Home Microstrip Hexagonal Fractal Antenna for Military Applications
Article
Licensed
Unlicensed Requires Authentication

Microstrip Hexagonal Fractal Antenna for Military Applications

  • Manisha Gupta EMAIL logo , Vinita Mathur , Arun Kumar ORCID logo , Virendra Saxena and Deepak Bhatnagar
Published/Copyright: August 29, 2019
Become an author with De Gruyter Brill

Abstract

Novel and miniaturized hexagonal Microstrip patch antenna design is presented in this paper. Patch is fractured using Sierpinski and Koch structures to make the antenna applicable for multiband applications. Additionally ground is defected to enhance the bandwidth and further size is reduced. Material FR-4 (εr = 4.4)has been chosen to design proposed antenna and substrate thickness as 1.59 mm. Microstrip feed technique is used as it provides better results. Gain obtained in this case is 5.57 dB, 7.49 dB and 4.02 dB with bandwidth as 606.8 MHz, 507 MHz and 2 GHz at 8.3 GHz, 12.6 GHz and 17.6 GHz resonant frequencies. The antenna is better to other designs in terms of parameters like bandwidth, directivity, polarization, gain, return loss and dimension. The antenna provides application for military appliances. A good concord is obtained in Simulated and measured results.

References

[1] L. Desclos, Y. Mahe, S. Reed, G. Poilasne, and S. Toutain, “Patch antenna size reduction by combining inductive loading and short point techniques,” Microwave Opt. Technol. Lett., vol. 30, no. 6, pp. 385–386, 2012. DOI:http://dx.doi.org/10.1002/mop.1322.Search in Google Scholar

[2] H. Y. Wang and M. J. Lancaster, “Aperture-coupled thin-film superconducting meander antennas,” IEEE Trans. Antennas Propag., vol. 47, no. 5, pp. 829–836, 1999. DOI:http://dx.doi.org/10.1109/8.774137.Search in Google Scholar

[3] J. Abraham and T. Mathew, “Dual band david fractal microstrip patch antenna for GSM and WiMAX applications,” Wirel. Eng. Technol., vol. 6, pp. 33–40, 2015. DOI:http://dx.doi.org/10.4236/wet.2015.62004.Search in Google Scholar

[4] H. K. Kan and R. B. Waterhouse, “Size reduction technique for shorted patches,” Electron. Lett., vol. 35, pp. 948–949, 1999. DOI:http://dx.doi.org/10.1049/el:19990703.Search in Google Scholar

[5] G. Zhao, F. S. Zhang, Y. Song, Z. B. Weng, and Y. C. Jiao Compact ring monopole antenna with double meander line for 2.4/5 GHz dual band operation. Progress in Electromagnetic Research, 2007, vol. 72, pp. 187–194. DOI: http://dx.doi.org/10.2528/PIER07031405.Search in Google Scholar

[6] V. V. Reddy and N. V. S. N. Sarma, “Triband circularly polarized Koch fractal boundary Microstrip antenna,” IEEE Antennas Propaga. Lett., vol. 13, pp. 1057–1060, 2014. DOI:10.1109/LAWP.2014.2327566.Search in Google Scholar

[7] D. D. Krishna, M. Gopikrishna, C. K. Aanandan, and P. Mohanan, “Compact wideband Koch fractal printed slot antenna,” IET Microwaves Antennas Propag., vol. 3, no. 5, pp. 782–789, 2009. DOI:10.1049/iet-map.2008.0210.Search in Google Scholar

[8] M. N. A. Karim, M. K. A. Rahim, H. A. Majid, O. Ayop, M. Abu, and F. Zubir, “Log periodic fractal Koch antenna for UHF band applications,” Prog. Electromagn. Res., vol. 100, pp. 201–218, 2010. DOI:http://dx.doi.org/10.2528/PIER09110512.Search in Google Scholar

[9] C. Mahatthanajatuphat, S. Saleekaw, and P. Akkaraekthalin, “A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN and mobile WiMAX applications,” Prog. Electromagn. Res., vol. 89, pp. 57–74. DOI:http://dx.doi.org/10.2528/PIER08111907.Search in Google Scholar

[10] D. Li and J.-F. Mao, “Sierpinskized Koch-like sided multifractal dipole antenna,” Prog. Electromagn. Res., vol. 130, pp. 207–224, 2012. DOI:http://dx.doi.org/10.2528/PIER12060108.Search in Google Scholar

[11] P. Chawla and R. Khanna, “Design and fabrication of a novel hexagonal reconfigurable antenna with RF switches for mobile terminal,” J. Natn. Sci. Found. Sri Lanka, vol. 42, no. 3, pp. 283–289, 2014. DOI:http://dx.doi.org/10.4038/jnsfsr.v42i3.7403.Search in Google Scholar

[12] C. Puente, J. Romeu, R. Pous, X. Garcia, and F. Benitez, “Fractal multiband antenna based on the Sierpinski gasket,” IEEE Electron. Lett., vol. 32, 1996. DOI:http://dx.doi.org/10.1049/el:19960033.Search in Google Scholar

[13] P. W. Tang and P. F. Wahid, “Hexagonal fractal multiband antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 3, no. 1, pp. 111–112, 2005. DOI:10.1109/LAWP.2004.829989.Search in Google Scholar

[14] D. Li and J. F. Mao, “Coplanar waveguide-fed Koch-like sided Sierpinski hexagonal carpet multifractal monopole antenna,” IET Microwave Antennas Propag., vol. 8, no. 5, pp. 358–366, 2014. DOI:10.1049/iet-map.2013.0041.Search in Google Scholar

[15] D. Aissaoui, N. B. Hacen, and T. A. Denidni, “UWB hexagonal monopole fractal antenna with additional trapezoidal elements,” 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Oct., Montreal, QC.10.1109/ICUWB.2015.7324526Search in Google Scholar

[16] S. Tripathi, A. Mohan, and S. Yadav, “A compact dual band notched fractal antenna for UWB application,” Asia-Pacific Microwave Conference, Sendai, Japan, IEEE, pp. 205–207, Nov. 2014.Search in Google Scholar

Received: 2019-02-25
Published Online: 2019-08-29
Published in Print: 2019-09-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2019-0028/html
Scroll to top button