Startseite Technik An embroidered spoof surface plasmon polariton transmission line for wearable wireless body area networks based on Minkowski fractal structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An embroidered spoof surface plasmon polariton transmission line for wearable wireless body area networks based on Minkowski fractal structure

  • Chu-qi Gong , Zhi Chen ORCID logo , Wang Xu und Lin Li EMAIL logo
Veröffentlicht/Copyright: 26. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper proposes an embroidered SSPP TL (spoof surface plasmon polariton transmission line) based on a Minkowski fractal geometric structure. Theoretical analysis indicates that transmission lines with Minkowski fractal structures exhibit lower dispersion cutoff frequencies compared to conventional transmission lines. Additionally, the dispersion characteristics of fractal transmission lines can be adjusted by varying the indentation depth and iteration count of the fractal design. Based on this concept, both a conventional transmission line and a fractal transmission line were fabricated. Test results show that the dispersion cutoff frequency of the fractal transmission line is 31 % lower than that of a conventional transmission line of the same width. Measurements conducted on different body parts, combined with SAR (Specific Absorption Rate) analysis, further demonstrate that the proposed transmission line can be safely and efficiently applied in human-body wearable systems.


Corresponding author: Lin Li, School of Information Science and Engineering, Zhejiang Sci-Tech University, No. 928, No.2 Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, 310018 China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: C.-Q.G.: Conceptualization, Validation, Investigation, and Initial Draft. Z.C.: Methodology, Formal analysis and Data Curation. W.X: Visualization and Project administration. L.L.: Supervision, Review and Editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003, https://doi.org/10.1038/nature01937.Suche in Google Scholar PubMed

[2] J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305, no. 5685, pp. 847–848, 2004, https://doi.org/10.1126/science.1098999.Suche in Google Scholar PubMed

[3] F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt., vol. 7, no. 2, pp. S97–S101, 2005.10.1088/1464-4258/7/2/013Suche in Google Scholar

[4] F. J. G. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett., vol. 95, no. 23, p. 233901, 2005, https://doi.org/10.1103/physrevlett.95.233901.Suche in Google Scholar PubMed

[5] A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quan. Electron., vol. 14, no. 6, pp. 1515–1521, 2008, https://doi.org/10.1109/jstqe.2008.918107.Suche in Google Scholar

[6] X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev., vol. 4, no. 3, pp. 239–258, 2015, https://doi.org/10.1515/ntrev-2014-0032.Suche in Google Scholar

[7] J. J. Wu, D. J. Hou, K. Liu, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express, vol. 22, no. 22, pp. 26777–26787, 2014, https://doi.org/10.1364/oe.22.026777.Suche in Google Scholar

[8] A. Kianinejad, Z. N. Chen, and C.-W. Qiu, “Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line,” IEEE Trans. Microw. Theor. Tech., vol. 63, no. 6, pp. 1817–1825, 2015, https://doi.org/10.1109/tmtt.2015.2422694.Suche in Google Scholar

[9] B. Xiao, S. Kong, and S. Xiao, “Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide,” Opt. Commun., vol. 374, pp. 13–17, 2016, https://doi.org/10.1016/j.optcom.2016.04.019.Suche in Google Scholar

[10] Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access, vol. 6, pp. 10249–10256, 2018, https://doi.org/10.1109/access.2018.2808335.Suche in Google Scholar

[11] Pandit, N. and Pathak, N. P., “Reconfigurable spoof surface plasmon polaritons based band pass filter,” in 2018 IEEE/MTT-S International Microwave Symposium – IMS, Philadelphia, PA, USA, IEEE, 2018, pp. 224–227.10.1109/MWSYM.2018.8439279Suche in Google Scholar

[12] A. Kianinejad, Z. N. Chen, and C.-W. Qiu, “A single-layered spoof-plasmon-mode leaky wave antenna with consistent gain,” IEEE Trans. Antenn. Propag., vol. 65, no. 2, pp. 681–687, 2017, https://doi.org/10.1109/tap.2016.2633161.Suche in Google Scholar

[13] D.-F. Guan, P. You, Q. Zhang, Z.-H. Lu, S.-W. Yong, and K. Xiao, “A wide-angle and circularly polarized beam-scanning antenna based on microstrip spoof surface plasmon polariton transmission line,” IEEE Antenn. Wirel. Propag. Lett., vol. 16, pp. 2538–2541, 2017, https://doi.org/10.1109/lawp.2017.2731877.Suche in Google Scholar

[14] Tian, X., Zhang, M., and Ho, J. S., “Robust and high-efficiency wireless body area networks with spoof surface plasmons on clothing,” in 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, IEEE, 2019, pp. 1507–1510.10.1109/MWSYM.2019.8700804Suche in Google Scholar

[15] X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. A., vol. 110, no. 1, pp. 40–45, 2013, https://doi.org/10.1073/pnas.1210417110.Suche in Google Scholar PubMed PubMed Central

[16] X. Tian, P. M. Lee, Y. J. Tan, “Wireless body sensor networks based on metamaterial textiles,” Nat. Electron., vol. 2, no. 6, pp. 243–251, 2019, https://doi.org/10.1038/s41928-019-0257-7.Suche in Google Scholar

[17] A. Ghaddar, B. Garnier, F. Rault, E. Lheurette, and L. Burgnies, “Embroidered spoof surface plasmon polariton transmission line for wireless body sensor network,” IET Microw. Antenn. Propag., vol. 16, no. 4, pp. 187–193, 2022, https://doi.org/10.1049/mia2.12224.Suche in Google Scholar

[18] Z. Shi, Y. Shen, and S. Hu, “Spoof surface plasmon polariton transmission line with reduced line-width and enhanced field confinement,” Int. J. RF Microw. Comput-Aid. Eng., vol. 30, no. 8, 2020, https://doi.org/10.1002/mmce.22276.Suche in Google Scholar

[19] Y. Wu, S. Soltani, B. Sennik, “Design of quasi-endfire spoof surface plasmon polariton leaky-wave textile wearable antennas,” IEEE Access, vol. 10, pp. 115338–115350, 2022, https://doi.org/10.1109/access.2022.3218217.Suche in Google Scholar

[20] M. Wagih, “Broadband low-loss on-body UHF to millimeter-wave surface wave links using flexible textile single wire transmission lines,” IEEE Open J. Antenn. Propag., vol. 3, pp. 101–111, 2022, https://doi.org/10.1109/ojap.2021.3136654.Suche in Google Scholar

[21] de Araujo, A. L. M., Melo, M. H. A. M., de Melo, I. K. C., de Andrade, H. D., Lira, R. V. A., and da Silva, I. B. T., “Firat fractal applied as miniaturization technique on rectangular microstrip patch antenna,” in 2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Castelldefels, Spain, IEEE, 2023, pp. 85–87.10.1109/IMOC57131.2023.10379710Suche in Google Scholar

[22] H. Oraizi and S. Hedayati, “Miniaturization of microstrip antennas by the novel application of the Giuseppe peano fractal geometries,” IEEE Trans. Antenn. Propag., vol. 60, no. 8, pp. 3559–3567, 2012, https://doi.org/10.1109/tap.2012.2201070.Suche in Google Scholar

[23] N. Gurgel, I. Queiroz, H. Andrade, and T. Silveira, “Miniaturization of microstrip patch antennas using Koch fractal geometry on the ground plane,” in 2021 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Brazil, Fortaleza, 2021, pp. 1–3.10.1109/IMOC53012.2021.9624798Suche in Google Scholar

[24] J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antenn. Propag. Mag., vol. 44, no. 1, pp. 20–36, 2002, https://doi.org/10.1109/74.997888.Suche in Google Scholar

[25] Zhao, B., Tang, M., Zheng, Z., and Mao, J., “Investigation of transmission phase of SSPP lines with linear tapered transitions,” in 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, IEEE, 2021, pp. 01–03.10.1109/ISAPE54070.2021.9753241Suche in Google Scholar

Received: 2025-01-09
Accepted: 2025-06-12
Published Online: 2025-06-26
Published in Print: 2025-12-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2025-0003/html
Button zum nach oben scrollen