Home Miniaturized wideband implantable slotted loop antenna for biotelemetry applications
Article
Licensed
Unlicensed Requires Authentication

Miniaturized wideband implantable slotted loop antenna for biotelemetry applications

  • Palanivel Rajan Selvakumaran and Paranthaman Mohanraj EMAIL logo
Published/Copyright: October 28, 2022
Become an author with De Gruyter Brill

Abstract

Small size of the implantable antenna is the major concern in Implantable Medical Devices. A compact implantable wideband radiator working at the ISM band is proposed for biotelemetry applications. The overall dimension of the proposed radiator is 10 mm ⁎ 15 mm ⁎ 0.8 mm and the thickness includes substrate and superstrate thickness. The Coaxial feeding method is employed here. The inner and outer diameter of the coaxial feed is 1 and 1.5 mm respectively. The design process starts with a creation of rectangular patch of size 10 mm ⁎ 15 mm and the coaxial feed is located at (2.5, 7). Then slot like loops are introduced on a rectangular patch. This compact size is achieved by introducing small loops on a rectangular patch along with triangular cuts at the bottom right and top-left of the patch. The antenna is simulated with a tissue model (Skin, Fat, Muscle, Bone) and measured with a Body Equivalent Fluid (phantom). The −10 dB bandwidth is obtained over 1340 MHz (1.66–3 GHz) and the fractional bandwidth of 54.7% at the ISM band. The simulated gain and radiation efficiency of the radiator are −13.5 dBi and 3.15% respectively. The measured return loss of the proposed antenna is −30.53 dB and the SAR value averaged over 1 g tissue is 302.6 W/kg with 1 W input power. When compared to the previous works mentioned in the literature the proposed antenna displays wider bandwidth, high gain, low SAR and high radiation efficiency.


Corresponding author: Paranthaman Mohanraj, Department of Electronics and Communication Engineering, Kongunadu College of Engineering and Technology, Thottiam, Trichy, Tamilnadu, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Kiourti and K. S. Nikita, “A review of implantable patch antennas for biomedical telemetry: challenges and solutions,” IEEE Antenn. Propag. Mag., vol. 54, no. 3, pp. 210–228, 2012, https://doi.org/10.1109/map.2012.6293992.Search in Google Scholar

[2] Z. Jiang, Z. Wang, M. Leach, et al., “Wideband loop antenna with split-ring resonators for wireless medical telemetry,” IEEE Antenn. Wireless Propag. Lett., vol. 18, no. 7, pp. 1415–1419, 2019. https://doi.org/10.1109/LAWP.2019.2918501.Search in Google Scholar

[3] Y. Zhang, C. Liu, and X. Liu, “A wideband circularly polarized implantable Antenna for 915 MHz ISM-band biotelemetry devices,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 8, pp. 1473–1477, 2018, https://doi.org/10.1109/LAWP.2018.2849847.Search in Google Scholar

[4] Z. Xia, H. Li, Z. Lee, et al., “A wideband circularly polarized implantable patch antenna for ISM band biomedical applications,” IEEE Trans. Antenn. Propag., vol. 68, no. 3, pp. 2399–2404, 2020. https://doi.org/10.1109/tap.2019.2944538.Search in Google Scholar

[5] Z.-J. Yang, S.-Q. Xiao, L. Zhu, B.-Z. Wang, and H.-L. Tu, “A circularly polarized implantable antenna for 2.4-GHz ISM band biomedical applications,” IEEE Antenn. Wireless Propag. Lett., vol. 16, pp. 2554–2557, 2017, https://doi.org/10.1109/lawp.2017.2732460.Search in Google Scholar

[6] L. J. Xu, X. Jin, D. Hua, W. J. Lu, and Z. Duan, “Realization of circular polarization and gain enhancement for implantable Antenna,” IEEE Access, vol. 8, pp. 16857–16864, 2020, https://doi.org/10.1109/ACCESS.2019.2963744.Search in Google Scholar

[7] J. Wang, M. Leach, E. G. Lim, Z. Wang, R. Pei, and Y. Huang, “An implantable and conformal antenna for wireless capsule endoscopy,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 7, pp. 1153–1157, 2018, https://doi.org/10.1109/LAWP.2018.2836392.Search in Google Scholar

[8] S. Xiao, C. Liu, Y. Li, X. M. Yang, and X. Liu, “Small-size dual-antenna implantable system for biotelemetry devices,” IEEE Antenn. Wireless Propag. Lett., vol. 15, pp. 1723–1726, 2016, https://doi.org/10.1109/lawp.2016.2528987.Search in Google Scholar

[9] J. Blauert, Y. Kang, and A. Kiourti, “In vivo testing of a miniature 2.4/4.8 GHz implantable Antenna in post mortem human subject,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 12, pp. 2334–2338, 2018, https://doi.org/10.1109/LAWP.2018.2874099.Search in Google Scholar

[10] V. T. Nguyen and C. W. Jung, “Radiation-pattern reconfigurable antenna for medical implants in MedRadio band,” IEEE Antenn. Wireless Propag. Lett., vol. 15, pp. 106–109, 2016, https://doi.org/10.1109/LAWP.2015.2432172.Search in Google Scholar

[11] M. K. Magill, G. A. Conway, and W. G. Scanlon, “Tissue-independent implantable Antenna for in-body communications at 2.36 – 2.5 GHz,” IEEE Trans. Antenn. Propag., vol. 65, no. 9, pp. 4406–4417, 2017. https://doi.org/10.1109/TAP.2017.2708119.Search in Google Scholar

[12] A. Valanarasi and R. Dhanasekaran, “Optimum band ϵ shaped miniature implantable Antennas for telemetry applications,” IEEE Trans. Antenn. Propag., vol. 69, no. 1, pp. 55–63, 2020, https://doi.org/10.1109/TAP.2020.3008622.Search in Google Scholar

[13] J. Shang and Y. Yu, “An ultrawideband and conformal antenna for wireless capsule endoscopy,” Microw. Opt. Technol. Lett., vol. 62, no. 2, pp. 860–865, 2020, https://doi.org/10.1002/mop.32087.Search in Google Scholar

[14] K. Yeap, “A compact dual-band implantable antenna for medical telemetry,” Microw. Opt. Technol. Lett., vol. 61, no. 9, pp. 2105–2109, 2019. https://doi.org/10.1002/mop.31871.Search in Google Scholar

[15] Q. H. Wu, X. W. Xuan, W. Wang, K. Li, and H. B. Zhao, “A miniaturized implantable planar Inverted-F antenna for biotelemetry applications at 2.45 GHz industrial, scientific, and medical band,” Microw. Opt. Technol. Lett., vol. 62, no. 1, pp. 391–396, 2020, https://doi.org/10.1002/mop.32022.Search in Google Scholar

[16] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 KHz to 300 GHz,”, IEEE Std C95.1, 1999.Search in Google Scholar

[17] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 KHz to 300 GHz,”, IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 2005.Search in Google Scholar

[18] M. Alibakhshikenari, M. Khalily, B. S. Virdee et al.., “Double-port slotted-antenna with multiple miniaturized radiators for wideband wireless communication systems and portable devices,” Prog. Electromagn. Res. C, vol. 90, pp. 1–13, 2019, https://doi.org/10.2528/pierc18011204.Search in Google Scholar

[19] M. Alibakhshikenari, B. S. Virdee, C. H. See et al.., “Wideband printed monopole antenna for application in wireless communication systems,” IET Microw., Antennas Propag., vol. 12, no. 7, pp. 1222–1230, 2018, https://doi.org/10.1049/iet-map.2017.0894.Search in Google Scholar

[20] M. Alibakhshikenari, B. S. Virdee, A. Ali, and E. Limiti, “Miniaturised planar‐patch antenna based on metamaterial L‐shaped unit‐cells for broadband portable microwave devices and multiband wireless communication systems,” IET Microw., Antennas Propag., vol. 12, no. 7, pp. 1080–1086, 2018, https://doi.org/10.1049/iet-map.2016.1141.Search in Google Scholar

[21] M. Alibakhshikenari, E. Limiti, M. Naser-Moghadasi, B. S. Virdee, and R. A. Sadeghzadeh, “A new wideband planar antenna with band-notch functionality at GPS, Bluetooth and WiFi bands for integration in portable wireless systems,” AEU - Int. J. Electron. Commun., vol. 72, pp. 79–85, 2017, https://doi.org/10.1016/j.aeue.2016.11.023.Search in Google Scholar

[22] M. Alibakhshi‐Kenari, M. Naser‐Moghadasi, R. Ali Sadeghzadeh, and B. Singh Virdee, “Metamaterial‐based antennas for integration in UWB transceivers and portable microwave handsets,” Int. J. RF Microw. Computer-Aided Eng., vol. 26, no. 1, pp. 88–96, 2016, https://doi.org/10.1002/mmce.20942.Search in Google Scholar

[23] M. Alibakhshi Kenari, “Design and modeling of new UWB metamaterial planar cavity antennas with shrinking of the physical size for modern transceivers,” Int. J. Antenn. Propag., vol. 2013, 2013. https://doi.org/10.1155/2013/562538.Search in Google Scholar

[24] S. Ashok Kumar and T. Shanmuganantham, “Analysis and design of implantable Z-monopole antennas at 2.45 GHZ ISM band for biomedical applications,” Microw. Opt. Technol. Lett., vol. 57, no. 2, pp. 468–473, 2015, https://doi.org/10.1002/mop.28870.Search in Google Scholar

[25] Z. Yang, L. Zhu, and S. Xiao, “An implantable circularly polarized patch antenna design for pacemaker monitoring based on quality factor analysis,” IEEE Trans. Antenn. Propag., vol. 66, no. 10, pp. 5180–5192, 2018, https://doi.org/10.1109/tap.2018.2862242.Search in Google Scholar

[26] M. Asili, R. Green, S. Seran, and E. Topsakal, “A small implantable antenna for MedRadio and ISM bands,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 1683–1685, 2012, https://doi.org/10.1109/lawp.2013.2241723.Search in Google Scholar

[27] L. J. Xu, Y. X. Guo, and W. Wu, “Dual-band implantable antenna with open-end slots on the ground,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 1564–1567, 2012, https://doi.org/10.1109/lawp.2012.2237010.Search in Google Scholar

[28] W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices,” Microw. Opt. Technol. Lett., vol. 51, no. 3, pp. 755–757, 2009, https://doi.org/10.1002/mop.24142.Search in Google Scholar

[29] M. Scarpello, D. Kurup, H. Rogier, et al., “Design of an implantable slot dipole conformal flexible antenna for biomedical applications,” IEEE Trans. Antenn. Propag., vol. 59, no. 10, pp. 556–3564, 2011. https://doi.org/10.1109/tap.2011.2163761.Search in Google Scholar

[30] N. Ganeshwaran and J. K. Jeyaprakash, “Design of a dual-band circular implantable Antenna for biomedical applications,” IEEE Antenn. Wireless Propag. Lett., vol. 1225, pp. 1–5, 2019, https://doi.org/10.1109/LAWP.2019.2955140.Search in Google Scholar

Received: 2022-06-20
Accepted: 2022-10-17
Published Online: 2022-10-28
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2022-0130/html?lang=en
Scroll to top button