Home Equivalent circuit modeling of various miniaturized antennas for wireless capsule endoscopy (WCE) applications
Article
Licensed
Unlicensed Requires Authentication

Equivalent circuit modeling of various miniaturized antennas for wireless capsule endoscopy (WCE) applications

  • Balaka Biswas EMAIL logo and Ayan Karmakar
Published/Copyright: September 16, 2025
Become an author with De Gruyter Brill
Frequenz
From the journal Frequenz

Abstract

This article presents different equivalent circuit modeling of miniaturized wireless capsule endoscopy (WCE) antennas. Here, three heterogeneous WCE antenna designs have been considered for the case study purpose in embedded and conformal architecture format. These WCE antennas are unique in respect to their designs, substrate material, characteristics, implementation of fractal geometries, etc. To understand the insight device physics of the structure the two independent modeling approaches (TL-based and CLR-based) are presented here without much complicated mathematical calculations. Additionally, the quad Cole-Cole model is discussed for parametric representation in different types of dispersion for biological tissues. Finally, a comparison table is given with TL-based modeling and CLR-modeling of three antennas.


Corresponding author: Balaka Biswas, Department of Electronics and Communication Engineering, Chandigarh University, Mohali-140413, Punjab, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] B. Biswas, A. Karmakar, and V. Chandra, “Miniaturized wideband ingestible antenna for wireless capsule endoscopy,” IET Microw. Antenn. Propag., vol. 14, no. 4, pp. 293–301, 2020, https://doi.org/10.1049/iet-map.2019.0439.Search in Google Scholar

[2] Y. Wang, B. Huang, and S. Yan, “A dual-polarized meandered ring-slot antenna for wireless capsule endoscope systems,” IEEE Antenn. Wireless Propag. Lett., vol. 23, no. 6, pp. 1804–1808, 2024, https://doi.org/10.1109/LAWP.2024.3370178.Search in Google Scholar

[3] A. Alshammari, et al.., “Compact In-Band full-duplex implantable antenna for wireless capsule endoscopy,” IEEE Trans. Antenn. Propag., vol. 73, no. 2, pp. 897–905, 2025, https://doi.org/10.1109/TAP.2024.3499367.Search in Google Scholar

[4] El Hatmi, F., Grzeskowiak, M., Alves, T., Protat, S., and Picon, O., “Magnetic loop antenna for wireless capsule endoscopy inside the human body operating at 315 MHz: near field behavior,” in 2011 11th Mediterranean Microwave Symposium (MMS), Yasmine Hammamet, Yasmine Hammamet, Tunisia, IEEE, 2011, pp. 81–87.10.1109/MMS.2011.6068534Search in Google Scholar

[5] F. Merli, L. Bolomey, J.-F. Zurcher, G. Corradini, E. Meurville, and A. K. Skrivervik, “Design, realization and measurements of a miniature antenna for implantable wireless communication systems,” IEEE Trans. Antenn. Propag., vol. 59, no. 10, pp. 3544–3555, 2011, https://doi.org/10.1109/TAP.2011.2163763.Search in Google Scholar

[6] J. Faerber, et al.., “In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna,” IEEE Trans. Biomed. Circ. Syst., vol. 12, no. 1, pp. 95–105, 2018, https://doi.org/10.1109/TBCAS.2017.2759254.Search in Google Scholar PubMed

[7] A. Iqbal, S. Hassan Kiani, M. Al-Hasan, I. Ben Mabrouk, and T. A. Denidni, “A compact dual-band implantable MIMO antenna for wireless capsule endoscopy,” IEEE Trans. Antenn. Propag., vol. 72, no. 10, pp. 7515–7524, 2024, https://doi.org/10.1109/TAP.2024.3454434.Search in Google Scholar

[8] W. Cui, R. Liu, L. Wang, M. Wang, H. Zheng, and E. Li, “Design of wideband implantable antenna for wireless capsule endoscope system,” IEEE Antenn. Wireless Propag. Lett., vol. 18, no. 12, pp. 2706–2710, 2019, https://doi.org/10.1109/LAWP.2019.2949630.Search in Google Scholar

[9] Z. Duan, H. Xu, S. S. Gao, and W. Geyi, “A circularly polarized omnidirectional antenna for wireless capsule endoscope system,” IEEE Trans. Antenn. Propag., vol. 69, no. 4, pp. 1896–1907, 2021, https://doi.org/10.1109/TAP.2020.3026908.Search in Google Scholar

[10] Y. Wang, B. Huang, and S. Yan, “A conformal four-antenna module for capsule endoscope MIMO operation,” IEEE Trans. Antenn. Propag., vol. 70, no. 11, pp. 10270–10285, 2022, https://doi.org/10.1109/TAP.2022.3195556.Search in Google Scholar

[11] M. Yousaf, et al.., “Compacted conformal implantable antenna with multitasking capabilities for ingestible capsule endoscope,” IEEE Access, vol. 8, pp. 157617–157627, 2020, https://doi.org/10.1109/ACCESS.2020.3019663.Search in Google Scholar

[12] C. Xiao, S. Hao, and Y. Zhang, “915 MHz miniaturized loop conformal antenna for capsule endoscope,” IEEE Trans. Antenn. Propag., vol. 70, no. 11, pp. 10233–10244, 2022, https://doi.org/10.1109/TAP.2022.3197272.Search in Google Scholar

[13] B. Biswas, A. Karmakar, and V. Chandra, “Fractal inspired miniaturized wideband ingestible antenna for wireless capsule endoscopy,” Int. J. Electron. Commun. (AEÜ), vol. 120, 2020, https://doi.org/10.1016/j.aeue.2020.153192.NetherlandsSearch in Google Scholar

[14] B. Biswas, A. Karmakar, and V. Chandra, “Hilbert curve inspired miniaturized MIMO antenna for wireless capsule endoscopy,” Int. J. Electron. Commun. (AEÜ), vol. 137, no. July 2021, https://doi.org/10.1016/j.aeue.2021.153819.NetherlandsSearch in Google Scholar

[15] Y. Wang, S. Yan, and B. Huang, “Conformal folded Inverted-F antenna with quasi-isotropic radiation pattern for robust communication in capsule endoscopy applications,” IEEE Trans. Antenn. Propag., vol. 70, no. 8, pp. 6537–6550, 2022, https://doi.org/10.1109/TAP.2022.3161342.Search in Google Scholar

[16] R. Gao, H. Sun, R. Ren, and H. Zhang, “Design of a biomedical antenna system for wireless communication of ingestible capsule endoscope,” IEEE Antenn. Wireless Propag. Lett., vol. 23, no. 12, pp. 4243–4247, 2024, https://doi.org/10.1109/LAWP.2024.3441333.Search in Google Scholar

[17] G. Zhang, X. Song, Z. Yu, and X. An, “A symmetrical closed-loop conformal antenna with wideband for capsule endoscope,” IEEE Antenn. Wireless Propag. Lett., vol. 20, no. 10, pp. 1918–1922, 2021, https://doi.org/10.1109/LAWP.2021.3100525.Search in Google Scholar

[18] K. Sasaki, K. Wake, and S. Watanabe, “Development of best fit cole-cole parameters for measurement data from biological tissues and organs between 1 MHz and 20 GHz,” Radio Sci., vol. 49, pp. 459–472, 2014, https://doi.org/10.1002/2013rs005345.Search in Google Scholar

[19] P. Q. Mantas, “Dielectric response of materials: extension to the debye model,” J. Eur. Ceram. Soc., vol. 19, no. Issue 12, pp. 2079–2086, 1999, https://doi.org/10.1016/s0955-2219(98)00273-8.Search in Google Scholar

[20] S. Gabriel, R. W. Law, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Bio., vol. 41, no. 11, pp. 2251–2269, 1996.10.1088/0031-9155/41/11/002Search in Google Scholar PubMed

[21] B. Biswas and A. Karmakar, “Electrical equivalent circuit modeling of various fractal inspired UWB antennas,” Freq. J. RF Eng. Telecommun., vol. 75, nos. 3-4, pp. 109–116, 2021, https://doi.org/10.1515/freq-2020-0088.Search in Google Scholar

[22] B. Biswas and A. Karmakar, Printed Antennas for Future Generation Wireless Communication and Healthcare, Boca Raton: CRC Press Taylor & Francis Group, 2023, ISBN 9781032393018.10.1201/9781003389859Search in Google Scholar

[23] Q. Chen, et al.., “Loss mechanism analysis of the solar cell waveguide slot phased array antenna using equivalent circuit method,” IEEE Antenn. Wireless Propag. Lett., vol. 23, no. 7, pp. 2001–2005, 2024, https://doi.org/10.1109/lawp.2024.3376559.Search in Google Scholar

[24] M. P. Haack, et al.., “Physically realizable antenna equivalent circuit generation,” IEEE Access, vol. 12, pp. 33652–33658, 2024, https://doi.org/10.1109/ACCESS.2024.3370030.Search in Google Scholar

[25] S.-Q. Zhang, et al.., “Distributed equivalent circuit model of dipole based on radiation characteristics,” IEEE Antenn. Wireless Propag. Lett., vol. 22, no. 4, pp. 868–872, 2023, https://doi.org/10.1109/LAWP.2022.3227218.Search in Google Scholar

[26] Jordan and Balmain, Electromagnetic Waves and Radiating Systems, 2nd Ed PHI Englewood Cliiffs, New Jersey, Prentice Hall (PHI), 2002.Search in Google Scholar

[27] Biswas, B., Karmakar, A., and Chandra, V., “Miniaturized antenna for wireless capsule endoscopy system,” in IEEE MTT-S International Microwave and RF Conference, (IMaRC 2019), Mumbai, India, IEEE, 2019.10.1109/IMaRC45935.2019.9118683Search in Google Scholar

[28] Miah, Md S., C. Icheln, K. Haneda, and K.-ichi Takizawa. “Antenna systems for wireless capsule endoscope: design, analysis and experimental validation.” arXiv preprint arXiv:1804.01577, 2018. https://arxiv.org/abs/1804.01577. Search in Google Scholar

Received: 2025-03-21
Accepted: 2025-09-01
Published Online: 2025-09-16

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2025-0105/html
Scroll to top button