to the interactive visualization of geospatial big
datawhen considering the remaining geometric and topol-
ogy characteristics in the process of data sampling.

The goal of the paper is to select a small set of vertices
from a full-detailed spatial database through setting error
or number thresholds, andmake the visualizationmore ef-
ficient and extremely fast at the same time. Themethodde-
scribed in this paper realizes approximate query process-
ing of big spatial data. In vertex samplingmethod, the data
visualization errorwas definedbyHausdorffDistance, and
the spatial objects are sampled by the Balanced Douglas
Peuker algorithm. In addition, based on the tree structure,
error-bounded and number-bounded spatial query meth-
ods reduce the response timeof the spatial query andmake
the real-time interaction possible. The algorithm is tested
on OSM data and is found to achieve good performance.

2 Methods

2.1 Research Process

The point, polyline and polygon are widely used to rep-
resent various geographical features. In vector datasets, a
polyline is composed of two endpoints and a series of ver-
tices that can mark a line’s shape; a polygon consists of
a series of segments, and these segments are connective,
closed and disjointed. Therefore, the vertex is the small-
est unit in the featuremodel, the polyline is defined on the

basis of the vertex, and the polygon is defined on the basis
of the polyline. As a basic unit, the vertex is an extremely
important feature in the feature model. In this paper, the
approximate method is used to subdivide the vertex se-
quence. The approximate of the line object is realized by
vertex sampling, and the approximate of the polygon ob-
ject is realized by vertex sampling and line sampling.

The research is divided into four steps, and Figure 1
shows the basic process of this method.

1. Vertex sampling. Building vertex sequences for
space objects by using the line simplification algo-
rithm. The two-line simplificationalgorithm, i.e., the
traditional Douglas Peucker (DP) algorithm, and our
B-DP algorithm will be illustrated in section 2.2.

2. Binary tree construction. A binary tree is built by the
B-DP algorithm. It can directly represent the vertices
of spatial objects in a hierarchical structure and a
particular sequence. Section 2.3 describes the gen-
eration and connection of the binary tree.

3. Approximate spatial querying with bounded er-
rors and bounded numbers. The vertices of fea-
tures are retrieved by the binary trees’ breadth-first-
searching, and query execution can be terminated
whenever the error or number reaches a satisfactory
level.

4. Interactive visualization. The approximate query re-
sults are visualized in real time.

Figure 1: Research process
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2.2 Vertex Sampling Method

A better sampling scheme will increase the query effi-
ciency with high accuracy. In this section, two sampling
methods are described, including the DP and B-DP algo-
rithms. DP algorithm is a classic line simplification algo-
rithm that can effectively simplify line objects. However,
a sampling scheme that leads to a balanced hierarchical
structure and satisfies the global error constraint is re-
quired. Therefore, we introduce a balanced factor in the
DP to build a balanced binary tree. The advantages and
construction method will be illustrated in section 2.2.2.

2.2.1 DP Algorithm

The purpose of a DP algorithm is to compress a large num-
ber of redundant vertices and find a similar curve with
fewer vertices. The algorithm defines ’dissimilar’ based on
themaximumdistance between the original curve and the
simplified curve. The DP algorithm is summarized as fol-
lows [29,30]. Given a polyline Lj = {P0, P1, · · · , Pn} with
a set C, and a simplified polyline L′j with a subset C′ ⊆ C.
Initially, for vertex Pk , Pm,0 < k,m < n, if

dist
(︀
Pm

⟨︀
P0, Pn

⟩︀)︀
= max

{︀
dist

(︀
Pk

⟨︀
P0, Pn

⟩︀)︀}︀
≥ ε (1)

Which indicates that vertex Pm is to be kept, i.e., Pm ∈ C′,
otherwise it marks the straight line segment P0, Pn as the
simplified polyline. Polyline Lj is divided into two sublines
by vertex Pm, then the above steps for the sublines are re-
peated until all the vertices satisfy the specified criterion
function, as follows:

f (Sk) = max
{︀
dist

(︀
Pi

⟨︀
P′k−1P′k

⟩︀)︀}︀
≤ ε (2)

where ε = const, Pi ∈ Sk, and P′k−1P′k represents the
straight line segment from P′k−1 to P

′
k.

The DP algorithm is a global algorithm based on the
whole curve, and samples the vertex by considering the
entire character of the line object. The number of vertices
num

(︀
C′
)︀
in L′j is decided by the constant ε. If ε ≤ 0, then

num
(︀
C′
)︀
= num (C). An example of polyline simplifica-

tion based on the DP algorithm is shown in Figure 2(b).

2.2.2 B-DP Algorithm

The DP algorithm is described in Figure 2(b), which uses
the maximum-distance criterion and divides the polylines
according to the vertices of maximum distance. Although
the DP algorithm does not have to introduce new vertices
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Figure 2: Example of polyline simplification: (a) polyline with a
straight line; (b) the result of the DP algorithm; (c) the result of the
B-DP algorithm (α = 0.3)

and results in a lownumber of vertices, the sizes of the two
sublines produced by each iteration may not be balanced.
Therefore, we introduce a balance parameter α based on
theDPalgorithm to solve this problem. TheB-DPalgorithm
is summarized as follows. Pn/2 is the center vertex of set C.

1. Calculate the distance from vertex Pi (0 < i < n)
to straight line P0, Pn, if there exists vertex
Pm (0 < m < n) satisfying dist

(︀
Pm

⟨︀
P0, Pn

⟩︀)︀
=

max
{︀
dist

(︀
Pi

⟨︀
P0, Pn

⟩︀)︀}︀
≥ ε, do step (2); else, do

step (3);
2. Select vertex Pt as the split point and mark Pt

to be kept, i.e., Pt ∈ C′, if the condition
dist

(︀
Pt

⟨︀
P0, Pn

⟩︀)︀
= max

{︀
dist

(︀
Pk

⟨︀
P0, Pn

⟩︀)︀}︀
is

met, t, k ∈
⌊︀ n
2
⌋︀
+
[︁
− (1−2α)n2 , (1−2α)n

2

]︁
, 0 ≤ α < 0.5;

3. Mark the straight line segment P0, Pn as the simpli-
fied polyline;

4. Polyline Lj is divided into two sublines Lle� =
{P0, P1, · · · , Pt} and Lright = {Pt , Pt+1, · · · , Pn}.
Then, repeat steps 1 and 2 on the sublines.

Where ε = const, P0, Pn is the connection line between P0
and Pn; dist

(︀
Pm

⟨︀
P0, Pn

⟩︀)︀
represents the vertical distance

from point Pm to line P0, Pn; max
{︀
dist

(︀
Pk

⟨︀
P0, Pn

⟩︀)︀}︀
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represents the maximum distance from point Pk to line
P0, Pn, k ∈

⌊︀ n
2
⌋︀
+
[︁
− (1−2α)n2 , (1−2α)n

2

]︁
. An example of poly-

line simplification based on the B-DP algorithm is shown
in Figure 2(c).

Using the B-DP algorithm, the maximum-distance is
also the criteria of division, and the approximate inter-
mediate vertex is selected as the split point. This method
guarantees the balance of the sublines’ scale and binary
tree if the polyline is stored in a binary tree, which will be
illustrated in section 2.3. As a result, it can reduce the com-
plexity of the algorithms and enhance the efficiency of the
hierarchical structure.

2.2.3 Error Calculation

Error calculation is the core concept in an approximate
spatial query. The difference between an original line and
a simplified line is called the error, which is matched
through measurements according to application scenar-
ios. There are many measures of errors, such as the length
ratio [31], sinuosity [32] and position error [33]. For visual-
ization, the error between the original line and simplified
line represents pixel-value differencing of these two lines.
The characteristic is that theremaybeminimal pixel differ-
ences on the visual interface, while the original and sim-
plified line has great difference. We define the Hausdorff
distance based on the relative error of the pixel.

The generalized Hausdorff distance [34] is defined as
follows:

dH (X, Y) = max
{︃
sup
x∈X

inf
y∈Y

d (x, y) , sup
y∈Y

inf
x∈X

d (x, y)

}︃
(3)

where X and Y are two non-empty subsets of a metric
space, sup represents the supremum, inf the infimumand
d (x, y) the Euclidean distance between x and y.

L′j is a simplification of Lj through the sampling
method, such as the DP or B-DP algorithm, and the Haus-
dorff distance between L0 and L′0 is as follows:

dH
(︀
Lj , L′ j

)︀
= max

{︀
d
(︀
Pi , L′ j

)︀}︀
(4)

where Pi ∈ Lj, d(Pi , L′j) = min
{︀
d
(︀
Pi ,

⟨︀
P′k , P′k+1

⟩︀)︀}︀
,

∀P′k , P′k+1 ∈ L′j, d
(︀
Pi

⟨︀
P′k , P′k+1

⟩︀)︀
is the distance from

Pi to segment P′k , P′k+1, which is also called the error of
Pi.

An example is given in Figure 5. One square represents
one pixel. Gray squares represent that they are passed by
the line. The visual error between Lj and L′j is theHausdorff
distance, which is defined based on pixels. Comparedwith
the procedure of the B-DP algorithm, it is not difficult to

Figure 3: Visualization error of line

find that the error is calculated during the execution of the
B-DP algorithm. Therefore, the advantage is that the line
is simplified, and the error is obtained without additional
computation.

2.3 Binary Tree of Vertices

The order of the vertices is generated by the vertex sam-
pling method. The previous vertices that were sampled
have higher weights than the later sampled vertices. If we
store the vertices in order in a balanced binary tree, it will
not only reflect the hierarchical structure of the vertices
but will also accelerate the query time in a large amount of
the spatial data. This section describes the tree generation
method based on the B-DP algorithm and the connection
method of the binary tree.

2.3.1 Binary Tree of B-DP Algorithm

Various methods can be used to select a vertex where a
polyline is divided into two sublines and to divide the ver-
tices in a polyline into two subsets. If the threshold ε is
sufficiently small in the DP or B-DP algorithm, all vertices
in the polyline will be kept. In each iteration, the set C
is divided into two subjects. This iteration continues un-
til all the vertices are marked in set C′. The set C′ has a
unique sequence under a certain criterion, and it can be
interpreted as the nodes of a binary tree, where the leaves
of the tree are associated with the ordered set C′. A binary
tree represents a polyline where the leaves are associated
with the maximum-distance of vertices. The binary tree
contains the vertices in sequence and establishes a hier-
archical structure.

The maximum-distance is the criteria of the DP algo-
rithm, and it cannot guarantee the balance of the tree. In
some cases, the binary tree degenerates into an approxi-
mate chain or chain, and the time complexity of the query
is linear O (n); it can increase the query costs and reduce
the query efficiency accordingly. A balanced binary tree is
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Figure 4: Example of the binary tree generation based on the B-DP algorithm: (a) vertex recursive sampling; (b) tree generated for Fig-
ure 2(a)

generated through the B-DP algorithm. Because the B-DP
algorithm selects split points in certain central vertices, it
can effectively balance the tree through a parameter. The
time complexity of the query, insertion and deletion are
generally well maintained in O(logn). Therefore, the B-
DP algorithm is a very useful tree generation method that
greatly reduces the time complexity.

Figure 4(a) depicts a sampling progress of the polyline
in Figure 2(a). The gray vertices are the vertices selected
during sampling. A binary tree is generated according to
the vertices sampling sequence. The original sequence of
the vertices in the polyline will be reduced by the preorder
traversal of the binary trees.

2.3.2 Connection of the Binary Tree

A complex feature is composed of multiple polylines
linked end-to-end. The feature represents complex geo-
graphic entities in the real world, including closed planar
entities (e.g., larger areas of water, boundaries and settle-
ment places) and linear features with wide geographical
ranges (e.g., roads, boundary lines and water systems). A
complex feature not only is more complex than a single
polyline but also contains important geographic dataset
content. Thus, a complex feature is also themainquery ob-
ject in theprogress of the approximate spatial query. In this
section, we will discuss how to connect binary tree struc-
tures T0, T1, · · · , Tn corresponding to multiple polylines
L0, L1, · · · , Ln to the tree structure TR = ϖ(R) correspond-
ing to a complex feature R = L0 + L1 + · · · + Ln.

The basic procedure of the binary tree’s connection is
described as follows. Perform the B-DP algorithm for all
vertices in R, while split points can only be selected from
the beginning points PLi ,0 and end points PLi ,n of such
lines Li , (0 ≤ i ≤ n). The binary tree is established until all

beginning and end points are selected through recursive
implementation of the B-DP algorithm.

1. Transform the sequence of the polyline
{L0, L1, · · · , Ln} into vertex sequence C =

{︀
PL0 ,0,

PL0 ,1, · · · , PL1 ,0, PL1 ,1, · · · , PLn ,0, PLn ,1, · · · , PLn ,h
}︀
,

where the connection points only appear once.
2. Calculate the distance from vertices Pi ∈

{︀
PL0 ,1,

· · · , PL1 ,0, PL1 ,1, · · · , PLn ,0, PLn ,1, · · · , PLn ,h−1
}︀

to
straight line PL0 ,0, PLn ,h, the maximum-distance
vertex Pm satisfying dist

(︀
Pm

⟨︀
PL0 ,0, PLn ,h

⟩︀)︀
=

max
{︀
dist

(︀
Pi

⟨︀
PL0 ,0, PLn ,h

⟩︀)︀}︀
, and record the

maximum-distance EL0 ,Ln ;
3. Select the maximum-distance vertex Pk ∈{︀

PL1 ,0, PL2 ,0, · · · , PLn ,0, PLn ,h
}︀
as the split point.

Then, set C is divided into two subsets, i.e., Cle� and
Cright.

4. Establish a tree node TLi ,Lj , which is associatedwith
EL0 ,Ln ;

5. Repeat steps 2 to 4 on subsets Cle� and Cright, and
the generated tree nodes are the left and right child
node of TLi ,Lj ;

6. Return TLi ,Lj .

where PLi ,0 and PLi ,n are the beginning and end points
of lines Li , (0 ≤ i ≤ n); PL0 ,0, PLn ,his the connection
line between PL0 ,0 and PLn ,h; dist

(︀
Pi

⟨︀
PL0 ,0, PLn ,h

⟩︀)︀
represents the vertical distance from point Pi to line
PL0 ,0, PLn ,h. EL0 ,Ln represents the maximum distance of
dist

(︀
Pi

⟨︀
PL0 ,0, PLn ,h

⟩︀)︀
; Subset Cle� contains vertices from

PL0 ,0 to Pk; TLi ,Lj represents the root node of the binary
tree.
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2.4 Approximate Spatial Query for
Interactive Visualization

A spatial range query is one of the most basic spatial
query types. It is also called a windowing query in two di-
mensions. In terms of data visualization, the screen, such
as a computer display or phone screen, gives the scope
of the display and query, and all the data returned from
databases that satisfy the error constraint are presented
on the screen. Therefore, the visualization of geographic
data is the result of a spatial range query. This section de-
scribes the approximate range query method based on bi-
nary trees, which are built by the aforementioned meth-
ods. The definition of a window query is illustrated in sec-
tion 2.4.1. We then discuss the error matching method be-
tween original features and simplified features. Finally, we
present the approximate spatial query algorithm bounded
error and bounded vertex count in the face of geospatial
big data.

2.4.1 Window Query Definition

Window queries refer to the space objects within the scope
of a given range. The geospatial data of real-time visualiza-
tion are the result of the window querying. The approxi-
mate window query refers to the approximate space object
that will intersect with a given query scope, i.e., a bound-
ing box. The definition of an approximate window query is
described as follows.

Given a bounding box W = {xmin , ymin , xmax, ymax}
anddatasetD = {L0, L1, · · · , Ln}, xmin, ymin represents the
minimum coordinates of x and y, respectively; xmax, ymax
represents the maximum coordinates of x and y, respec-
tively. Vertices within this range may be selected and
shown on the screen. The basic idea of approximate win-
dow query processing is as follows: (1) generate the binary
tree of a polyline by the vertex sampling method; and (2)
execute the breadth-first traversal and take out the ver-
tices in a specified window according to the descending
order of the error. Then, the result dataset QW (W , D) =
{Li| Li ∩W ≠ ∅} is generated. If part of the vertices of poly-
line Li ∈ QW (W , D) are located outside of the window, we
will only keep the starting point or ending point to replace
the original polyline Li.

2.4.2 Approximate Window Query with Bounded Errors

In this section, we propose a query method combined
window query with error constraint. The error-bound

approximate query method is summarized as follows.
Given an error threshold ε and a bounding box W =
{xmin , ymin , xmax, ymax}, the query result is QA(W , ε, L0),
L0 = {P0, P1, · · · , Pn}.

1. Set up a priority queue PQ and a sampling set SP;
2. Add node Pi ∈ L0 to the priority queue if the subtree

of TL0 is located inW, where TL0 is the binary tree of
L0, and Pi is the root node of TL0 ;

3. If PQ ≠ ∅, select the node Pk with the maximum er-
ror, addnode Pk to SP if the error of Pk is greater than
ε and then perform step 2 on Pk, otherwise, perform
step 5;

4. If PQ = ∅, perform step 5;
5. Add all father nodes of Psp in SP;
6. Arrange all vertices in SP according to their sub-

script number, generate and return a new polyline
dynamically.

In step 5, we add all father nodes of Psp in SP. This is
because if we only select the top k nodes, the new poly-
line generated will not continue. SP combines with all the
father nodes in the binary tree to compose a complete sub-
tree. All the nodes in this new subtree are also a result of
the B-DP algorithm in a certain threshold.We can also con-
clude that the error of visualization is still less than ε. The
reason is that (1) the errors of the vertices that are selected
in step 3 are all greater than ε, (2) if the error of the father
node is greater than ε, it will already be selected in SP, and
(3) if the error of father node is smaller than ε, it also sat-
isfies the assumption.

2.4.3 Approximate Window Query with Bounded Vertex
Numbers

In this section, we propose a query method combined
window query with vertex count. This approximate query
method is summarized as follows. Given a number thresh-
old δ and a bounding box W = {xmin , ymin , xmax, ymax},
the query result is QA(W , δ, L0), L0 = {P0, P1, · · · , Pn}.

1. Set up a priority queue PQ and a sampling setSP;
2. Add node Pi ∈ L0 to the priority queue if the subtree

of TL0 is located inW, where TL0 is the binary tree of
L0, and Pi is the root node of TL0 ;

3. If PQ ≠ ∅, select node Pk with maximum error, add
node Pk to SP if the number of SP is smaller than δ
and then perform step 2 on Pk, otherwise, perform
step 5;

4. If PQ = ∅, perform step 5;
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5. Arrange all vertices in SP according to their sub-
script number, and dynamically generate new poly-
line;

6. Return new polylines and the size of SP.

3 Experimental Study

3.1 Datasets

The dataset of the experiment is derived from the entire
library file from Planetosm of OpenStreetMap (OSM). OSM
is a global geographical feature dataset, and its collection,
editing, analysis and application functions have formed a
complete system based on the Internet [35]. We extracted
the total factor data of the global coastline through the
OSMCoastlineprogram. This dataset has themost accurate
coastline data, and its scale is at least an order of mag-
nitude higher than that of the Global Self-consistent, Hi-
erarchical, High-resolution Geography Database (GSHHG)
(http://www.soest.hawaii.edu/pwessel/gshhg/) and Nat-
ural Earth Dataset [36]. The largest feature contains more
than 4 million vertices, and the number of features with
more than 100,000 vertices is over 270. The table space size
of the relational database is 27 GB. The amount of data at
this scale will have a serious impact on the performance
in terms of the query, transmission and mapping. Table 1
shows the volume and characteristics of the data.

Table 1: Data description of global coastline

Data item Number
vertices 43,591,835
polyline 878,453
complex feature 15,175
the maximum polyline number of com-
plex feature

52,470

the number of enclosed polygon 572,926

The experiment server is built on Redhat 6.5 with an
Intel Xeon E7-8870 CPU, with 128 G of memory and a 1,000
M network card. The development environment for the ex-
periment is Eclipse 3.7 and the Java version is jdk1.7.65.

3.2 Eflciency of Vertex Sampling

To better examine the advantages and disadvantages of
the proposed method, we design a contrast test and use

Visvalingam-Whyatt (VW) [37] as our reference. The VW
algorithm is a classic simplified method based on curve
graph analysis. The volume of the polyline is reduced
greatly by taking advantage of the area threshold and
deleting vertices with the smallest area circularly. There
are not thresholds in computing, so the data volume of the
two methods are equal to the original data. Our method
can exactly guarantee the balance of the binary tree.

There are three elements in OSM data: Nodes, Ways
and Relations [35]. A Node defines the location of a point.
Ways define the open polylines, closed polylines and ar-
eas. A Relation defines the relationships between ele-
ments, which may consist of a series of nodes, ways, or
other relations. A Relation may represent a complex fea-
ture. Therefore, we should perform tests from two items:
(1) the calculation of vertex error and generation of the bi-
nary tree for a polyline, i.e. way; (2) the calculation of the
vertex error andgeneration of the binary tree for a complex
feature, i.e. relation. We set two group experiments for the
polyline and complex feature. For each group, we extract
ten sets of data with different numbers of objects from the
global coastline.

Figure 5(a) and (b) shows the preprocessing times of
vertex sampling for polylines and complex features, re-
spectively. As we can see, as the number of input ob-
jects increases, both approaches take more time. This is
because the running time grows with respect to the ver-
tices number for the B-DP and VW algorithms. The time
complexity of the B-DP algorithm is O (n log n), and B-DP
method consumes less machine time than VW algorithm.
The progress time of the VWhas a higher growth rate. This
result means that our vertex sampling method saves exe-
cution time. Therefore, we build binary trees for all objects
of the global coastline and perform spatial query experi-
ments for interactive visualization in sections 3.3 and 3.4.

3.3 Effects of Error Bounds

In this section, how the proposed method performs under
different errors and window sizes is discussed. The ma-
chine time and number of vertices are chosen as the ref-
erence index to evaluate the result. The machine time is a
measure that sumsup the query time and the transmission
time to the client. This time reflects how many computa-
tion resources a query consumes.

For a certain dataset, more vertices will be shown on
the screen as the scale of the map decreases. Given a cer-
tain error, if the scale becomes small, more vertices should
be selected. We build an online simplified coastline over
three different scales, including the World (−180∘~180∘,

http://www.soest.hawaii.edu/pwessel/gshhg/
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(a)

(b)

Figure 5: Eflciency of vertex sampling (a) machine time of polyline;
(b) machine time of complex feature

−90∘~90∘), North America (−120∘~−58∘, 20∘~52∘) and a
small island in America (−72.01∘~−71.84∘, 41.03∘~41.09∘).
The number of vertices in theWorld is 43,591,835; the num-
ber of vertices in North America is 4,191,417; the number of
vertices on the island is 210.

In Figure 6, we use 10 different errors to report thema-
chine time of query processing. The blue line represents
the machine time, and the black line represents the ver-
texnumber of the query result. Theperformance resultswe
show here are the average of a number of selected queries.
For three different scopes, themachine times and thenum-
ber of vertices returned drop with respect to the increase
in the error bound, and the change in the machine time is
the same as the vertex number. This result is due to the de-
crease in the total number in each scope. We can see that
ourmethods performwell for different scopes of visualiza-
tion. Therefore, our approximate spatial query method is

(a)

(b)

(c)

Figure 6: Effects of error bounds (a) machine time for the World; (b)
machine time for North America; (c) machine time for a small island
in the USA

able to produce a small number of samples in a short time
with different error bound constraints.

As we can see, the vertex number of the query re-
sults and the machine time tend to be stable as the error
value increases. The explanation is that if the error is suffi-
ciently large, less vertices will be selected. However, these
selected vertices may not make a continuous line. Thus,
all the father nodes remain in the trees of the selected ver-
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(a)

(b)

(c)

Figure 7: Query result for the World (a) 2000 vertices; (b) 5000 vertices; (c) 10000 vertices; (d) 50000 vertices
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(d)

Figure 7: Query result for the World (a) 2000 vertices; (b) 5000 vertices; (c) 10000 vertices; (d) 50000 vertices

Table 2: Query eflciency for number bounds

ID World North America Island
number time (ms) number time (ms) number time (ms)

1 1,000 432 500 863 20 823
2 2,000 604 1,000 1,083 40 781
3 3,000 802 2,000 1,280 60 759
4 4,000 993 3,000 1,421 80 802
5 5,000 1,178 4,000 1,629 100 761
6 6,000 1,370 5,000 1,799 120 761
7 7,000 1,581 6,000 1,947 140 766
8 8,000 1,798 7,000 2,099 160 772
9 9,000 1,952 8,000 2,223 180 787
10 10,000 2,120 10,000 2,379 200 775

tices to maintain the continuity. That means that too large
an error may play only a small part.

3.4 Effects of Number Bounds

The vertex number is alsomajor factor of visualization effi-
ciency. In this subsection, we evaluate the effectiveness of
our method through limiting the vertex number, i.e., the
first k vertices are selected according to the order of error.
The machine times are chosen as the reference index to
evaluate the result. We build an online simplified coast-
line over three different scales, including theWorld, North
America and a small island in the USA.

As shown in Table 2, as the input number increases,
the machine times of the World and North America grow
larger. For a certain number, such as 2,000 and 6,000, it
will take more machine time in the World than that in

North America. This difference is because these vertices
constitute a small part of the total vertices for theWorld, al-
though the samenumber of vertices are selected in two dif-
ferent scales. The machine times of the small island show
that when the scale is very large, i.e., the total number of
whole vertices is very small, the machine time will be sta-
ble. That means that the benefit of the approximated spa-
tial query with a bounded number is not so obvious at a
large scale.

To clearly illustrate the results of the approximatewin-
dow query with bounded number, we analyze the visu-
alization effects from two different window sizes. As is
shown in Figure 7 and Figure 8, the red lines represent the
vector data of the coastline for the approximate queries
and display on the client with Google map. The result
shows that as the number of vertices increases, more ver-
tices are selected, and the shape of the boundary will
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(a) (b)

(c) (d)

Figure 8: Query result for the small island in the USA (a) 20 vertices; (b) 80 vertices; (c) 120 vertices; (d) all vertices

be more consistent with the background map. As we can
see, when the number of vertices reaches 5000, the shape
of the boundary is basically consistent with that for the
Google map. However, the result number is only 0.1 per-
cent of the total number.

From the above analysis, the approximate spatial
query with bounded number based on binary tree has
very strong practicability and could significantly reduce
the query time with a higher accuracy. With the contrac-
tion of the scale, our method can extract a small part of
the original feature with high accuracy and creditability.

4 Discussion
The main focus of the current paper was to obtain a small
portion of data and display it with an error or number
bound. Data simplification has been studied from differ-
ent perspectives, as follows: database [12], geographic in-

formation systems [30, 38], digital image analysis [39], and
computational geometry [40]. According to the optimiza-
tion goals, there are three constraints, as follows: (1) the
spatial constraint, i.e., selecting points within a limited
space; (2) the error bound constraint, i.e., selecting points
while satisfying a pre-defined error bound; (3) the number
bound constraint, i.e., selecting points while satisfying a
pre-defined number bound; and (4) the time bound con-
straint, i.e., selecting points while satisfying a pre-defined
time bound. The first to third items are the problems we
discussed in this paper.

The spatial constraint represents the range of the vi-
sualization or screen, which is expressed by the latitude
and longitude. This constraint is a basic condition in the
visualization of geospatial data, which can be used to-
gether with error and the number constraint. Query win-
dow is defined as a spatial constraint in this paper. There
are less vertices in the scope of the window with the scale
increases, thatmeansmore points outside thewindowwill
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not be considered in query progressing. Therefore, spatial
constraint narrows the scope of querying which is impor-
tant for the improving of inquiry efficiency.

In our opinion, error is an important concept in ap-
proximate spatial query and visualization. Once the error
is determined, only the vertices with larger errors than the
threshold will be selected. It must be noted here that the
visual effects are always different in different scales for a
certain error value. For example, 100m is a large error for
the visualization of the small island in theUSA, however, it
will take a very long query time for theWorld and the query
resultwill be too large to display. Therefore, it is unrealistic
for users to set different errors for different scales. Pixel is a
suitable unit for error. An error less than one pixel produce
the same visual effects for different scales and different lat-
itudes. Three group experiments in section 3.3 use ten er-
rors respectively. For each group, the pixel errors are 1 to 10
with the error increase. The results show that this method
gives good error estimations and provides dynamic error
bounds when the query window zooms in or out.

We also discussed the influence of the vertex num-
ber constraint. The purpose of the number constraint is to
analyze the query efficiency and accuracy under different
scales of the querywindow.Aswe all know, in the progress
of interactive visualization, the errors of visualizationmay
bedifferent indifferentwindowsizes. Thequery resultmay
work well with the original data at the large scale but may
have a massive difference at the small scale. A number
function or other dynamic scheme can be defined in future
research.

In addition, there are other uncertain factors and de-
ficiencies while using this method. The distribution char-
acteristics of spatial data may have an impact on the data
sampling and query [41]. In the case of highly concurrent
requests, the geospatial database will encounter a much
heavier burden thanwill the static data serving. A caching
server can be used to relieve the stress of database server
in those situations, and a study of the cache scheme and
solutions is expected in the near future.

Overall, the error-bounded and number-bounded ap-
proximate spatial query method for interactive visualiza-
tion in this paper not only solves the spatial-error-number
bound constrained problem but is also effective for large
spatial data. In addition, our method provides some inspi-
ration for future studies about map rendering and spatial
analysis.

5 Conclusion
In conclusion, this paper investigates a declarative ap-
proach to the spatial data sampling and query problem
in visualization. By designing a B-DP algorithm, we pro-
duce the order and errors of the vertices, which can sim-
plify the data in a short time and increase the efficiency
and transmission of the query. One can extract spatial on-
line vertices and use these ordered vertices to perform spa-
tial visualizationwith constrains. To verify the effect of our
method,we perform experiments on theOSMglobal coast-
line and took visibility and zooming consistency into con-
sideration. The results illustrate that our methods are effi-
cient and scalable.

Our work leads to a number of interesting and impor-
tant future directions to explore. For large-scale road net-
work, exact shortest path always requires much compu-
tation time. Approximate shortest path based on simpli-
fied polyline with some precisions can be accepted. In ad-
dition, the computational efficiency will be improved be-
cause vertex sampling method significantly reduces the
size of the network. The study of approximate shortest
path is expected in the near future. With the continuous
updating of geospatial data, it is necessary to realize the
dynamization of vertex binary tree. In view of this, up-
dating algorithms on part of binary tree, including insert,
delete and modify, are challenges for the future study.
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