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Abstract: The solution to the 2-D consolidation problem,
both for rectangular and cylindrical domains, has been
widely studied in the scientific literature, reporting the
most precise solutions in the form of analytical expres-
sions difficult to handle for the engineer due to the high
number of parameters involved. In this paper, after intro-
ducing a precise definition of the characteristic time, both
this magnitude and the average degree of consolidation
are obtained in terms of the least number of dimension-
less groups that rule the problem. To do this, the groups
are firstly derived from the dimensionless governing equa-
tions deduced from the mathematical model, following
a discriminated nondimensionalization procedure which
provides new groups that cannot be obtained by classical
nondimensionalization. By a large number of numerical
simulations, the dependences of the characteristic time
and the average degree of consolidation on the new di-
mensionless groups have allowed to represent these un-
knowns graphically in the form of universal curves. This
allows these quantities to be read with the least mathe-
matical effort. A case study is solved to demonstrate the
reliability and accuracy of the results.
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1 Introduction
The theory of linear consolidation of soils has been
broadly studied in recent decades and is well established
in many books [1, 2]. All of them present a complete study
of 1-D rectangular and radial consolidation with universal
curves of the average degree of consolidation, U(t), from
which the settlements due to surface loads are derived.
The solution of more complex scenarios has been carried
out in recent years by analytical methods. These scenarios
include multilayered soils, assuming drain resistance and
smearing (Battaglio et al. [3]), multi-stage loading (Lu el
at. [4]), vacuum assisted preloading (Indraratna el at. [5])
and other non-linear problems [6–8]. Numerical solutions
have also been provided by other authors for scenarios
with drains [9, 10].

As for the consolidation scenarios in 2-D domains,
both in rectangular (use of infinite strip drains, of theoreti-
cal application) and cylindrical coordinates (use of vertical
drains with radial geometry), the complexity of the prob-
lem, even in linear scenarios where the soil properties are
assumed constant, has led to the emergence of a variety
of solutions. On the one hand, the separate analysis of the
vertical and horizontal (or radial) components of the pro-
cess, with solutions in the form of series, and their subse-
quent superposition (Carrillo [11]) is the method generally
taught in civil engineering schools [12] and that is also fre-
quently used in the professional field. On the other hand,
it is also possible to obtain closed-form solutions for the
two-dimensional problem [13, 14], or even to reach ana-
lytical or semi-analytical expressions from spectral or ap-
proximatemethods [15, 16]. All these formulations are pre-
sented as a very good approach for the solution of consol-
idation problems, but their handling is quite complicated
since they require the use of numerous parameters, which
usually leads to cumbersome calculations.

This paper focuses on the search for the average de-
gree of consolidation in its most universal form, as a func-
tion of the lowest number of parameters of the problem, in
2-D anisotropic rectangular and cylindrical domains. For
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this purpose we i) derive the dimensionless groups that
rule this problem by the discriminated nondimensional-
ization of the governing equations, using the most recent
concepts involved in this technique, and ii) numerically
verify the dependence of the average degree of consolida-
tion on the above groups.

The concepts involved in the application of discrimi-
nated nondimensionalization will be explained in detail
in the next section. Before this, let us make a historical re-
vision of the time factor concept (by means of which most
authors define the dimensionless time), its introduction in
the context of consolidation and the connection between
the reference used to make the time dimensionless in the
time factor and the characteristic time of the consolidation
process, both in 1-D and 2-D scenarios.

Regardless of the geometric domain, soil consolida-
tion is anasymptotic process and, as such, there is no char-
acteristic or particular value of time that can be assigned
to its duration. However, for each percentage of fall in the
excess pore pressure at a given point of the domain (or its
average value in the whole domain, which defines the av-
erage degree of consolidation) there is only one time value.
Most authors make no reference to a characteristic time
to be used in the definition of the dimensionless time of
the process, but solve the governing equation in finite 1-D
domains analytically and give the name of time factor to
the term cvt/H2 that emerges as argument in the solution.
In this way, Terzaghi el at. [17] say “cvt/H2 is a pure num-
ber called the time factor”, while Berry and Reid [18] write
“t’ is the dimensionless vertical time factor defined by t’ =
cvt/H2” andAtkinson [1]makes no reference to the subject.
Later, Azizi [19] says “. . . cvt/H2 representing a time factor.
. . . Because the (dimensionless) time factor is time depen-
dent, the solution yields the precise dissipation with time of
excess water pressure u at any depth z.” Finally, Juárez and
Rico [2] write that the factors z/H and cvt/H2 that appear in
the solution of soil consolidation are dimensionless quan-
tities, calling the second as the time factor.

Somewhat more explicit as regards the subject are
Sagaseta el at. [20] and Muir Wood [21]. After deriving the
consolidation equation, the first authors introduce the di-
mensionless variables z’ = z/H, t’ = cvt/H2 and the con-
solidation degree (as they call) u’ = (uo – u)/uo. With
these new variables they finally obtain a universal (nor-
malized) equation. The second authors, in relation to the
consolidation equation, affirm: “We can make this equa-
tion more universal by replacing our variables u, z and t by
non-dimensional variables u′ = u/uo (uo being a reference
pore pressure, typically the initial uniform excess pore pres-
sure), z′ = z/H and t′ = cvt/H2, where t′ emerges as a dimen-
sionless time factor.” In other words, the objective of these

authors is to obtain a dimensionless governing equation
following a correct procedure of nondimensionalization.

In contrast with the above references, Scott [22] is the
only author to follow a formal nondimensionalization pro-
cedure for 1-D rectangular scenarios, similar to that fol-
lowed in this paper. After comparing heat conduction and
soil consolidation equations, establishing the similarity
between the parameters that rule these processes (consol-
idation coefficient and thermal diffusivity), he says: “Be-
cause of the linearity of the equation, it is appropriate to nor-
malize the various parameters to make the equation nondi-
mensional. In this way, the solution obtained in terms of
dimensionless parameters is in a more suitable form for
general applications. The normalization in one-dimensional
terms, for example, is accomplished by relating the vari-
ables to the characteristic constants of the system as fol-
lows: An arbitrary constant value of pore pressure uo is cho-
sen and a dimensionless pressure variable (u′) is defined
such that u′ = u/uo. Next, a characteristic length H in the
system is selected to give a dimensionless length variable, z′
= z/H. Finally, by choosing an arbitrary time constant to, we
are able to obtain a dimensionless time variable, t′ = t/to.
Substituting these dimensionless variables in the equation
of consolidation gives 1

to
∂u′
∂t′ = cv

H2
∂2u′
∂ z′2 . It is apparent that

one of the characteristic constants can be selected for con-
venience to make to = H2/cv and therefore writes the for-
mer equation as ∂u′

∂t′ = ∂2u′
∂ z′2 . t

′, usually called time factor
is redefined to be t′ = cvt/H2.” In this way, Scott first looks
for three references (uo, H and to, the last an unknown)
to define the dimensionless variables u′, z′ and t′. Then,
he substitutes these variables in the governing equation
to derive its dimensionless form. Finally, ‘for convenience’
(what is to make unity the only dimensionless parameter
that emerges in the equation), the unknown reference to is
deduced.

The procedure applied in this paper to determine the
consolidation time (to) is apparently the same as the one
followed by Scott. However, the assignment of an order
of magnitude unity to the dimensionless normalized vari-
ables (and their changes) provides a clear physical mean-
ing for the reference time. Moreover, making use of the
properties of homogeneous functions, the proposed pro-
cedure applied to 2-D scenarios provides more precise so-
lutions for the unknown to than those that are possible to
find with classical nondimensionalization.

This work takes the following form: After explain-
ing the discriminated nondimensionalization procedure
to determine the discriminated groups that derive from
it, the technique is applied to the soil consolidation pro-
cess in 2-D rectangular and cylindrical scenarios, looking
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for the dependence of the average degree of consolida-
tion on these groups. Numerical simulations show this de-
pendence by means of suitable abacuses. Then, follow-
ing the steps involved in discriminated nondimensional-
ization, the precise concept of time of consolidation is in-
troduced, obtaining its dependence on the parameters of
the problem, based on the mathematical theory of homo-
geneous functions. Therefore, using this new concept and
the dependence of the average degree of consolidation
on the time of consolidation and other parameters, nu-
merical simulations will allow the representation of this
unknown through universal curves. Finally, a case study
is addressed in order to compare the curves given in the
manuscript to classical methods. In the last section, the
main contributions of this work are summarized.

2 Discriminated
nondimensionalization
procedure

The discriminated nondimensionalization technique com-
bines the scale analysis of Bejan [23] with themost general
concepts of spatial discrimination introduced by Alhama
andMadrid [24]. The first turns the dimensional governing
equations into their dimensionless form fromwhich thedi-
mensionless groups are deduced, while the second, which
applies both to governing equations and boundary condi-
tions (turning these also into their dimensionless form),
provides the smallest number of independent dimension-
less groups that rule the problem. The steps involved in the
application of this technique are:

(i) Choose the references for both dependent and in-
dependent variables in order to define the dimen-
sionless forms of them in such a way that they ex-
tend to the interval [0,1]. Discrimination forces the
variables of vector character (coordinates, veloci-
ties. . . ) to have, in general, a different reference for
each spatial component. Furthermore, references
are generally explicit in the statement of the prob-
lem but they may not be. In the last case, they are
introduced as unknowns whose order of magnitude
is found once the nondimensionalization procedure
has finished.

(ii) Derive the dimensionless governing equations by
replacing the old variables with the new dimen-
sionless ones. Each term of these new equations
is separated into two factors. The first, dimension-
less, is formed by the normalized variables and

their changes (derivatives), while the second, non-
dimensionless, is a grouping of geometric and phys-
ical parameters.

(iii) Assuming that the first factor of ii) is of order of
magnitude unity – a reasonable hypothesis in lin-
ear problems –, the other factors (also called coeffi-
cients) must be of the same order of magnitude (not
necessarily unity) so providing a correct balance in
the equation.

(iv) The independent ratios formed with these coeffi-
cients are the discriminated dimensionless groups
that are sought. There are as many groups as coeffi-
cients minus one; they must be dimensionless and
of order of magnitude unity.

(v) Based on the theory of homogeneous functions
(Buckingham pi theorem, [25]), the solution of any
unknown of the problem – correctly expressed in
its dimensionless form – can be written in the form
ψ(π1, π2 . . . , πn), being πi(1≤i≤n) the dimensionless
groups derived from discriminated nondimension-
alization and ψ an arbitrary function. This allows to
determine the orders of magnitude of both the av-
erage degree of consolidation and the characteristic
time.

This proposed method has been applied successfully
in different engineering problems, such as fluidmechanics
(Madrid and Alhama [26]), fluid flow and solute transport
(Manteca el at. [27]), geothermics (Cánovas el at. [28, 29])
andmechanical engineering (Pérez el at. [30]), among oth-
ers.

3 The governing equations of soil
consolidation

Two physical models are considered: i) a 2-D rectangular
anisotropic domain that drains towards the soil surface
and towards the left boundary, due to the existence of a
drain, Figure 1, and ii) a 2-D cylindrical anisotropic do-
mainwhich drains towards the upper and inner boundary,
also due to a drainage condition, Figure 1. The assumed
hypotheses are: i) the soil is laterally confined and the
drainage occurs in vertical and horizontal directions, ii)
the excess pore pressure is generated by an external load
constant in time, iii) Darcy´s law is applicable to themove-
ment of the water through the soil, iv) the soil is fully satu-
rated and theporewater and the soil particles behave as an
incompressible medium with respect to the soil skeleton,
v) the weight of the soil, grains and water can be ignored,
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Figure 1: 2-D physical models for rectangular (top) and radial (bot-
tom) soil consolidation scenarios.

vi) the deformation of the soil is free, without redistribu-
tion of stresses vii) the soil skeleton does not creep under
a constant effective stress, and viii) the applied load incre-
ment produces only small strains, so that the total volume
of the soil can be assumed to be constant. Under these hy-
pothesis, the soil consolidation processes is ruled by the
equations and boundary conditions (1-4) for rectangular
coordinates and equations and boundary conditions (5-8)
for cylindrical coordinates:

Rectangular coordinates:

∂u
∂t = cv,z

∂2u
∂ z2 + cv,x ∂

2u
∂ x2 u(x=0,z,t) = u(x,z=H,t) (1)

u(x=0,z,t) = u(x,z=H,t) = 0 (2)

∂u
∂x (x=L,z,t)

= ∂u∂z (x,z=0,t)
= 0 (3)

u(x,z,t=0) = uo (4)

Radial coordinates:
∂u
∂t = cv,z

∂2u
∂ z2 + cv,r

(︂
∂2u
∂ r2 + 1

r
∂u
∂r

)︂
(5)

u(r=rin ,z,t) = u(rin<r<rout ,z=H,t) = 0 (6)

∂u
∂r(r=rout ,z,t)

= ∂u
∂z(rin<r<rout ,z=0,t)

= 0 (7)

u(rin<r<rout ,z,t=0) = uo (8)

These equations, and their simplifications for 1-D
cases, can be solved analytically. However, their solu-
tions [2, 17], obtained in the form of series of functions,
seem to be quite complex to manage.

4 The search for dimensionless
parameters

4.1 Rectangular domains

The references for the variables x, z and u are explicit in
the statement of the problem; these are L, H and uo, re-
spectively. As regards the time, the common references are
H2/cv,z or L2/cv,x (in rectangular coordinates) and H2/cv,z
or r2out/cv,r (in cylindrical). So, substituting

x′ = x
L , Z′ = z

H , u′ = u
uo

, t′ = tcv,z
H2 , (9)

in equation (1) and simplifying, yields(︁ cv,z
H2

)︁ ∂u′
∂t′ =

(︁ cv,z
H2

)︁ ∂2u′
∂ z′2 +

(︁ cv,x
L2

)︁ ∂2u′
∂ x′2 (10)

This dimensionless governing equation shows that its so-
lution does not depend on the initial excess pore pres-
sure uo. Assuming that the changes in u′ at the whole do-
main are of order of magnitude unity, the coefficients of
the terms of the equation – whose unit of measure is the
inverse of time – are of the same order of magnitude. The
only independent ratio formed from these coefficients is a
dimensionless group that rules the solution of the prob-
lem:

π1 =
(︂
cv,zL2
cv,xH2

)︂
(11)

The dimensionless form of the unknowns of the problem
will always depend on the group π1, as well as on the
group π2 =

(︁
t cv,z
H2

)︁
if the unknowns are time dependent,

and on x′ and z′ if they are a function of a given location.
For example, the average degree of settlement (U) will de-
pend on π1 and π2.

U (t) = ψ
{︂(︂

t cv,z
H2

)︂
,
(︂
cv,zL2
cv,xH2

)︂}︂
(12)
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Figure 2a: Average degree of settlement U (t) as a function of π1
and π2. π1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.25, 1.5, 2, 3, 5, 8
and 10.
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Figure 2b: Average degree of settlement U (t) as a function of π1
and π2. π1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.

while the local degree of settlement (U) will depend on π1,
π2, x′ and z′

U (x, z, t) = ψ
{︂(︂

t cv,z
H2

)︂
,
(︁ x
L

)︁
,
(︁ z
H

)︁
,
(︂
cv,zL2
cv,xH2

)︂}︂
(13)

By means of expression (12), it is possible to repre-
sent the average degree of settlement as an abacus in the
form U (t) = ψ(cv,zt/H2), using π1 as parameter. This de-
pendence has been solved numerically and the results are
presented in Figure 2a. Figure 2b is a detail of this depen-
dence for a better reading. The use of this abacus is imme-
diate: starting from the parameters of the problem (L, H,
cv,x, cv,z) and the time t for which U (t) is sought, dimen-
sionless groups π1 and π2 are determined; entering with
these groups in the abacus, U (t) can be read.

As shown, there are significant deviations in the av-
erage degree of settlement for a given time and different
scenarios (or values of π1). Note that when π1 > 1, which
means that (H2/cv,z) < (L2/cv,x), the reference for dimen-
sionless time is smaller than the characteristic time for ex-
cess pore pressure to be released by draining the water

horizontally. This means that small values of π2 do not al-
low pressure to be released rapidly by vertical or horizon-
tal drainage, which results in small values of the average
degree of consolidation. The opposite occurs when π1 < 1
or (H2/cv,z) > (L2/cv,x); in this case, the small values of π2
do not allow pressure to be released by vertical drainage
but do so by horizontal drainage, giving higher values of
the average degree of consolidation.

The alternative choice of the reference L2/cv,x to make
time dimensionless (making π2 = cv,xt/L2) provides an
abacus quite similar to that of Figures 2a and 2b, but sub-
stituting the parameter of the curves π1 = 0.1 by π1 = 10,
0.2 by 5, 0.5 by 2 and so on.

The value π1 = 10 may be considered as a limit curve
that provides a good approximation of the 1-D vertical con-
solidation, forwhich cv,x =0. Therefore, π1 (whose theoret-
ical value tends to infinity in this case) does not emerge as
a dimensionless group in the nondimensionalization pro-
cess of the governing equation.

4.2 Cylindrical domains

In the general anisotropic case, the problem is defined by
the geometrical parameters rin, rout and H, and the con-
solidation coefficients cv,r and cv,z. From this scenario, a
direct dimensionless group based on the boundary condi-
tions or the domain geometry can be written: π3 = rout/rin.

As in the rectangular case, references for r, z and u are
also explicit: rout, H anduo, respectively,while for time the
reference H2/cv,z is assumed. Therefore, the dimension-
less variables are

r′ = r
rout

Z′ = z
H u′ = u

uo
t′ = tcv,z

H2 (14)

These, by introducing them into equation (5), give rise
to the dimensionless governing equation whose solution,
as in the rectangular case, does not depend on the initial
excess pore pressure(︁ cv,z

H2

)︁ ∂u′
∂t′ =

(︁ cv,z
H2

)︁ ∂2u′
∂z′2 (15)

+
(︂
cv,r
r2out

)︂(︂
∂2u′
∂r′2 + 1

r′
∂u′
∂r′

)︂
The coefficients of this equation,

(︀ cv,z
H2

)︀
and

(︁
cv,r
r2out

)︁
, pro-

vide one dimensionless group

π1 =
(︂
cv,zr2out
cv,rH2

)︂
(16)

The solution for the average degree of consolidation for
a given time will depend on the dimensionless form of t,
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Figure 3a: Average degree of settlement U (t) for π3 = 5. π1 = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.25, 1.5, 2, 3, 5, 8 and 10.
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Figure 3b: Average degree of settlement U (t) for π3 = 10. π1 = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.25, 1.5, 2, 3, 5, 8 and 10.
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Figure 3c: Average degree of settlement U (t) for π3 = 20. π1 = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.25, 1.5, 2, 3, 5, 8 and 10.

π2 =
(︁
t cv,z
H2

)︁
, and the groups π1 and π3. This is,

U(t) = ψ
{︂(︂

t cv,z
H2

)︂
,
(︂
cv,zr2out
cv,rH2

)︂
,
(︂
rout
rin

)︂}︂
(17)

The local degree of consolidation depends, in addition, on
the dimensionless coordinates

U (r, z, t) = (18)

ψ
{︂(︂

r
rout

)︂
,
(︁ z
H

)︁
,
(︂
t cv,z
H2

)︂
,
(︂
cv,zr2out
cv,rH2

)︂
,
(︂
rout
rin

)︂}︂
The dependence of the average degree of consolidation
may nowbe represented by a set of abacuses, each of them
for a given value of the group π3. As in the rectangular
case, within each abacus U (t) = ψ(cv,zt/H2) = ψ(π2) and
each curve is related to a value of π1. Figures 3a to 3c show
four abacuses, each one for the values π3 = 5, 10 and 20,
respectively, covering a wide range of real cases.

Starting from the parameters of the problem (rin, rout,
H, cv,r, cv,z) and the time for which U (t) is sought, the
values of the groups π1, π2 and π3 are determined. With
π1 and π3, the corresponding abacus and curve – inter-
polating if required – are chosen; finally, introducing π2
in the curve, U (t) can be obtained. Similar comments to
those made for rectangular domains may apply to these
abacuses, regarding the aspect of the curves and the evo-
lution of the average degree of consolidation.However, the
slopes of the curves are reduced as π3 increases, providing
a lower degree of consolidation for the same time and the
samevalue of π1. Note that an increase in π3, while the rest
of the parameters of the problem remain constant, leads to
a smaller drainage surface inside the cylinder and a lower
degree of consolidation for the same time.

The above results are simplified for 1-D radial coordi-
nates, which supposes that drainage only occurs at the
boundary r = rin. Group π1 disappears and the average de-
gree of consolidation only depends on π2 and π3.

U (t) = ψ
{︂(︂

t cv,z
H2

)︂
,
(︂
rout
rin

)︂}︂
(19)

5 Characteristic time of
consolidation, tO

5.1 Rectangular domains

FollowingAlhamaandMadrid [24], it is possible to assume
anunknown reference–not explicit in the statement of the
problem –, instead of the ratios H2/cv,z or L2/cv,x formed
by parameters of the problem, tomake time dimensionless
in the governing equations. The order of magnitude of this
reference, once it has been well defined and introduced in
the process of nondimensionalization, can be obtained as
a function of the rest of the dimensionless groups.

The reference time, called characteristic time (to), is of
the order of the time required to reduce the initial value of
the excess pore pressure (uo) to a certain (small) percent-
age, at a given point of the domain (far from the drainage
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boundaries). In this way, to is associated to the time for
which the average degree of consolidation is sufficiently
high. As a consequence, the range of values of t′ = t/to can
be approached to [0,1], as occurswith the other dimension-
less variables.

By substituting x′, z′, u′and t′ in (1), the resulting di-
mensionless governing equation is(︂

1
to

)︂
∂u′
∂t′ =

(︁ cv,z
H2

)︁ ∂2u′
∂ z′2 +

(︁ cv,x
L2

)︁ ∂2u′
∂ x′2 (20)

The two independent ratios formed from the coefficients of
this equation are the dimensionless groups sought:

π1 =
(︂
cv,zL2
cv,xH2

)︂
π2,to =

(︂
tocv,z
H2

)︂
(21)

These groups have a clear physical meaning, as occurs
with all those derived by discrimination. The first group,
written in the form π1 =

(︁
L2
cv,x

)︁
/
(︁
H2

cv,z

)︁
, is the ratio be-

tween two characteristic times: i) the time that takes the
process to reach a significant reduction in the excess pore
pressure along the horizontal axis, and ii) the time needed
to reach a significant reduction in the excess pore pressure
along the vertical axis. The second group, π2 = to/

(︁
H2

cv,z

)︁
,

compares the characteristic time needed to reach a signifi-
cant reduction in the excess pore pressure in thewhole do-
main with the reference ii). Note that this last group could
have been presented in the form to/

(︁
L2
cv,x

)︁
, comparing the

characteristic time of the whole domainwith the reference
i). As we will see later, both ways reach the same universal
curves for the average degree of consolidation.

From the resulting groups (21), the value of to is de-
duced from the solution π2,to = F(π1),

to =
(︂
H2

cv,z

)︂
ψ
(︂
cv,zL2
cv,xH2

)︂
(22)

where F is an arbitrary unknown function of the argument
π1. This solution depends on the location where the de-
crease in excess pore pressure is measured, as well as on
the percentage of falling selected. So, we have chosen the
coordinates of the domain x′ = 0.9 and z′ = 0.1 and fixed
the percentage of falling at different values: 50, 80, 90 and
95%. Numerical simulations were carried out for values of
π1 within the interval [0.01,15], in order to cover the total-
ity of practical cases, changing cv,x or L since these pa-
rameters only appear in π1. For each simulation, to is read
and π2 deduced from π2,to =

(︁
tocv,z
H2

)︁
, providing in this

way one point (π1, π2,to ) of the dependence π2,to = F (π1),
shown in Figure 4. The curves show a notable change in
to for π1 values below 4, but a slow increase for higher
values. This behaviour is coherent, since if we maintain
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Figure 4: Universal curves π2,to = ψ(π1) for 2-D rectangular
anisotropic domains. Reference location: x′ = 0.9, z′ = 0.1. Per-
centage of fall in the excess pore pressure: 50, 80, 90 and 95%.

(︀
H2/tocv,z

)︀
constant, being

(︀
L2/tocv,x

)︀
>>

(︀
H2/tocv,z

)︀
–

which means that water drainage essentially takes place
vertically –, an increase in

(︀
L2/tocv,x

)︀
hardly influences

the consolidation time to; however, if
(︀
H2/tocv,z

)︀
is main-

tained constant and
(︀
L2/tocv,x

)︀
<<

(︀
H2/tocv,z

)︀
– which

means that water drainage essentially occurs in a horizon-
tal direction –, an increase in

(︀
L2/tocv,x

)︀
produces a sig-

nificant rise in the consolidation time to.
The way in which these curves are used is as follows:

Starting from the parameters cv,x, cv,z, L and H, and a
given percentage of excess pore pressure fall, π1 is eval-
uated from π1 =

(︁
cv,zL2
cv,xH2

)︁
and π2,to from the dependence

π2,to =ψ(π1), Figure 4. Finally to is determinedusing equa-
tion (21).

The reduction of these results to the 1-D case is im-
mediate. Then, equation (10) only contains two addends,
whose coefficients give rise to one dimensionless group,
π2,to =

(︁
tocv,z
H2

)︁
– of order ofmagnitude unity –, which pro-

vides the solution for to.

to ∼
(︂
H2

cv,z

)︂
(23)

Again, by giving the same physical meaning for to, one
numerical simulation for each percentage of fall in ex-
cess pore pressure provides the constant that changes the
above expression to an equality, to = Co

(︁
H2

cv,z

)︁
. Table 1

shows the values of this constant for different fall percent-
ages, at the measurement point z′ = 0.1.

5.2 Cylindrical domains

Again, assuming to as the time required to dissipate the
initial pore pressure to a negligible value in a location far
from the drainage boundaries, the dimensionless govern-



216 | G. García-Ros et al.

Table 1: Vertical 1-D consolidation. Values of the constant Co that relate to and H2/cv,z for different falls in excess pore pressure. Measure-
ment point: z′ = 0.1.

u = 0.1 uo
(90% consolidation)

u = 0.2 uo
(80% consolidation)

u = 0.3 uo
(70% consolidation)

u = 0.5 uo
(50% consolidation)

Co 1.026 0.7452 0.5809 0.3737

ing equation is written in the form(︂
1
to

)︂
∂u′
∂t′ =

(︁ cv,z
H2

)︁ ∂2u′
∂z′2 (24)

+
(︂
cv,r
r2out

)︂(︂
∂2u′
∂r′2 + 1

r′
∂u′
∂r′

)︂
where t′ = t/to. In addition to the aforementioned π3, the
dimensionless groups that can be formed from this equa-
tion are

π1 =
(︂
cv,zr2out
cv,rH2

)︂
π2,to =

(︂
tocv,z
H2

)︂
(25)

and the solution of to, obtained from π2,to = ψ (π1, π3),
results

to =
(︂
H2

cv,z

)︂
ψ
(︂
cv,zr2out
cv,rH2 , routrin

)︂
(26)

To represent this dependence it is necessary to fix a mea-
surement point and a percentage of fall for the excess pore
pressure. Numerical simulations were carried out to read
to for a set of values of π1 within the interval [0.01,15],
π3= 5, 10, 20 and 50, and a 90% excess pore pressure fall
at z′=0.1, r′=0.9. Figure 5 shows the abacus of this depen-
dence using the group π3 as parameter. The curves reflect
the notable influence of π1 and π3 on to, but for π1 >> 1,
which means that vertical consolidation prevails against
horizontal, to only depends on H and cv,z, doing constant
(≈ 1) the group π2,to whatever the value of π3. As in rect-
angular domains, the use of these curves starts from the
geometrical and physical parameters of the problem: cv,r,
cv,z, H, rin and rout. From these, π1 and π3 are determined
and, by using Figure 5, the corresponding value of π2,to
can be read or interpolated. Finally, to is determined from
equation (25).

To obtain the 1-D radial coordinates dependences,
whichmeans deleting the vertical consolidation, the char-
acteristic time simplifies to the expression π2,to = ψ(π3),
where π2,to=

(︁
tocv,r
r2out

)︁
, or

to =
(︂
r2out
cv,r

)︂
ψ
(︂
rout
rin

)︂
(27)

Figure 6 shows this dependence for a 90% fall measured
at r’ = 0.9.
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6 Universal curves based on the
characteristic consolidation time
tO

The introduction of the quantity to provides the opportu-
nity to investigate more universal curves of U (t) based on
this time. Hereinafter, we assume that to defines the time
required to reduce the initial excess pore pressure to the
value 0.1uo, at the point z′ =0.1 and x′ =0.9 (z′ =0.1 and r′ =
0.9 in cylindrical coordinates), so covering a significant re-
lease of the excess pore pressure in thewhole domain. The
first step to obtain these new curves is to find to using the
curves presented in the above section. With the reference
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Figure 7a: 2-D rectangular domains. U (t) as a function of t′ = t
to

and π1 = cv,zL2

cv,xH2 .

t′ = t/to (instead of t′ = cv,zt/H2), the resulting expressions
of the average degree of consolidation are:
Rectangular 2-D coordinates:

U (t) = ψ
{︂(︂

t
to

)︂
,
(︂
cv,zL2
cv,xH2

)︂}︂
(28)

Cylindrical 2-D coordinates:

U (t) = ψ
{︂(︂

t
to

)︂
,
(︂
cv,zr2out
cv,rH2

)︂
,
(︂
rout
rin

)︂}︂
(29)

Radial 1-D coordinates:

U (t) = ψ
{︂(︂

t
to

)︂
,
(︂
rout
rin

)︂}︂
(30)

A significant number of simulations were carried out to
represent the dependences of the above expressions. For
the 2-D rectangular case,Figure 7a shows the results for a
range of values of π1 = cv,zL2

cv,xH2 that sufficiently covers real
scenarios, π1 =0.1-10 (an order ofmagnitude above andbe-
low unity). Note that the curves π1 = 0.1 and π1 = 10 are the
same, and also π1 = 0.2 and π1 = 5 (in general the curves
of parameters π1 = Co and π1 = C−1o ). As shown, the curves
are so close that they allow any of them to read U (t) with
an error below 10%. Taking the curve π1 = 1 (or π1 = 0.1) to
read U (t) for all π1 values, the reading is in the side of un-
safety (safety), since real values of U (t) are below (above)
the readings.

For 2-D cylindrical domains, equation (29), the exis-
tence of three dimensionless groups requires a group of
abacuses in order to obtain U (t), one for each value of the
group π3= rout/rin. Figures 7b to 7d show the abacus for π3
= 5, 10 and 20, respectively. Note that the curves π1 ≥ 0.8
are so close that they can be considered an only one.

For radial 1-D scenarios, π1 does not influence the so-
lution and, from numerical simulations, the dependence
(26) is shown in Figure 7e.

Figure 7b: 2-D radial domains. U (t) as a function of t′ = t
to
and

π1 = cv,z r2out
cv,rH2 . π3 = 5. π1 = 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8 and

10.

Figure 7c: 2-D radial domains. U (t) as a function of t′ = t
to
and

π1 = cv,z r2out
cv,rH2 . π3 = 10. π1 = 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8

and 10.

Figure 7d: 2-D radial domains. U (t) as a function of t′ = t
to
and

π1 = cv,z r2out
cv,rH2 . π3 = 20. π1 = 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8

and 10.
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Figure 7e: 1-D radial domain. U (t) as a function of t′ = t
to
and

π3 = rout
rin

.

7 Discriminated
nondimensionalization
dimensionless groups versus
classical groups

It should bementioned that, comparedwith discriminated
nondimensionalization, the classical procedure leads to
poorer results. If the same reference, as in the classical
method, is used to make horizontal and vertical coordi-
nates dimensionless, the values of their dimensionless
forms and their derivatives are not constrained in the in-
terval [0,1] but only one of them. This means that the coef-
ficients of the terms of the dimensionless governing equa-
tions cannot be of the same order of magnitude (even if
measured in the same unity) and, consequently, the final
dimensionless groups are not of the order of magnitude
unity. In addition, classical nondimensionalization gen-
erally leads to a large number of dimensionless groups,
particularly in anisotropic scenarios, which leads to a less
precise result. For example, in 2-D radial domains, the so-
lution for to provided by classical nondimensionalization
(which is the same as that obtained by dimensional anal-
ysis) is

to =
(︂
H2

cv,z

)︂
ψ
(︂
cv,z
cv,r

, routrin
, H
rout

)︂
(31)

while for U (t)

U (t) = ψ
{︂(︂

t cv,z
H2

)︂
,
(︂
cv,z
cv,r

)︂
,
(︂
rout
rin

)︂
,
(︂
H
rout

)︂}︂
(32)

or U (t) = ψ
{︂(︂

t
to

)︂
,
(︂
cv,z
cv,r

)︂
,
(︂
rout
rin

)︂
,
(︂
H
rout

)︂}︂
Note that while the ratio rout/rin emerges in both clas-
sical and discriminated nondimensionalization, the ra-
tios cv,z/cv,r and H/rout are not assumed as dimensionless

Table 2: Geotechnical properties of the soil.

parameter value units
cv,z 1.2 m2/yr
H 4 m
cv,r 3 m2/yr

rin(drain radius) 0.2 m
rout(influence

radius)
4 m

when discrimination is applied but join in a new group to
provide a kind of corrected conductivity ratio. For radial 1-
D domains, the above solutions simplify to others less pre-
cise than those obtained by discrimination.

to =
(︂
rout2
cv,r

)︂
ψ
(︂
rout
rin

)︂
(33)

U (t) = ψ
{︂(︂

tcv,r
r2out

)︂
,
(︂
rout
rin

)︂}︂
(34)

or U (t) = ψ
{︂(︂

t
to

)︂
,
(︂
rout
rin

)︂}︂
Finally, in rectangular coordinates, the classical method
leads to solutions

to =
(︂
H2

cv,z

)︂
ψ
(︂
cv,z
cv,x

, HL

)︂
(35)

U (t) = ψ
{︂(︂

tcv,z
H2

)︂
,
(︂
cv,z
cv,x

)︂
,
(︂
H
L

)︂}︂
(36)

or U (t) = ψ
{︂(︂

t
to

)︂
,
(︂
cv,z
cv,x

)︂
,
(︂
H
L

)︂}︂
whereby all functions depend on onemore argument than
discriminated solutions.

8 Case study
In this section a case study is addressed to compare the so-
lutions given in themanuscript with those provided by the
classical methods. In the problem to be analyzed, a fully
saturated clay soil is subjected to a wide extension load
of constant value and permanent over time, giving rise to
a consolidation phenomenon. In order to accelerate this
process, vertical drains of circular section are installed in
the soil before applying the load, following a scheme simi-
lar to that of Figure 1 (bottom). The geotechnical properties
of the soil to be studied are summarized in Table 2.

The study focuses on the analysis of the evolution of
the average degree of settlement, (U), in order to deter-
mine the duration of the consolidation process. To get the
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value of U, the solutions in the form of series provided by
the classical methods can be used, which treat the prob-
lem by superposing the vertical (Uv) and radial (U r) solu-
tions [11], equations (37) and (38), respectively.

Uv = 1 −
n=∞∑︁
n=0

2
M2 e

(−M2·Tv) (37)

with M = π2 (2n + 1)

U r = 1 − e(−
2Tr
F(n) ) (38)

with F (n) = n2
n2 − 1 ln (n) − 3n2 − 1

4n2
, n = routrin

where (Tv) and (Tr) are, respectively, the vertical and ra-
dial time factors, whose expressions are:

Tv = cv,z t
H2 and Tr = cv,r tr2out

(39)

The above solutions lead to the time-dependent average
degree of consolidation given by:

(1 − U) = (1 − Uv)(1 − U r) (40)

This means that, in order to determine the time for which
the consolidation process can be considered finished, it
will be necessary to test different values of t until the char-
acteristic time is found, which means a laborious task.

A value of t = 2.7 years can be initially taken. Bymeans
of equations (37) and (38), Uv= 0.52 and U r = 0.37 are ob-
tained, finally resulting U = 0.70. At this point, it is worth
mentioning that there are graphic solutions in the form of
abacuses for expressions (37) and (38) [18], which saves
the cumbersome task of calculating the series of addends.
However, this method requires: i) obtaining two time fac-
tors, (Tv =0.20, Tr=0.51) and the parameter n (of value 20),
ii) the use of two abacuses to determine Uv and U r, and iii)
use the expression (40) to get U.

On theotherhand, theuseof the solutionsproposed in
this article is, by comparison, much simpler and requires
fewer steps. First, we must obtain the values of π1, π2 and
π3, the dimensionless groups that govern the solution pat-
tern of the proposed problem. These are:

π1 =
(︂
cv,zr2out
cv,rH2

)︂
= 0.4 (41)

π2 =
(︂
tcv,z
H2

)︂
= 0.20

and π3 =
(︂
rout
rin

)︂
= 20

From these values, the average degree of consolidation is
read directly using Figure 3c, obtaining the same result as
with the previous method (U = 0.70).

To determine the characteristic time of the problem, it
would be necessary to repeat the previous procedure (test-
ing with different times) as many times as necessary un-
til reaching, for example, a high average degree of settle-
ment. However, with the characteristic time curves pro-
vided in this paper, the process is greatly simplified. As can
be deduced from expression (26)

to =
(︂
H2

cv,z

)︂
ψ
(︂
cv,zr2out
cv,rH2 , routrin

)︂
(26)

the characteristic time, expressed in a dimensionless form
π2,to , is a function of the groups π1 and π3. In this way,
based on the values π1 = 0.4 and π3 = 20, the value of π2,to
is obtained directly from Figure 5, resulting π2,to = 0.6. Fi-
nally, from the expression π2,to =

(︁
tocv,z
H2

)︁
the value of to

= 8 years is obtained, a time for which a fall in the excess
pore pressure of 90% is reached at a point in the domain
that is far away from both the surface drainage boundary
and the vertical drain (z′ = 0.1, r′ = 0.9). This criterion of
defining the characteristic time ensures high values for the
average degree of consolidation; indeed, when we calcu-
late this for to = 8 years – applying again equations (37-40)
or Figure 3c – we obtain a value of U = 0.95. A result that,
on the other hand, can also be obtained from Figure 7d for
a value of t′ = 1.

9 Conclusions
The nondimensionalization of governing equations, in
conjunction with the concept of spatial discrimination in
anisotropic media, provides expressions for the average
degree of consolidation as a function of the smallest num-
ber of dimensionless groups that enable the standard rep-
resentation of this quantity by an abacus, for rectangular
coordinates, and by a group of abacuses for cylindrical co-
ordinates. This technique is applied in the paper to the
consolidation process in 2-D, rectangular and cylindrical
anisotropic scenarios.

Compared to the classical nondimensionalization, the
use of discrimination, in its wider meaning, has two ad-
vantages. Firstly, as regards spatial directions, discrimina-
tion forces us to separate the references of the coordinate
variables, deleting the form factor – or geometrical aspect
ratio – of the domain as independent group and joining
it with the ratio of the vertical and horizontal consolida-
tion coefficients. The reduction from three classical inde-
pendent groups to two discriminated groups makes it eas-
ier to represent the dependence of the average degree of
consolidation on these groups by abacuses. Secondly, the



220 | G. García-Ros et al.

introduction of the quantity ‘characteristic time’, defined
as the time at which the excess pore pressure is reduced to
a small fraction of its initial value – at a given point of the
domain –, allows the expression of this quantity to be de-
termined as a function of the other dimensionless groups
of the problem.

When both the different references for spatial coordi-
nates and characteristic time are used to define the dimen-
sionless variables of the problem, the resulting dimension-
less discriminated governing equations provide groups on
the basis of which the new universal curves of the average
degree of consolidation can be represented. These curves
differ very little from each other, to such an extent that one
of them can be used to read the average degree of consoli-
dationwith an acceptable percentage of error for engineer-
ing purposes.

The dependences of the characteristic time and the av-
erage degree of consolidation are solved numerically by
the network method and shown finally in the form of uni-
versal abacuses.

A case study has been addressed to show that the so-
lutions provided by the proposed curves are as precise as
those obtained by classical methods, but they present two
important advantages: i) the procedure to obtain the so-
lutions is much quicker and easier, with no mathematical
manipulation, and ii) the determination of the characteris-
tic consolidation time is direct, andnot through successive
trials.

Acknowledgement: We are grateful to Francisco Alhama
for all the knowledge he has infused us throughout our
training as researchers and, in particular, for this work.

Nomenclature
cv,z vertical consolidation coefficient (m2/s)
cv,x horizontal consolidation coefficient (m2/s)
cv,r radial consolidation coefficient (m2/s)
Co numerical constants (dimensionless)
H depth of the domain up to impermeable condition (m)
L length of the rectangular domain (m)
n ratio between the drain influence radius and the drain

radius
r radial coordinate (m)
rin drain radius or inner radius (m)
rout drain influence radius or outer radius (m)
t time (s)
to characteristic time of the consolidation process (s)
u excess pore pressure (Pa)

uo initial excess pore pressure (Pa)
U local degree of consolidation or settlement (dimension-

less)
U average degree of consolidation or settlement (dimen-

sionless)
x, z spatial coordinates, horizontal and vertical, (m)
π dimensionless number (or group)
ψ arbitrary mathematical function

Subscripts
1,2. . . denote different numbers

Superscripts
′ denote dimensionless quantity
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