Startseite Separability properties of extended admissible groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Separability properties of extended admissible groups

  • Hoang Thanh Nguyen EMAIL logo
Veröffentlicht/Copyright: 28. Juni 2025
Forum Mathematicum
Aus der Zeitschrift Forum Mathematicum

Abstract

Extended admissible groups belong to a particular class of graph of groups which possess a graph of groups decomposition generalizing that of any non-geometric 3-manifold and Croke–Kleiner admissible groups. In this paper, under mild conditions on vertex groups of an extended admissible group G, we show that finitely generated abelian subgroups of G are separable (in particular G is residually finite and has solvable word problem), cohomologically good, and the profinite topology on G is efficient. These results extend those in [E. Hamilton, Abelian subgroup separability of Haken 3-manifolds and closed hyperbolic n-orbifolds, Proc. Lond. Math. Soc. (3) 83 2001, 3, 626–646] and [H. Wilton and P. Zalesskii, Profinite properties of graph manifolds, Geom. Dedicata 147 2010, 29–45] from 3-manifold groups to a wider class of graphs of groups. Finally, we establish that G has property (QT) in the sense of Bestvina–Bromberg–Fujiwara.

MSC 2020: 20F65; 20F67

Communicated by Clara Löh


Funding statement: The author was partially supported by the National Key Program for the development of Mathematics in the period from 2021 to 2030 under grant number B2024-CTT-04.

Acknowledgements

We thank Alex Margolis and Wenyuan Yang for useful conversations. The author is grateful for the insightful and detailed critiques of the referee that have helped improve the exposition of this paper.

References

[1] C. Abbott, H. T. Nguyen and A. J. Rasmussen, Largest hyperbolic action of 3-manifold groups, Bull. Lond. Math. Soc. 56 (2024), no. 10, 3090–3113. 10.1112/blms.13118Suche in Google Scholar

[2] J. Bajpai, Omnipotence of surface groups, Master’s thesis, McGill University, 2007. Suche in Google Scholar

[3] M. Bestvina, K. Bromberg and K. Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64. 10.1007/s10240-014-0067-4Suche in Google Scholar

[4] M. Bestvina, K. Bromberg and K. Fujiwara, Proper actions on finite products of quasi-trees, Ann. H. Lebesgue 4 (2021), 685–709. 10.5802/ahl.85Suche in Google Scholar

[5] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss. 319, Springer, Berlin, 1999. 10.1007/978-3-662-12494-9Suche in Google Scholar

[6] R. G. Burns, A. Karrass and D. Solitar, A note on groups with separable finitely generated subgroups, Bull. Aust. Math. Soc. 36 (1987), no. 1, 153–160. 10.1017/S0004972700026393Suche in Google Scholar

[7] C. B. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000), no. 3, 549–556. 10.1016/S0040-9383(99)00016-6Suche in Google Scholar

[8] C. B. Croke and B. Kleiner, The geodesic flow of a nonpositively curved graph manifold, Geom. Funct. Anal. 12 (2002), no. 3, 479–545. 10.1007/s00039-002-8255-7Suche in Google Scholar

[9] F. Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003), 933–963. 10.2140/gt.2003.7.933Suche in Google Scholar

[10] A. Dranishnikov and T. Januszkiewicz, Every Coxeter group acts amenably on a compact space, Topol. Proc. 24 (1999), 135–141. Suche in Google Scholar

[11] C. Druţu and M. Kapovich, Geometric Group Theory, Amer. Math. Soc. Colloq. Publ. 63, American Mathematical Society, Providence, 2018. 10.1090/coll/063Suche in Google Scholar

[12] R. Frigerio, J.-F. Lafont and A. Sisto, Rigidity of High Dimensional Graph Manifolds, Astérisque 372, Société Mathématique de France, Paris, 2015. Suche in Google Scholar

[13] M. Hagen, J. Russell, A. Sisto and D. Spriano, Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms, preprint (2022), https://arxiv.org/abs/2206.12244. Suche in Google Scholar

[14] M. F. Hagen and H. Petyt, Projection complexes and quasimedian maps, Algebr. Geom. Topol. 22 (2022), no. 7, 3277–3304. 10.2140/agt.2022.22.3277Suche in Google Scholar

[15] E. Hamilton, Abelian subgroup separability of Haken 3-manifolds and closed hyperbolic n-orbifolds, Proc. Lond. Math. Soc. (3) 83 (2001), no. 3, 626–646. 10.1112/plms/83.3.626Suche in Google Scholar

[16] S. Han, H. T. Nguyen and W. Yang, Property (QT) for 3-manifold groups, Algebr. Geom. Topol. 25 (2025), no. 1, 107–159. 10.2140/agt.2025.25.107Suche in Google Scholar

[17] S. Han, W. Yang and Y. Zou, Counting double cosets with application to generic 3-manifolds, preprint (2023), https://arxiv.org/abs/2307.06169. Suche in Google Scholar

[18] J. Hempel, Residual finiteness for 3-manifolds, Combinatorial Group Theory and Topology, Ann. of Math. Stud. 111, Princeton University, Princeton (1987), 379–396. 10.1515/9781400882083-018Suche in Google Scholar

[19] R. Kim, Residual finiteness and abelian subgroup separability of some high dimensional graph manifolds, Korean J. Math. 29 (2021), no. 3, 603–612. Suche in Google Scholar

[20] G. Levitt and A. Minasyan, Residual properties of automorphism groups of (relatively) hyperbolic groups, Geom. Topol. 18 (2014), no. 5, 2985–3023. 10.2140/gt.2014.18.2985Suche in Google Scholar

[21] D. D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. Lond. Math. Soc. 19 (1987), no. 5, 481–484. 10.1112/blms/19.5.481Suche in Google Scholar

[22] A. Margolis and H. Nguyen, Quasi isometric rigidity of extended admissible groups, preprint (2024), https://arxiv.org/abs/2401.03635. Suche in Google Scholar

[23] A. Margolis, H. Nguyen and Y. Qing, Existence, visibility and other applications of quasi-redirecting boundaries, in preparation. Suche in Google Scholar

[24] Z. Munro and H. Petyt, Coarse obstructions to cocompact cubulation, preprint (2024), https://arxiv.org/abs/2407.09275. Suche in Google Scholar

[25] H. T. Nguyen and Y. Qing, Sublinearly Morse boundary of CAT ( 0 ) admissible groups, J. Group Theory 27 (2024), no. 4, 857–897. 10.1515/jgth-2023-0145Suche in Google Scholar

[26] H. T. Nguyen and W. Yang, Croke-Kleiner admissible groups: property (QT) and quasiconvexity, Michigan Math. J. 73 (2023), no. 5, 971–1019. 10.1307/mmj/20216045Suche in Google Scholar

[27] G. A. Niblo and D. T. Wise, Subgroup separability, knot groups and graph manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 3, 685–693. 10.1090/S0002-9939-00-05574-XSuche in Google Scholar

[28] D. V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. 10.1007/s00222-006-0012-3Suche in Google Scholar

[29] P. Przytycki and D. T. Wise, Separability of embedded surfaces in 3-manifolds, Compos. Math. 150 (2014), no. 9, 1623–1630. 10.1112/S0010437X14007350Suche in Google Scholar

[30] P. Scott, Subgroups of surface groups are almost geometric, J. Lond. Math. Soc. (2) 17 (1978), no. 3, 555–565. 10.1112/jlms/s2-17.3.555Suche in Google Scholar

[31] P. Scott and T. Wall, Topological methods in group theory, Homological Group Theory London Math. Soc. Lecture Note Ser. 36, Cambridge University, Cambridge (1979), 137–203. 10.1017/CBO9781107325449.007Suche in Google Scholar

[32] A. Sisto, Projections and relative hyperbolicity, Enseign. Math. (2) 59 (2013), no. 1–2, 165–181. 10.4171/lem/59-1-6Suche in Google Scholar

[33] H. Sun, Non-LERFness of arithmetic hyperbolic manifold groups and mixed 3-manifold groups, Duke Math. J. 168 (2019), no. 4, 655–696. 10.1215/00127094-2018-0048Suche in Google Scholar

[34] H. Wilton, Virtual retractions, conjugacy separability and omnipotence, J. Algebra 323 (2010), no. 2, 323–335. 10.1016/j.jalgebra.2009.10.009Suche in Google Scholar

[35] H. Wilton and P. Zalesskii, Profinite properties of graph manifolds, Geom. Dedicata 147 (2010), 29–45. 10.1007/s10711-009-9437-3Suche in Google Scholar

[36] D. T. Wise, Subgroup separability of graphs of free groups with cyclic edge groups, Q. J. Math. 51 (2000), no. 1, 107–129. 10.1093/qmathj/50.1.107Suche in Google Scholar

[37] D. T. Wise, The Structure of Groups with a Quasiconvex Hierarchy, Ann. of Math. Stud. 209, Princeton University, Princeton, 2021. 10.1515/9780691213507Suche in Google Scholar

Received: 2024-04-29
Revised: 2025-05-23
Published Online: 2025-06-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0194/html?lang=de
Button zum nach oben scrollen