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Abstract: The paper discusses limitations of analytical
attainment of the attitude of a geological plane by us-
ing three non-collinear points. We present problems that
arise during computing the orientation of a plane gener-
ated by almost collinear points. We referred these errors
to floating-point arithmetic inaccuracies. To demonstrate
the problem, we examined a surface of constant orienta-
tion. We used Delaunay triangulation to calculate its local
orientation parameters. We introduced a new measure of
collinearity applicable for collecting attitude of planar tri-
angles. Using this measure we showed that certain planes
generated by the triangulation cannot be treated as a reli-
able source of measurement. To examine the relationship
between collinearity and orientation, we used a combi-
natorial algorithm to obtain all possible planes from the
given set of points. A statistical criterion of rejecting al-
most collinear planes was suggested.
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1 Introduction
Obtaining the orientation of geological planes using three
noncollinear points is commonly known as the “three-
point problem”. There are several approaches that deal
with the computational aspects of this concept [1–4]. The
natural application of the “three-point problem” can be
associated with graphical estimation of the orientation
of geological horizons in geological mapping [5, 6]. It is
also used in obtaining fracture orientation by using a
non-reflector total station [7] as well as collecting and
analysing basic stratigraphic and structural data by us-
ing (“cybermapping”) [8]. The orientation of the investi-
gated surfaces can be also examined by using ortopho-
tos, lidar or digital photogrammetry [9–15]. There are ap-
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proaches that focus on the extraction of planes from un-
structured 3D point clouds using fast-marching or kd-trees
techniques [16]. Many of the above methods use the con-
cept of the best-fitting plane based on the least-square ap-
proach [7, 9, 10, 14–16] or inertia moment analysis [17–
20]. Methods related to applications of obtaining the best-
fittingplane are still developing in termsof finding thebest
criteria to select the most appropriate plane [21]. Gener-
ally, the least square approach seems to be adequate when
considering a plane whose attitude is almost identically
distributed. The inertia moment analysis, however, is ex-
pected to determine the maximum density of vectors [20]
which refers more to the incidence rate of encountering
specific attitude rather than to distance from the average
orientation within a considered set of measurements. In
this study we focus on the limitations of obtaining the lo-
cal attitude within a considered set of 3D points. To ob-
tain the local attitude we used Delaunay triangulation.
Such an approach requires evaluation of the input data
because computing specific parameters of a “flat” triangle
(whose vertices are almost collinear), may be inaccurate
due to floating-point arithmetic inaccuracies. The example
of such an error is supplied by Goldberg [22] who showed
that computing the area of a long and thin (“flat”) triangle
by using the Heron’s formula (that uses only lengths of a
triangle) produces relatively large inaccuracies. Therefore
they suggested rewriting this formula to obtainmore accu-
rate results. Another example of floating-point arithmetic
rounding errors concerns computing the centre of gravity
of a triangle that is not necessarily flat. Contrary to math-
ematical theory, there can appear many results accord-
ing to different sequence of vertices, i.e., abc, bca or cab.
These two examples can be referred to as numerical non-
robustness. The floating-point arithmetic rounding errors
can also produce geometric degeneracy that involve erro-
neous computation of geometrical structures (e.g., Delau-
nay triangulation, Voronoi diagrams). Such an error repre-
sents the geometrical non-robustness issues [23].

Quantitative restrictions on collinearitywhen comput-
ing the attitude of geological planes were supplied by Fer-
nández [20]. This approach can be regarded as a modifi-
cation of the inertia moment analysis, however certain re-
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searchers indicate that it may lack numerical stability [24].
The main difference is that Fernández used 3D georefer-
enced data, rather than direction cosines of the normal
vectors of planes as it was initially suggested. They intro-
duced a centre of mass of points (the average of X Y Z co-
ordinates) and built vectors by linking this centre of mass
with each point. The “orientation matrix” was then calcu-
lated using the direction cosines of these vectors. The de-
gree of collinearitywas denoted byK and calculated as fol-
lows:

K = ln(λ1/λ2)/(λ2/λ3) (1)

where λ1, λ2, λ3 are the eigenvalues of the “orientationma-
trix”. They introduced a threshold of collinearity K < 0.8
whichhas been, however, regarded as too restrictive in cer-
tain cases [24]. Moreover, this approach did not refer the
problem of collinearity to the roundoff errors. It was rather
based on the assumption that for a set of collinear points
many best-fit planes can be considered with a similar de-
gree of fit.

The purpose of this study is to introduce a more ex-
plicit and more intuitive measure of collinearity that can
be referred to specific planes rather than to spatial dis-
tribution of points. We assume that this measure should
cover the whole interval of the variability of the collinear-
ity. In this study we consider the reliability of measure-
ments obtained by the Delaunay triangulation algorithm.
However, themost knownproperty of this algorithm is that
itmaximizes theminimal angle among all generated trian-
gles [25]. Thus, the incidence of occurring collinear con-
figurations when computing Delaunay triangles is lower.
Thus, we used a combinatorial algorithm to obtain more
triangles affected by collinearity [26]. It generates all three-
element sets that can be picked from an n-element set. An-
other words, this algorithm generates all possible planes
that can be generated within the considered set of points.
We attributed three parameters to the investigated planes
(collinearity, size and dip angle) and showed the relation-
ship between them.We suggested a natural criterion to de-
termine the range of acceptability of the introduced coeffi-
cient of collinearity in relation to the input data.

2 Methods
To examine the orientation of a surface with almost iden-
tically distributed orientation, we used a Leica CS 15 GPS
field controller. We collected XYZ coordinates of 90 ar-
bitrarily selected points belonging to one of the grass-
covered banks in the centre of Katowice, Poland, in the
vicinity of the International Congress Centre (ICC). Al-

though the majority of these banks are dipping gently (5-
15 degrees), to obtain a more explanatory visualization of
the relationship between selected parameters, we selected
a bank whose dip angle was approximately 30 degrees.
TheGRS 1980 ellipsoidmodelwas used andETRS89 (EPSG
2180) as the coordinate reference system. We used the
well-acknowledged real-time kinematic (RTK) position-
ing. The reference station had the following coordinates:
X=266421.157, Y=501902.300 and Z=265.051. The measure-
ments were collected on November 22, 2016 and at least
14 satellites were visible when collecting the coordinates.
The average accuracy of obtaining the coordinates was as
follows: 0.014 m for XY coordinates and 0.012 m for the Z
coordinate.

To correctly compute the Delaunay triangulation, we
used the well-acknowledged CGAL library [27]. It includes
computational geometry algorithms and supports the Ex-
act Geometric Computation (EGC) principle. EGC principle
provides robust geometrical results, nevertheless themain
drawback behind this approach is time [28]. Thus, we used
the Delaunay triangulation accessible in the CGAL library
and obtained 170 planes.

The following procedure was used to compute their
orientation. The algorithm required the cross-product of
two three-dimensional vectors that represent a plane. The
following procedure can be treated as a core for computing
the dip angle of a plane generated by three non-collinear
points.

1. Suppose we have three points:

P1 = (x1, y1, z1) , (2a)

P2 = (x2, y2, z2) , (2b)

P3 = (x3, y3, z3) (2c)

2. We build two vectors that represent the plane. To
simplify the coordinates we use letters for the coor-
dinates in subsequent calculations.

⃗V1V2 = [x2 − x1, y2 − y1, z2 − z1], (3a)
further denoted by [a, b, c]

⃗V1V3 = [x3 − x1, y3 − y1, z3 − z1], (3b)
further denoted by [d, e, f ]

⃗V2V3 = [x3 − x2, y3 − y2, z3 − z2] , (3c)
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3. We calculate lengths of the three vectors and sort
them in ascending order. Thus, we obtain a vector
of lengths (l1, l2, l3) such that l1 ≤ l2 ≤ l3. In order
to checkwhether the points are not collinear, we use
the triangle inequality. It says that in a triangle the
length of the longest edge must be smaller than the
sum of the remaining two edges. Moreover, we can
also obtain a coefficient that appraises the shape of
the plane. This coefficient is obtained by a division:

d = l3
l1 + l2

(4)

Obviously, from the above definition follows imme-
diately that the introduced coefficient is unitless.We
can see that the coefficient computed for equilateral
triangles is equal to 0.5 and for the collinear “trian-
gles” is equal to 1. Thus, the coefficient is thenumber
from the interval [0.5, 1] and it indicates the degree
of equilaterality or collinearity.We denote the coeffi-
cient of collinearity by d, but, equivalently, the “tol-
erance level” denoted by α = 1 − d could also be
considered.

4. We calculate the cross-vector of two selected vectors
⃗V1V2, ⃗V3V1 by using a determinant of the following

matrix: ⃒⃒⃒⃒
⃒⃒⃒a d X
b e Y
c f Z

⃒⃒⃒⃒
⃒⃒⃒ (5)

5. The equation of the plane is given:

(bf − ce) x + (cd − af ) y + (ae − bd) z = 0 (6)

6. The coordinates of the normal vector N of the inves-
tigated plane are given:

N = [bf − ce, cd − af , ae − bd] (7)

This steps requires checking whether the third co-
ordinate is positive. If not, all coordinates must be
multiplied by −1. This is because the normal vector
to a plane is not uniquely determined and two direc-
tions canbe considered (Figure 1).We take, however,
the vector that is directed upwards.

7. Let Z denote the vector perpendicular to the inves-
tigated plane, the dot product of vectors is denoted
by ” • ” and ‖K‖ denotes the length of the vector K.
Then the dip angle is calculated as follows:

arc cos |N • Z|
‖N‖ ‖Z‖ (8)

The dip direction requires, for the suggested method,
a projection of the normal vector of the investigated plane

Figure 1: A plane generated by three points. The plane is repre-
sented in calculations by a normal (perpendicular) vector. The dip
angle is treated as the angle between the normal vector of the in-
vestigated plane and the vector associated with Z-axis. The dip
direction is computed as the angle between the X-axis indicating
the north direction and the projection of the normal vector of the
investigated plane onto the horizontal plane

onto the horizontal plane. Thus, let H = (h1, h2) denote
the projection of the vectorN onto the horizontal plane. In
order to compute the azimuth, we used the atan2 function
which computes the angle between theX-axis and the pro-
jected vector. The definition of the atan2 function says that
for a vector t = [u, v] the expression atan2(v, u) measures
the angle between the positive Y-axis and the point (u, v).
Thus, to compute the dip direction, we should calculate
atan2 = (h1, h2). Formally, the atan2 function works as
follows:

atan2 (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
(︁
x
y

)︁
if y > 0,

arctan
(︁
x
y

)︁
+ π if y < 0, x ≥ 0,

arctan
(︁
x
y

)︁
− π if y < 0,

+ π2 if y = 0, x > 0,
− π2 if y = 0, x < 0,
unde�ned if x = 0, y = 0.

(9)

The above parameters were attributed to the Delau-
nay triangles (Figure 2). Nevertheless, the distribution of
the collinearity coefficient suggests that the number of
collinear planes is insufficient to estimate the interval of
“explosion” (Figure 3, Figure 4A).

Because our goal was to estimate the maximum pos-
sible value of collinearity, we generated all three-element
subsets from the ninety-element set. Thiswas achieved us-
ing an algorithm of generating k-element subsets from an
n-element set [26]. According to the well-known binomial
coefficient we obtained 117 480 planes. Because the dis-
tribution plot indicates the prevalence of collinear planes
(Figure 4B), we can investigate closer the relationship be-
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Figure 2: Delaunay triangulation of the investigated points; ETRS89 (EPSG 2180) coordinate reference system was used

Figure 3: Relationship between collinearity and dip angle for Delaunay triangles
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Figure 4: The distribution of collinearity (A) Collinearity attributed to Delaunay triangles (B) Collinearity attributed to 117 480 planes gener-
ated by Lipski algorithm

Figure 5: Relationship between collinearity, size and dip angle for 117 480 planes (A) The entire interval of collinearity is considered (B)
Equilateral configurations are examined (0.5<d<0.6) (C) The interval for almost collinear triangles is considered (d>0.9975) (D) Even more
collinear configurations are presented (d>0.9999)
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Figure 6: (A) The distribution of the dip angle for all Delaunay triangles (B) A conditional distribution of the dip angle for Delaunay triangles
whose d is smaller than 0.975

tween the collinearity, size (expressed in m2) and the ori-
entation parameters in further steps.

3 Results
We extended the initial set of measurements by using the
combinatorial algorithmand obtained the relationship be-
tween collinearity, size and the dip angle (Figure 5A). We
included also certain partial plots that describe this re-
lationship in smaller intervals. The dip angle had rela-
tively lower dispersion (about 12-15 degrees) among equi-
lateral triangles. This dispersion can be significantly re-
duced (to approximately 1-3 degrees) when considering
only the greatest planes (Figure 5B). The visual effect of
these results can be described as follows: the greatest
planes had warm (yellow-red) colours and formed a rel-
atively narrow belt. This belt was surrounded from both
sides by planes of smaller size that can be recognized by
their cooler colours. This effect did not happen on the
other side of the considered interval of collinearity. When

considering more collinear configurations, we observed
greater randomness of the dip angle (Figure 5C). However,
even for the interval [0.99750, 1] we could still recognize
the narrow belt representing the expected value of the dip
angle. The loss of the ability of recognizing this value can
be observed for planes whose collinearity is greater than
approximately 0.9999 (Figure 5D).

Thus, taking into consideration all measurements
would have affected the distribution, especially the mea-
sures of dispersion (Figure 6A). The practical results of this
study can be referred to improving the quality of the initial
distribution of the dip angle generated by Delaunay trian-
gulation. We suggested observing distributions of the dip
angle with respect to the increasing degree of collinear-
ity. We avoided establishing new arbitrary coefficients of
universal significance. But because the examined surface
was relatively uniformly oriented, it was straightforward
to estimate the interval at which outliers began to affect
the distribution (Figure 3, Figure 6A).We considered a con-
ditional distribution and obtained the anticipated results:
themedianhas generally not changed; a small change is to
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observe for themean value but themost significant change
happened to the standarddeviation (Figure 6A, Figure 6B).

4 Discussion
In this article we investigated the impact of collinearity
on the reliability of measurements of the attitude of geo-
logical planes. Previous studies addressing this issue re-
ferred to a measure based on eigenvalues of the “orienta-
tion matrix” and certain limitations were suggested. This
approach, however, refers more to the spatial distribu-
tion of points rather than to configuration of local planes
whose attitude is investigated. Moreover, the inaccuracies
of the floating-point arithmetic were not considered as a
source of potential errors. The main goal of this study was
to supply amore intuitive measure of collinearity that cov-
ers its whole interval of variability. This allowed to exam-
ine the impact of this feature on the numerical stability of
the output data. However, the impression of arbitrariness
will probably be always present when putting numerical
restrictions on the input data. Nevertheless, to detect out-
liers, we suggested a criterion that refers more to the case-
by-case approach based on observing the distribution of
the measured parameter. The above approach can be ap-
plied as long as the surface is uniformly oriented or its ori-
entation is known a priori so that the outliers can be easily
detected. In our study we examined the orientation of a
uniformly oriented surface that was locally approximated
by planes generated by the Delaunay triangulation. The
main goal of this approach differed from this that was con-
sidered in the best-fitting method. The key problem was
not to compute the dip angle and the dip direction but
to find measurements affected by rounding errors of the
floating-point arithmetic. We showed that collinearity in-
fluences the dip angle (e.g., Figure 3, Figure 5A, Figure 6A)
but because of the small number ofmeasurementswewere
not able to describe the relationship between selected pa-
rameters. In order to investigate it, we used a combinato-
rial algorithm, that supplied a greater number of planes
affected by collinearity. Figure 5B shows that the smallest
deviation from the expected value can be attributed to the
greatest planes. Moreover, the small planes of equilateral
shape did not influence the dip angle as much as collinear
planes of relatively greater size (Figure 5B, Figure 5D). A
non-intuitive conclusion from this study is that the dis-
tribution of collinearity within a considered set of points
can be far from symmetric (Figure 4B) although triangles
of different shapes were considered. We do not regard this
asymmetric result as a general rule when investigating

all possible planes within a considered dataset. Neverthe-
less, this example shows that selecting at random sample
planes from a dataset and computing the average orienta-
tionmay lead to unexpected results. This is because in our
case the probability of selecting a collinear plane at ran-
domwas relatively high butwe indicated that the collinear
configurations are not reliable in terms of obtaining the at-
titude. Thus, considering Delaunay triangulation seems to
be a partial solution to this problem. Nevertheless, to re-
duce the dispersion of the measurements obtained by the
Delaunay triangulation, we suggested a restriction. In our
casewe selected the biggest subset which does not include
any outliers. Thus, we reduced the interval of acceptable
collinearity (Figure 6B). In our case we set the threshold of
collinearity to 0.975 but we do not assume that this value
should be used in all circumstances. Because great disper-
sion of data is often treated as a drawback behind a consid-
eredapproach, our results should improve the reliability of
obtaining the measurements of attitude in similar geolog-
ical and methodological circumstances.
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