Home Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna
Article
Licensed
Unlicensed Requires Authentication

Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna

  • Abdelhalim Chaabane EMAIL logo , Farid Djahli , Hussein Attia and Tayeb. A. Denidni
Published/Copyright: February 11, 2017
Become an author with De Gruyter Brill

Abstract

In this paper, an electromagnetic band gap cavity antenna with improved radiation and impedance bandwidths is presented. The proposed antenna is constructed by placing a triple-layer heterogeneous printed-unprinted partially reflective surface (PRS) above a primary aperture-coupled patch antenna. The PRS unit-cell provides a positive gradient reflection phase behavior over the desired frequency range. A prototype antenna is fabricated and measured that highlighted its ability to achieve 3-dB gain bandwidth of about 35.9 %, from 7.93 GHz to 11.4 GHz, with a peak gain of 14.25 dBi at 8.5 GHz. In addition, the impedance bandwidth is 40.32 %, from 7.9 GHz to 11.89 GHz. Thus, the designed antenna outperforms many other competitors for improving the radiation bandwidth of planar antennas with the same presented concept.

References

[1] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas, C-band point-to-point communication systems,” IEEE Antennas Propag. Mag., vol. 58, no. 1, pp. 56–64, Feb. 2016.10.1109/MAP.2015.2501240Search in Google Scholar

[2] L. Chang, Y. Li, Z. Zhang, and Z. Feng, “Compact all-metallic cavity-cascaded antenna,” Electro. Lett., vol. 52, no. 6, pp. 413–414, 2016.10.1049/el.2015.4004Search in Google Scholar

[3] M. U. Afzal, K. P. Esselle, and B. A. Zeb, “Dielectric phase-correcting structures for electromagnetic band gap resonator antennas,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3390–3399, 2015.10.1109/TAP.2015.2438332Search in Google Scholar

[4] B. A. Zeb, and K. P. Esselle, “High-gain dual band dual-polarised electromagnetic band gap resonator antenna with all-dielectric superstrcture,” IET Microwave Antennas Paropag., vol. 9, no. 10, pp. 1059–1065, 2015.10.1049/iet-map.2014.0798Search in Google Scholar

[5] B. A. Zeb, and K. P. Esselle, “Design and measurement of a tri-band one dimensional electromagnetic bandgap resonator antenna,” IET Microwave Antennas Propag., vol. 10, no. 2, pp. 168–172, 2016.10.1049/iet-map.2015.0301Search in Google Scholar

[6] M. A. Al-Tarifi, D. E. Anagnostou, A. K. Amert, and K. W. Whites, “Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1898–1908, 2013.10.1109/TAP.2012.2231931Search in Google Scholar

[7] A. A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electro. Lett., vol. 52, no. 4, pp. 266–268, 2016.10.1049/el.2015.2694Search in Google Scholar

[8] R. M. Hashmi, and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, 2016.10.1109/TAP.2015.2511801Search in Google Scholar

[9] B. A. Zeb, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using one unprinted dielectric superstrate,” Electro. Lett., vol. 51, no. 15, pp. 1146–1148, 2015.10.1049/el.2015.0932Search in Google Scholar

[10] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Broadband sub-wavelength profile high gain antennas based on multi-layer metasurfaces,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 423–427, 2015.10.1109/TAP.2014.2365825Search in Google Scholar

[11] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3474–3481, 2014.10.1109/TAP.2014.2320755Search in Google Scholar

[12] H. Y. Yuan, S. B. Qu, J. Q. Zhang, J. F. Wang, H. Y. Chen, H. Zhou, Z. Xu, and A. X. Zhang, “A metamaterial-inspired wideband high-gain Fabry–Perot resonator microstrip patch antenna,” Microw. Opt. Technol. Lett., vol. 58, no. 7, pp. 1675–1678, 2016.10.1002/mop.29883Search in Google Scholar

[13] X. X. Yang, G. N. Tan, B. Han, and H. G. Xue, “Millimeter wave Fabry-Perot resonator antenna,” Int. J. Antennas Propag., vol. 2016, article ID 3032684, pp. 1–7, 2016.10.1155/2016/3032684Search in Google Scholar

[14] W. Q. Li, X. Y. Cao, J. Gao, Z. Zhang, and L. L. Cong, “Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi-fractal tree,” IET Microwave Antennas Propag., vol. 10, no. 4, pp. 370–377, 2016.10.1049/iet-map.2015.0311Search in Google Scholar

[15] Z. G. Liu, Z. X. Cao, and L. N. Wu, “Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 524–527, 2016.10.1109/LAWP.2015.2456886Search in Google Scholar

[16] G. V. Trentini, “Partially reflecting sheet arrays,” IRE Trans. Antenna Propag., vol. AP-4, no. 4, pp. 666–671, 1956.10.1109/TAP.1956.1144455Search in Google Scholar

[17] N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, “Wideband Fabry-Perot resonator antenna with two complementary FSS layers,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2463–2471, 2014.10.1109/TAP.2014.2308533Search in Google Scholar

[18] N. Wang, J. Li, G. Wei, and L. Talbi, “Wideband Fabry- Perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 229–232, 2015.10.1109/LAWP.2014.2360703Search in Google Scholar

[19] F. Qin, S. Gao, G. Wei, and J. Xu, “Broadband circularly polarized Fabry-Perot antenna integrated with wideband phase shifter for satellite communication,” Microw. Opt. Technol. Lett., vol. 58, no. 5, pp. 1109–1113, 2016.10.1002/mop.29746Search in Google Scholar

[20] Z. L. Wang, K. Hashimoto, N. Shinohara, and H. Matsumoto, “Frequency-selective surface for microwave power transmission,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 10, pp. 2039–2041, 1999.10.1109/22.795083Search in Google Scholar

[21] A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al Sarawi, and D. Abbott, “Second order terahertz band pass frequency selective surface with miniaturized elements,” IEEE Trans. Terahertz Sci. Tech., vol. 5, no. 5, pp. 761–769, 2015.10.1109/TTHZ.2015.2452813Search in Google Scholar

[22] T. Rahim, and J. Xu, “Design of high gain and wide band EBG resonator antenna with dual layers of same dielectric superstrate at X-bands,” J. Microwave Optoelectron. Electromagn. Appl., vol. 15, no. 2, pp. 93–104, 2016.10.1590/2179-10742016v15i2558Search in Google Scholar

[23] A. A. Eldek, “Gain improvement of a cavity backed slot antenna,” Microwave Opt. Technol. Lett., vol. 53, no. 8, pp. 1815–1818, 2011.10.1002/mop.26141Search in Google Scholar

[24] K. Konstantinidis, A. P. Feresidis, and P. S. Hall, “Multiple layer Fabry-Perot cavity antennas,” IEEE, 7th European Conf. Antennas Propagation (EuCap), pp. 2500–2504, 2013.Search in Google Scholar

[25] A. Chaabane, F. Djahli, H. Attia, and T. A. Denidni, “Antenna radiation bandwidth broadening using wideband double layer partially reflective surfaces,” IEEE, 17th Int. Symp. Antenna Technology Applied Electromagnetics (ANTEM), 2016.10.1109/ANTEM.2016.7550151Search in Google Scholar

Received: 2016-7-3
Published Online: 2017-2-11
Published in Print: 2017-5-24

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2016-0205/html
Scroll to top button