Home A 5.7 mW, UWB LNA for Wireless Applications Using Noise Canceling Technique in 90 nm CMOS
Article
Licensed
Unlicensed Requires Authentication

A 5.7 mW, UWB LNA for Wireless Applications Using Noise Canceling Technique in 90 nm CMOS

  • Vikram Singh ORCID logo EMAIL logo , Sandeep Kumar Arya and Manoj Kumar
Published/Copyright: August 30, 2019
Become an author with De Gruyter Brill

Abstract

A 3–12 GHz ultra-wideband (UWB) low noise amplifier (LNA) is proposed in this paper. The first stage common-gate (CG), common-source (CS) noise canceling approach is used to achieve low noise-figure (NF). CG configuration at the input stage provides wideband input-matching. The noise of CG transistor is cancelled by systematically added two parallel CS transistors, whose outputs are cascoded in second stage. In order to achieve flat power gain (S21) response, a series peaking inductor is used in the second stage. The proposed LNA is designed in 90 nm CMOS process with chip-layout area of 0.467 mm2 and in comparison to the existing LNAs, it consumes a low power of 5.7 mW from a 1 V supply. The achieved input-reflection coefficient (S11) is <−7.5 dB, output-reflection coefficient (S22) is <−7.6 dB with NF < 5.8 dB for 3–12 GHz UWB and third-order intercept point (IIP3) of −19 dBm. It achieves high and flat S21 of 20.84 ± 0.28 dB over 4.2–10 GHz, with NF ranging from 2.6–3.6 dB.

References

[1] V. Singh, S. K. Arya, and M. Kumar, “A 3–14 GHz, self-body biased common-gate UWB LNA for wireless applications in 90nm CMOS,” J Circuits Syst. Comput., vol. 28, pp. 1950056, 2019.10.1142/S0218126619500567Search in Google Scholar

[2] FCC, “Revision of part 15 of the commission’s rules regarding ultra-wide-band transmission system,” Technical Report, ET-Docket, pp. 98–153, 2002.Search in Google Scholar

[3] J. Shim, T. Yang, and J. Jeong, “Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique,” Microelectron. J., vol. 44, pp. 82–826, 2013.10.1016/j.mejo.2013.06.001Search in Google Scholar

[4] S. Arshad, R. Ramzan, K. Muhammad, and Q.-U. Wahab, “A sub-10 mW, noise cancelling, wideband LNA for UWB applications,” Int. J. Electron. Commun. (AEÜ), vol. 69, no. 1, pp. 109–118, 2015.10.1016/j.aeue.2014.08.002Search in Google Scholar

[5] I. Bastos, L. B. Oliveira, J. Goes, J. P. Oliveira, and M. Silva, “Noise canceling LNA with gain enhancement by using double feedback,” Integr. VLSI J., vol. 52, pp. 309–315, 2016.10.1016/j.vlsi.2015.07.003Search in Google Scholar

[6] A. Saberkari, S. Kazemi, V. Shirmohammadli, and M. C. E. Yagoub, “gm-boosted flat gain UWB low noise amplifier with active inductor-based input matching network,” Integr. VLSI J., vol. 52, pp. 323–333, 2016.10.1016/j.vlsi.2015.06.002Search in Google Scholar

[7] D. Sichun, C. Wang, X. Shi, and S. Guo, “A 3.1–10.6 GHz high linear low noise amplifier for ultra-wideband receivers,” Frequenz, vol. 64, no. 1–2, pp. 10–13, 2010.10.1515/FREQ.2010.64.1-2.10Search in Google Scholar

[8] M. Hayati, S. Cheraghaliei, and S. Zarghami, “Design of UWB low noise amplifier using noise-canceling and current-reused techniques,” Integr. VLSI J., vol. 60, pp. 232–239, 2018.10.1016/j.vlsi.2017.10.002Search in Google Scholar

[9] X. Guan and C. Nguyen, “Low-power consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 8, pp. 3278–3283, 2006.10.1109/TMTT.2006.877812Search in Google Scholar

[10] B. Machiels, P. Reynaert, and M. Steyaert, “Power efficient distributed low noise amplifier in 90 nm CMOS,” IEEE Int. Symp. Radio Freq. Integr. Circuits, pp. 131–134, 2010. DOI:10.1109/rfic.2010.5477322.Search in Google Scholar

[11] J. Zhu, H. Krishnaswamy, and P. R. Kinget, “A DC–9.5 GHz noise-canceling distributed LNA in 65nm CMOS,” IEEE Int. Symp. Radio Freq. Integr. Circuits, pp. 177–180, 2013. DOI:10.1109/RFIC.2013.6569554.Search in Google Scholar

[12] K. Mæland, K. G. Kjelgård, and T. S. Lande, “CMOS distributed amplifiers for UWB radar,” IEEE International Symposium on Circuits and Systems, 2015, pp. 1298–1301. DOI:10.1109/iscas.2015.7168879.Search in Google Scholar

[13] R. Kundu, A. Pandey, S. Chakraborty, and V. Nath, “A CMOS low noise amplifier based on common source technique for ISM band application,” Microsyst. Technol., May, 2015. DOI:10.1007/s00542-015-2550-3.Search in Google Scholar

[14] S. Arshad, F. Zafar, R. Ramzan, and Q. Wahab, “Wideband and multiband CMOS LNAs: State-of-the-art and future prospects,” Microelectron. J., vol. 44, no. 9, pp. 774–786, 2013.10.1016/j.mejo.2013.04.011Search in Google Scholar

[15] V. Singh, S. K. Arya, and M. Kumar, “Gm-boosted current-reuse inductive-peaking common source LNA for 3.1–10.6 GHz UWB wireless applications in 32 nm CMOS,” Analog. Integr. Circ. Sig. Process, vol. 97, no. 2, pp. 351–363, 2018. DOI:10.1007/s10470-018-1290-6.Search in Google Scholar

[16] N. H. Jeong, C. S. Cho, and S. Min, “Highly linear wideband LNA design using inductive shunt feedback,” J. Semicon. Technol. Sci., vol. 14, no. 1, pp. 100–106, 2014. DOI:10.5573/JSTS.2014.14.1.100.Search in Google Scholar

[17] H. K. Chen, Y. S. Lin, and S. S. Lu, “Analysis and design of a 1. 6-28GHz compact wideband LNA in 90nm CMOS using a π-match input network.” IEEE Tran. Microwave Theory Tech., vol. 58, no. 8, pp. 2092–2104, Aug, 2010.10.1109/TMTT.2010.2052406Search in Google Scholar

[18] M. Parvizi, K. Allidina, and M. N. E. Gamal, “A sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, no. 6, pp. 1111–1122, 2015. DOI:10.1109/TVLSI.2014.2334642.Search in Google Scholar

[19] D. Huang, S. Diao, W. Qian, and F. Lin, “A resistive feedback LNA in 65 nm CMOS with a gate inductor for bandwidth extension,” Microelectron. J., vol. 46, no. 3, pp. 103–110, 2015. DOI:10.1016/j.mejo.2014.10.012.Search in Google Scholar

[20] C. Feng, X. Yu, Z. Lu, W. Lim, and W. Sui, “3-10 GHz self biased resistive feedback LNA with inductive source degeneration,” Electron. Lett., vol. 49, pp. 387–388, 2013.10.1049/el.2012.4472Search in Google Scholar

[21] B. Guo and J. Chen, “A wideband common-gate CMOS LNA employing complementary MGTR technique,” Microw. Opt. Technol. Lett., 2017. vol. 59, pp. 1668–1671. DOI:10.1002/mop.30601.Search in Google Scholar

[22] B. Guo, J. Chen, H. Chen, and X. Wang, “A 0.1 – 1.4 GHz inductorless low-noise amplifier with 13 dBm IIP3 and 24 dBm IIP2 in 180 nm CMOS,” Mod. Phys. Lett. B, vol. 32, no. 2, pp. 185009, 2017. DOI:10.1142/S0217984918500094.Search in Google Scholar

[23] G. Qin, M. Jin, G. Tu, et al., “Inductorless CMOS low noise amplifier for multiband application in 0.1–1.2 GHz,” Trans. Tianjin Univ., vol. 23, pp. 168, 2017. DOI:10.1007/s12209-017-0040-7.10.1007/s12209-017-0040-7Search in Google Scholar

[24] L. Yang, Y. Kiat Seng, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1 to 10.6 GHz ultra-wide-band wireless receivers,” IEEE Trans. Circuits Syst. I: Regular Pap, vol. 53, no. 8, pp. 1683–1692, 2006.10.1109/TCSI.2006.879059Search in Google Scholar

[25] L. Yu-Tsung and J.-F. Kiang, “Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages,” IEEE Trans. Micro. Theor. Techni., vol. 59, no. 9, pp. 2285–2294, 2011.10.1109/TMTT.2011.2160080Search in Google Scholar

[26] B. Guo and X. Li, “A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique,” IEEE Microwave Wirel. Compon. Lett., vol. 23, no. 11, pp. 608–610, Nov, 2013.10.1109/LMWC.2013.2281426Search in Google Scholar

[27] S. S. Mohan, M. Del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419–1424, 1999.10.1109/4.792620Search in Google Scholar

[28] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenarts, and B. Nauta, “A wideband noise-canceling CMOS LNA exploiting a transformer,” IEEE Radio Frequency Integrated Circuits (RFIC), Symposium, 2006. DOI:10.1109/RFIC/.2006.1651110.Search in Google Scholar

[29] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging,” IEEE Trans Microw. Theor. Tech., vol. 6, pp. 1817–1826, 2008.10.1109/TMTT.2008.927301Search in Google Scholar

[30] A. R. Aravinth Kumar, B. D. Sahoo, and A. Dutta, “A wideband 2–5 GHz noise canceling subthreshold low noise amplifier,” IEEE Trans. Circuits Syst-II Express Briefs, vol. 65, no. 7, pp. 834–838, July, 2018. DOI:10.1109/TCSII,2017.2719678.Search in Google Scholar

Received: 2019-04-10
Published Online: 2019-08-30
Published in Print: 2020-01-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2019-0051/html
Scroll to top button