Home An embroidered spoof surface plasmon polariton transmission line for wearable wireless body area networks based on Minkowski fractal structure
Article
Licensed
Unlicensed Requires Authentication

An embroidered spoof surface plasmon polariton transmission line for wearable wireless body area networks based on Minkowski fractal structure

  • Chu-qi Gong , Zhi Chen ORCID logo , Wang Xu and Lin Li EMAIL logo
Published/Copyright: June 26, 2025
Become an author with De Gruyter Brill
Frequenz
From the journal Frequenz

Abstract

This paper proposes an embroidered SSPP TL (spoof surface plasmon polariton transmission line) based on a Minkowski fractal geometric structure. Theoretical analysis indicates that transmission lines with Minkowski fractal structures exhibit lower dispersion cutoff frequencies compared to conventional transmission lines. Additionally, the dispersion characteristics of fractal transmission lines can be adjusted by varying the indentation depth and iteration count of the fractal design. Based on this concept, both a conventional transmission line and a fractal transmission line were fabricated. Test results show that the dispersion cutoff frequency of the fractal transmission line is 31 % lower than that of a conventional transmission line of the same width. Measurements conducted on different body parts, combined with SAR (Specific Absorption Rate) analysis, further demonstrate that the proposed transmission line can be safely and efficiently applied in human-body wearable systems.


Corresponding author: Lin Li, School of Information Science and Engineering, Zhejiang Sci-Tech University, No. 928, No.2 Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, 310018 China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: C.-Q.G.: Conceptualization, Validation, Investigation, and Initial Draft. Z.C.: Methodology, Formal analysis and Data Curation. W.X: Visualization and Project administration. L.L.: Supervision, Review and Editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003, https://doi.org/10.1038/nature01937.Search in Google Scholar PubMed

[2] J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305, no. 5685, pp. 847–848, 2004, https://doi.org/10.1126/science.1098999.Search in Google Scholar PubMed

[3] F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt., vol. 7, no. 2, pp. S97–S101, 2005.10.1088/1464-4258/7/2/013Search in Google Scholar

[4] F. J. G. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett., vol. 95, no. 23, p. 233901, 2005, https://doi.org/10.1103/physrevlett.95.233901.Search in Google Scholar PubMed

[5] A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quan. Electron., vol. 14, no. 6, pp. 1515–1521, 2008, https://doi.org/10.1109/jstqe.2008.918107.Search in Google Scholar

[6] X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev., vol. 4, no. 3, 2015, https://doi.org/10.1515/ntrev-2014-0032.Search in Google Scholar

[7] J. J. Wu, D. J. Hou, K. Liu, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express, vol. 22, no. 22, pp. 26777–26787, 2014, https://doi.org/10.1364/oe.22.026777.Search in Google Scholar

[8] A. Kianinejad, Z. N. Chen, and C.-W. Qiu, “Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line,” IEEE Trans. Microw. Theor. Tech., vol. 63, no. 6, pp. 1817–1825, 2015, https://doi.org/10.1109/tmtt.2015.2422694.Search in Google Scholar

[9] B. Xiao, S. Kong, and S. Xiao, “Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide,” Opt. Commun., vol. 374, pp. 13–17, 2016, https://doi.org/10.1016/j.optcom.2016.04.019.Search in Google Scholar

[10] Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access, vol. 6, pp. 10249–10256, 2018, https://doi.org/10.1109/access.2018.2808335.Search in Google Scholar

[11] Pandit, N. and Pathak, N. P., “Reconfigurable spoof surface plasmon polaritons based band pass filter,” in 2018 IEEE/MTT-S International Microwave Symposium – IMS, Philadelphia, PA, USA, IEEE, 2018, pp. 224–227.10.1109/MWSYM.2018.8439279Search in Google Scholar

[12] A. Kianinejad, Z. N. Chen, and C.-W. Qiu, “A single-layered spoof-plasmon-mode leaky wave antenna with consistent gain,” IEEE Trans. Antenn. Propag., vol. 65, no. 2, pp. 681–687, 2017, https://doi.org/10.1109/tap.2016.2633161.Search in Google Scholar

[13] D.-F. Guan, P. You, Q. Zhang, Z.-H. Lu, S.-W. Yong, and K. Xiao, “A wide-angle and circularly polarized beam-scanning antenna based on microstrip spoof surface plasmon polariton transmission line,” IEEE Antenn. Wirel. Propag. Lett., vol. 16, pp. 2538–2541, 2017, https://doi.org/10.1109/lawp.2017.2731877.Search in Google Scholar

[14] Tian, X., Zhang, M., and Ho, J. S., “Robust and high-efficiency wireless body area networks with spoof surface plasmons on clothing,” in 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, IEEE, 2019, pp. 1507–1510.10.1109/MWSYM.2019.8700804Search in Google Scholar

[15] X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. A., vol. 110, no. 1, pp. 40–45, 2013, https://doi.org/10.1073/pnas.1210417110.Search in Google Scholar PubMed PubMed Central

[16] X. Tian, P. M. Lee, Y. J. Tan, “Wireless body sensor networks based on metamaterial textiles,” Nat. Electron., vol. 2, no. 6, pp. 243–251, 2019, https://doi.org/10.1038/s41928-019-0257-7.Search in Google Scholar

[17] A. Ghaddar, B. Garnier, F. Rault, E. Lheurette, and L. Burgnies, “Embroidered spoof surface plasmon polariton transmission line for wireless body sensor network,” IET Microw. Antenn. Propag., vol. 16, no. 4, pp. 187–193, 2022, https://doi.org/10.1049/mia2.12224.Search in Google Scholar

[18] Z. Shi, Y. Shen, and S. Hu, “Spoof surface plasmon polariton transmission line with reduced line-width and enhanced field confinement,” Int. J. RF Microw. Comput-Aid. Eng., vol. 30, no. 8, 2020, https://doi.org/10.1002/mmce.22276.Search in Google Scholar

[19] Y. Wu, S. Soltani, B. Sennik, “Design of quasi-endfire spoof surface plasmon polariton leaky-wave textile wearable antennas,” IEEE Access, vol. 10, pp. 115338–115350, 2022, https://doi.org/10.1109/access.2022.3218217.Search in Google Scholar

[20] M. Wagih, “Broadband low-loss on-body UHF to millimeter-wave surface wave links using flexible textile single wire transmission lines,” IEEE Open J. Antenn. Propag., vol. 3, pp. 101–111, 2022, https://doi.org/10.1109/ojap.2021.3136654.Search in Google Scholar

[21] de Araujo, A. L. M., Melo, M. H. A. M., de Melo, I. K. C., de Andrade, H. D., Lira, R. V. A., and da Silva, I. B. T., “Firat fractal applied as miniaturization technique on rectangular microstrip patch antenna,” in 2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Castelldefels, Spain, IEEE, 2023, pp. 85–87.10.1109/IMOC57131.2023.10379710Search in Google Scholar

[22] H. Oraizi and S. Hedayati, “Miniaturization of microstrip antennas by the novel application of the Giuseppe peano fractal geometries,” IEEE Trans. Antenn. Propag., vol. 60, no. 8, pp. 3559–3567, 2012, https://doi.org/10.1109/tap.2012.2201070.Search in Google Scholar

[23] N. Gurgel, I. Queiroz, H. Andrade, and T. Silveira, “Miniaturization of microstrip patch antennas using Koch fractal geometry on the ground plane,” in 2021 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Brazil, Fortaleza, 2021, pp. 1–3.10.1109/IMOC53012.2021.9624798Search in Google Scholar

[24] J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antenn. Propag. Mag., vol. 44, no. 1, pp. 20–36, 2002, https://doi.org/10.1109/74.997888.Search in Google Scholar

[25] Zhao, B., Tang, M., Zheng, Z., and Mao, J., “Investigation of transmission phase of SSPP lines with linear tapered transitions,” in 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, IEEE, 2021, pp. 01–03.10.1109/ISAPE54070.2021.9753241Search in Google Scholar

Received: 2025-01-09
Accepted: 2025-06-12
Published Online: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2025-0003/html
Scroll to top button