Home A 156 GHz high-power doubler-embedded cross-coupled local oscillator in 55 nm CMOS technology
Article
Licensed
Unlicensed Requires Authentication

A 156 GHz high-power doubler-embedded cross-coupled local oscillator in 55 nm CMOS technology

  • Shenghui Yang ORCID logo EMAIL logo
Published/Copyright: October 28, 2022
Become an author with De Gruyter Brill

Abstract

The driving power of the local oscillator (LO) determines whether the mixers can work in an optimal state. Implementing high-power LO sources is challenging for transceivers in the terahertz band beyond 100 GHz. In this paper, a cross-coupled oscillator based on Cascode amplifiers is proposed. Using the principle of current-reuse, a high-power doubler-embedded cross-coupled local oscillator is designed by combing a frequency doubler and a cross-coupled oscillator. The circuit is processed by 55-nm CMOS technology. With a supply voltage of 1.6 V, the output power reaches −1.3 dBm at 156 GHz, and the DC-to-RF efficiency is 2.1%. In addition, this local oscillator has been used in an up-conversion mixer.


Corresponding author: Shenghui Yang, Tianjin University, Tianjin, China, E-mail:

Funding source: National Key Research and Development Program of China

Award Identifier / Grant number: 2016YFA0202200

Acknowledgments

This work was supported by the National Key Research and Development Program of China under Grant 2016YFA0202200.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. Reiter, H. Li, B. Sene, et al., “A low-noise W-band receiver in a 28-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 406–409, 2021. https://doi.org/10.1109/lmwc.2021.3125896.Search in Google Scholar

[2] T. Heller, E. Cohen, and E. Socher, “A 102–129-GHz 39-dB gain 8.4-dB noise figure I/Q receiver frontend in 28-nm CMOS,” IEEE Trans. Microw. Theor. Tech., vol. 64, no. 5, pp. 1535–1543, 2016, https://doi.org/10.1109/tmtt.2016.2547390.Search in Google Scholar

[3] F. Ellinger, D. Fritsche, G. Tretter, et al.., “Review of millimeter-wave integrated circuits with low power consumption for high speed wireless communications,” Frequenz, vol. 71, nos. 1–2, pp. 1–9, 2017, https://doi.org/10.1515/freq-2016-0119.Search in Google Scholar

[4] Y. S. Lin, G. H. Li, and N. Van Hieu, “A 75–85 GHz down-conversion mixer with integrated M archand baluns in 90 nm CMOS with excellent matching and port-to-port isolation for automotive radars,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 73–81, 2015, https://doi.org/10.1002/mop.28774.Search in Google Scholar

[5] D. Pan, Z. Duan, L. Huang, et al.., “Design of high-linearity 75–90 GHz CMOS down-conversion mixer for automotive radar,” Analog Integr. Circuits Signal Process., vol. 97, no. 2, pp. 313–322, 2018, https://doi.org/10.1007/s10470-018-1247-9.Search in Google Scholar

[6] J. Kim and Y. Kwon, “Low conversion loss 94 GHz CMOS resistive mixer,” Electron. Lett., vol. 51, no. 18, pp. 1464–1466, 2015, https://doi.org/10.1049/el.2015.1035.Search in Google Scholar

[7] K. S. Choi, D. W. Park, D. R. Utomo, et al.., “500 GHz CMOS heterodyne imager adopting fourth subharmonic passive mixer,” Microw. Opt. Technol. Lett., vol. 62, no. 2, pp. 683–687, 2020, https://doi.org/10.1002/mop.32099.Search in Google Scholar

[8] C. Deng, H. Q. Yang, and M. Gong, “30–43 GHz cascode Sub-harmonic mixer in 0.13-μm CMOS technology,” IEICE Electron. Express, vol. 15, p. 20180793, 2018.10.1587/elex.15.20180793Search in Google Scholar

[9] D. Parveg, M. Varonen, A. Safaripour, et al.., “An mm-wave CMOS I–Q subharmonic resistive mixer for wideband zero-IF receivers,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 5, pp. 520–523, 2020, https://doi.org/10.1109/lmwc.2020.2980973.Search in Google Scholar

[10]] F. Zhu and G. Q. Luo, “A millimeter-wave fundamental and subharmonic hybrid CMOS mixer for dual-band applications,” Int. J. Microw. Wireless Technol., vol. 13, no. 5, pp. 424–429, 2021, https://doi.org/10.1017/s1759078720001270.Search in Google Scholar

[11] X. Meng, B. Chi, and Z. Wang, “An 110 GHz CMOS colpitts VCO based on switched coupled-inductor,” Analog Integr. Circuits Signal Process., vol. 86, no. 1, pp. 115–120, 2016, https://doi.org/10.1007/s10470-015-0646-4.Search in Google Scholar

[12] M. Azadmehr, I. Paprotny, and L. Marchetti, “100 years of colpitts oscillators: ontology review of common oscillator circuit topologies,” IEEE Circ. Syst. Mag., vol. 20, no. 4, pp. 8–27, 2020, https://doi.org/10.1109/mcas.2020.3027334.Search in Google Scholar

[13] C. L. S. Hsieh and J. Y. C. Liu, “A low phase noise 210-GHz triple-push ring oscillator in 90-nm CMOS,” IEEE Trans. Microw. Theor. Tech., vol. 66, no. 4, pp. 1983–1997, 2018, https://doi.org/10.1109/tmtt.2018.2791408.Search in Google Scholar

[14] S. Kim, D. Yoon, and J. S. A. Rieh, “270-GHz CMOS triple-push ring oscillator with a coupled-line matching network,” IEEE Trans. Terahertz Sci. Technol., vol. 9, no. 5, pp. 449–462, 2019, https://doi.org/10.1109/tthz.2019.2923556.Search in Google Scholar

[15] D. Kim and J. S. Rieh, “Comparison of two layout options for 110-GHz CMOS LC cross-coupled oscillators,” J. Electromagn. Eng. Sci., vol. 18, no. 2, pp. 141–143, 2018, https://doi.org/10.26866/jees.2018.18.2.141.Search in Google Scholar

[16] A. Ferschischi, H. Ghaleb, M. Schulz, et al.., “Nonlinear analysis of cross-coupled super-regenerative oscillators,” IEEE Trans. Circ. Syst. I: Regul. Pap., vol. 68, no. 6, pp. 2368–2381, 2021, https://doi.org/10.1109/tcsi.2021.3070157.Search in Google Scholar

[17] J. C. Huang, S. Wang, and T. Y. Tsai, “An 80–100 GHz VCO using auxiliary cross-coupled pair and push-push topology in 0.18-μm CMOS,” Microw. Opt. Technol. Lett., vol. 61, no. 1, pp. 235–238, 2019, https://doi.org/10.1002/mop.31520.Search in Google Scholar

[18] X. Meng, B. Chi, and Z. Wang, “CMOS cross-coupled oscillator operating close to the transistor’s fmax,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 1131–1133, 2017, https://doi.org/10.1109/lmwc.2017.2752965.Search in Google Scholar

[19] S. Yang, “Analysis of high frequency behaviors of the self-biased TIA stage and implementation of an up-conversion mixer in millimeter-wave/terahertz band,” IEICE Electron. Express, vol. 19, p. 20210562, 2022.10.1587/elex.19.20210562Search in Google Scholar

[20] R. Kananizadeh and O. A. Momeni, “A 190-GHz VCO with 20.7% tuning range employing an active mode switching block in a 130 nm SiGe BiCMOS,” IEEE J. Solid State Circ., vol. 52, no. 8, pp. 2094–2104, 2017, https://doi.org/10.1109/jssc.2017.2689031.Search in Google Scholar

[21] Y. Shu, H. J. Qian, and X. A. Luo, “A 169.6-GHz low phase noise and wideband hybrid mode-switching push–push oscillator,” IEEE Trans. Microw. Theor. Tech., vol. 67, no. 7, pp. 2769–2781, 2019, https://doi.org/10.1109/tmtt.2019.2913642.Search in Google Scholar

[22] P. Y. Chiang, O. Momeni, and P. A. Heydari, “A 200-GHz inductively tuned VCO with-7-dBm output power in 130-nm SiGe BiCMOS,” IEEE Trans. Microw. Theor. Tech., vol. 61, no. 10, pp. 3666–3673, 2013, https://doi.org/10.1109/tmtt.2013.2279779.Search in Google Scholar

[23] Y. Shu, H. J. Qian, and X. Luo, “A 173 GHz transformer-based push-push oscillator with 11.2% tuning range in 28nm CMOS,” in 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, IEEE, 2018, pp. 1–4.10.1109/IEEE-IWS.2018.8400867Search in Google Scholar

[24] H. Koo, C. Y. Kim, and S. Hong, “Design and analysis of 239 GHz CMOS push-push transformer-based VCO with high efficiency and wide tuning range,” IEEE Trans. Circ. Syst. I: Regul. Pap., vol. 62, no. 7, pp. 1883–1893, 2015, https://doi.org/10.1109/tcsi.2015.2426957.Search in Google Scholar

Received: 2022-05-19
Accepted: 2022-10-17
Published Online: 2022-10-28
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2022-0104/pdf?lang=en
Scroll to top button