Abstract
In this paper, an electromagnetic band gap cavity antenna with improved radiation and impedance bandwidths is presented. The proposed antenna is constructed by placing a triple-layer heterogeneous printed-unprinted partially reflective surface (PRS) above a primary aperture-coupled patch antenna. The PRS unit-cell provides a positive gradient reflection phase behavior over the desired frequency range. A prototype antenna is fabricated and measured that highlighted its ability to achieve 3-dB gain bandwidth of about 35.9 %, from 7.93 GHz to 11.4 GHz, with a peak gain of 14.25 dBi at 8.5 GHz. In addition, the impedance bandwidth is 40.32 %, from 7.9 GHz to 11.89 GHz. Thus, the designed antenna outperforms many other competitors for improving the radiation bandwidth of planar antennas with the same presented concept.
References
[1] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas, C-band point-to-point communication systems,” IEEE Antennas Propag. Mag., vol. 58, no. 1, pp. 56–64, Feb. 2016.10.1109/MAP.2015.2501240Search in Google Scholar
[2] L. Chang, Y. Li, Z. Zhang, and Z. Feng, “Compact all-metallic cavity-cascaded antenna,” Electro. Lett., vol. 52, no. 6, pp. 413–414, 2016.10.1049/el.2015.4004Search in Google Scholar
[3] M. U. Afzal, K. P. Esselle, and B. A. Zeb, “Dielectric phase-correcting structures for electromagnetic band gap resonator antennas,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3390–3399, 2015.10.1109/TAP.2015.2438332Search in Google Scholar
[4] B. A. Zeb, and K. P. Esselle, “High-gain dual band dual-polarised electromagnetic band gap resonator antenna with all-dielectric superstrcture,” IET Microwave Antennas Paropag., vol. 9, no. 10, pp. 1059–1065, 2015.10.1049/iet-map.2014.0798Search in Google Scholar
[5] B. A. Zeb, and K. P. Esselle, “Design and measurement of a tri-band one dimensional electromagnetic bandgap resonator antenna,” IET Microwave Antennas Propag., vol. 10, no. 2, pp. 168–172, 2016.10.1049/iet-map.2015.0301Search in Google Scholar
[6] M. A. Al-Tarifi, D. E. Anagnostou, A. K. Amert, and K. W. Whites, “Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1898–1908, 2013.10.1109/TAP.2012.2231931Search in Google Scholar
[7] A. A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electro. Lett., vol. 52, no. 4, pp. 266–268, 2016.10.1049/el.2015.2694Search in Google Scholar
[8] R. M. Hashmi, and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, 2016.10.1109/TAP.2015.2511801Search in Google Scholar
[9] B. A. Zeb, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using one unprinted dielectric superstrate,” Electro. Lett., vol. 51, no. 15, pp. 1146–1148, 2015.10.1049/el.2015.0932Search in Google Scholar
[10] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Broadband sub-wavelength profile high gain antennas based on multi-layer metasurfaces,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 423–427, 2015.10.1109/TAP.2014.2365825Search in Google Scholar
[11] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3474–3481, 2014.10.1109/TAP.2014.2320755Search in Google Scholar
[12] H. Y. Yuan, S. B. Qu, J. Q. Zhang, J. F. Wang, H. Y. Chen, H. Zhou, Z. Xu, and A. X. Zhang, “A metamaterial-inspired wideband high-gain Fabry–Perot resonator microstrip patch antenna,” Microw. Opt. Technol. Lett., vol. 58, no. 7, pp. 1675–1678, 2016.10.1002/mop.29883Search in Google Scholar
[13] X. X. Yang, G. N. Tan, B. Han, and H. G. Xue, “Millimeter wave Fabry-Perot resonator antenna,” Int. J. Antennas Propag., vol. 2016, article ID 3032684, pp. 1–7, 2016.10.1155/2016/3032684Search in Google Scholar
[14] W. Q. Li, X. Y. Cao, J. Gao, Z. Zhang, and L. L. Cong, “Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi-fractal tree,” IET Microwave Antennas Propag., vol. 10, no. 4, pp. 370–377, 2016.10.1049/iet-map.2015.0311Search in Google Scholar
[15] Z. G. Liu, Z. X. Cao, and L. N. Wu, “Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 524–527, 2016.10.1109/LAWP.2015.2456886Search in Google Scholar
[16] G. V. Trentini, “Partially reflecting sheet arrays,” IRE Trans. Antenna Propag., vol. AP-4, no. 4, pp. 666–671, 1956.10.1109/TAP.1956.1144455Search in Google Scholar
[17] N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, “Wideband Fabry-Perot resonator antenna with two complementary FSS layers,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2463–2471, 2014.10.1109/TAP.2014.2308533Search in Google Scholar
[18] N. Wang, J. Li, G. Wei, and L. Talbi, “Wideband Fabry- Perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 229–232, 2015.10.1109/LAWP.2014.2360703Search in Google Scholar
[19] F. Qin, S. Gao, G. Wei, and J. Xu, “Broadband circularly polarized Fabry-Perot antenna integrated with wideband phase shifter for satellite communication,” Microw. Opt. Technol. Lett., vol. 58, no. 5, pp. 1109–1113, 2016.10.1002/mop.29746Search in Google Scholar
[20] Z. L. Wang, K. Hashimoto, N. Shinohara, and H. Matsumoto, “Frequency-selective surface for microwave power transmission,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 10, pp. 2039–2041, 1999.10.1109/22.795083Search in Google Scholar
[21] A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al Sarawi, and D. Abbott, “Second order terahertz band pass frequency selective surface with miniaturized elements,” IEEE Trans. Terahertz Sci. Tech., vol. 5, no. 5, pp. 761–769, 2015.10.1109/TTHZ.2015.2452813Search in Google Scholar
[22] T. Rahim, and J. Xu, “Design of high gain and wide band EBG resonator antenna with dual layers of same dielectric superstrate at X-bands,” J. Microwave Optoelectron. Electromagn. Appl., vol. 15, no. 2, pp. 93–104, 2016.10.1590/2179-10742016v15i2558Search in Google Scholar
[23] A. A. Eldek, “Gain improvement of a cavity backed slot antenna,” Microwave Opt. Technol. Lett., vol. 53, no. 8, pp. 1815–1818, 2011.10.1002/mop.26141Search in Google Scholar
[24] K. Konstantinidis, A. P. Feresidis, and P. S. Hall, “Multiple layer Fabry-Perot cavity antennas,” IEEE, 7th European Conf. Antennas Propagation (EuCap), pp. 2500–2504, 2013.Search in Google Scholar
[25] A. Chaabane, F. Djahli, H. Attia, and T. A. Denidni, “Antenna radiation bandwidth broadening using wideband double layer partially reflective surfaces,” IEEE, 17th Int. Symp. Antenna Technology Applied Electromagnetics (ANTEM), 2016.10.1109/ANTEM.2016.7550151Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Compact Multi-band Power Dividers Based on Stub Loaded Stepped-Impedance Resonators with Defected Microstrip Structure (SL-SIR-DMS)
- Compact, Harmonic Suppressed Gysel Power Divider with Plain Structure
- Compact Diplexer with High Isolation and Wide Stopband Based on SIRs
- A Quasi-Elliptic Bandpass Filter-Integrated Single-Pole Double-Throw Switch
- Reflection Modeling Based Broadband Matching Network Design
- Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna
- Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation
- A Compact Pentagonal Ring CPW-Fed Zeroth Order Resonating Antenna with Gain Enhancement
- Novel High-Gain Circularly Polarized Lens Antenna Using Single-Layer Transmissive Metasurface
- Eight-Element Antenna Array for LTE 3.4–3.8 GHz Mobile Handset Applications
- The Effect of Direct Lightning Shielding Rod on Lightning Electromagnetic Fields Aboveground
Articles in the same Issue
- Frontmatter
- Compact Multi-band Power Dividers Based on Stub Loaded Stepped-Impedance Resonators with Defected Microstrip Structure (SL-SIR-DMS)
- Compact, Harmonic Suppressed Gysel Power Divider with Plain Structure
- Compact Diplexer with High Isolation and Wide Stopband Based on SIRs
- A Quasi-Elliptic Bandpass Filter-Integrated Single-Pole Double-Throw Switch
- Reflection Modeling Based Broadband Matching Network Design
- Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna
- Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation
- A Compact Pentagonal Ring CPW-Fed Zeroth Order Resonating Antenna with Gain Enhancement
- Novel High-Gain Circularly Polarized Lens Antenna Using Single-Layer Transmissive Metasurface
- Eight-Element Antenna Array for LTE 3.4–3.8 GHz Mobile Handset Applications
- The Effect of Direct Lightning Shielding Rod on Lightning Electromagnetic Fields Aboveground