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Abstract: We prove the uniform boundedness of oscillatory singular integrals with singular kernels |x|*"9(ﬁ)
and rational phases of the form P(x) + ﬁ for arbitrary real-valued polynomials P and Q. Our main result
shows that the condition Q(0) = 0 imposed in [M. Folch-Gabayet and J. Wright, An estimation for a family of
oscillatory integrals, Studia Math. 154 (2003), no. 1, 89-97] is superfluous, which answers a question left open in
that paper. As a secondary improvement of existing results, we also extend the space for Q( - ) from L log L(S"1)

to the strictly larger space H'(S™1).
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1 Introduction

The investigation of oscillatory singular integrals has a rich and enduring history ([1, 4, 6-8, 10, 11]). For oscil-
latory singular integrals in dimensions higher than 1, boundedness does not hold for general rational phases.
In [5], the authors obtained some very interesting estimates for oscillatory singular integrals with phase func-

tions of the form P(x) + ﬁ where P(x) and Q(x) are real-valued polynomials in n variables. To describe their
results, we let n > 2, K(x) be a Calderén-Zygmund kernel given by
()
K(X) = T o (1-1)
|x|™

where Q : $"! — C is integrable over the unit sphere $"! with respect to the induced Lebesgue measure o
and satisfies
J Q(x) do(x) = 0. 1.2
gn-1
Let d € N U {0}, and let P, 4 denote the space of polynomials in n variables whose coefficients are real and
whose degrees do not exceed d. The following is a result from [5].

Theorem 1.1 (Folch-Gabayet and Wright [5]). Let K(x) be a Calderon-Zygmund kernel given by (1.1)-(1.2). Let
P(x), Q(X) € Ppq suchthat Q(0) =0andQ € L 10gL(S"‘1). Then

< B, 1.3)

pv. j ei(P(X)Jrﬁ)K(x) dx
]RYI
where B may depend on || Q|| 10g 1.(sn-1), N and d but not otherwise on the coefficients of P and Q.
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This naturally led to the following question:
Question. Would the conclusion of Theorem 1.1 hold if the condition Q(0) = 0 is removed?
For the case deg(Q) = 1, the authors of [5] answered the above question in the affirmative:

Theorem 1.2 ([5]). Let K(x) be a Calderén—Zygmund kernel given by (1.1)-(1.2). Let P(x) € Ppqand Q(x)=a+v- X,
where a € R and v € R". Suppose that Q € Llog L($"™'). Then

pv. j ei(P(X)J'ﬁ)K(x) dx| < B, (1.4)
IRI[
where B may depend on (|2 10g L(s*-1),  and d but not otherwise on a, v and the coefficients of P.

The main purpose of this paper is to give a complete answer to the question stated above by showing that the
condition Q(0) = 0 in Theorem 1.1 can be dropped irrespective of the degree of Q(x).

In addition to the improvement of Theorem 1.1 by lifting the vanishing condition on Q(0), we shall also
expand the class of K(x) in Theorem 1.1 by allowing Q( - ) to be in H'(S"!), the Hardy space over the unit sphere.
It is well known that the space L log L(S™ ") is a proper subspace of H(S$""1). We state our result as follows.

Theorem 1.3. Let K(x) be a Calderén-Zygmund kernel given by (1.1)—(1.2). Let P(x), Q(X) € Pp g and Q € H'(S™1).

Then

pw. J e PR K(x) dx| < BIQUan sy, (15)
IRn

where B may depend on n and d but not otherwise on the coefficients of P and Q.

The proof of Theorem 1.3 will appear in Section 3.

Boundedness results such as (1.5) can be used together with Plancherel’s Theorem to obtain the L bounded-
ness of corresponding singular integral operators defined by polynomial mappings. We refer the readers to [5]
for more details.

In the rest of the paper we shall use A < B (A > B) to mean that A < ¢B (4 > ¢B) for a certain constant ¢
whose actual value is not essential for the relevant arguments to work. We shall also use A ~ B to means “A < B
and B < A”.

2 A few lemmas

In order to prove Theorem 1.3, one of the tools we shall need is the following lemma:

Lemma2.1. LetA > 1,d € N and
d
qt) =Y qjt,

j=1
where q1, . . .,qq € Rand qq # 0. Then there are m (m < d) disjoint subintervals G1 = (L1, R1),...,Gm = (L, Rm)
of (0, co) such that
(i) 0=Li<Ry<Ly<Ry<---<Lpy<Rpy=o00,
(i) foreachle{1,...,m}, thereexistsak; € {1,...,d} such that

|qi, "] > A - max{lqrt"| : k e {1,..., d\{ki}}

forallt e Gy,
(iii) forevery € € {Ly,...,Lm, Ry, ..., Ryp_1}, there exists apair ofj, k € {1, ..., d} suchthatj + kand ¢ = |‘]Z—]k_|f* s
@iv) fori<l<m-1,

‘ —
Bl

L -1
<A77
R;
The above lemma can be viewed as a“strengthening” of [5, Lemma 2.1]. For the proof, instead of employing the
method of induction as done in [5], we shall use a more direct approach.
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Proof. Let A={j:1<j<dand g # 0}. Since (i)-(iv) hold trivially when |A| = 1, we may assume that |A| > 2.
For everyj € A, let
Sj=1{te(0,00): |qjt}| >A- max{lqktk| sk e A\{j}}.

Then either S; = 0 or S; = (aj, bj) where
aj = max({<A|%
4

bj = min({(A|%
a;

)ﬁ :keAandk<j}U{0}>,

>ﬁ:keAandk>j}U{oo}>,

and aj < bj. By A > 1,
§inSy =0
foranyj,j’' € A satisfyingj # j'. Let Gy, ..., Gp, denote all the nonempty S;’s, arranged from left to right and let
G = (L1, Ry) for 1 < 1 < m. Clearly, (1)-(iii) are satisfied.
Letl € {1,...,m - 1}. Then there exist an integer s satisfying1 < s < w and a partition

Ri=G( <@ < <{s=Ly,
such that
1git] # |qkt"]

for all distinct j, k in A and t € [Ry, Li+1]\{{0, {1, ..., {s}. For each v € {1, ..., s}, there are j,, k, € A such that
Jv # ky and
max{|qrt’] : k € A\l = 1qx, £ < |qj, "] @1
for all t € ({y-1, (). Since
(Gv-1,4v) € (R, Lia) < (0, 00\ | S,
JeA
we have
lg;, "] < A - max{|qit"| : k € A\{ju}} = Alqr, t* 2.2)
for all t € ({y_1, {v). It follows from (2.1) and (2.2) that, forv =1,...,s,

v

1
—— < Alv-hkil SA,
v-1

which implies (iv). O
Next we recall the classical van der Corput’s lemma.

Lemma2.2. (i) Let ¢ be areal-valued C* function on [a, b] satisfying |¢®(x)| > 1 for every x € [a, b]. Suppose
that k > 2, or that k = 1 and ¢' is monotone on [a, b]. Then there exists a positive constant cy such that

b
[ 200

a

1
< clA|7®

for all A € R. The constant cy is independent of A, a, b and ¢.
(i) Let ¢ and cy be the same asin (i). If Y CY([a, b)), then

b
j e"?y(x) dx

a

_1
< kAR (W llzeo iy + 19 L1 ((ab)))

holds for all A € R.

Below is an easy consequence of van der Corput’s lemma which will be needed in our proof of Theorem 1.3.
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Lemma 2.3. Let ®(t, u) be a real-valued C* function on [a, b] x U, where U is an open set in R™. Suppose that
d € N U {0} and for every (t, u) € [a, b] x U, there exists an integer k = k(t, u) > d such that

okd(t, u)

atk #0.

Then, for every compact subset W of U, there exist two positive constants p = p(d, m,a,b,®, W) and C =
C(d,m,a, b, ®, W) such that

| j el ROALWWT Y (6) dt| < CIAIP(IYllzeoqy + 19" )
J

holds for all subintervals J of [a, b], ¥ € C*(J), A € R,u € W and R(-) € Py 4.

To prove the above lemma, one first uses Lemma 2.2 (or a direct integration by parts when d = 0 and k = 1)
locally and then finish with a compactness argument. Details are omitted.
Another result we shall need is the following lemma from Stein [9, p. 331].

Lemma 2.4. Let q(x) be a homogeneous polynomial of degree d on R". Write

my = j 1q(w) do(w).
Snfl

o2

gn-1 1

Then

where By is independent of q( - ).

3 Proof of Theorem 1.3

We are now ready to present the proof of Theorem 1.3. Initially we will assume that P, Q € Py 4, @ € L®($" 1)
and satisfies the vanishing mean value condition (1.2). We will prove that there exists an B, ¢ > 0 independent
of Q and the coefficients of the polynomials P and Q such that

< Byl peo(sn-1y- (3.1

i(POO+ L) R(X)
v.le o’ —— dx
P j x|

R

Since the case Q(0) = 0 is already covered by the result of Folch-Gabayet and Wright (see Theorem 1.1), we

shall assume that
Qx) = n(l + 0y aaxa), (3.2)
1<|al<d
where n = Q(0) # 0. For 1 < k < d, let
qrx) = ) aax®
|al=k

Then, for each k € {1, ..., d}, either qx(-) = 0 or qx(w) # O for a.e. w € sn-1,

Let

A=Ag=1{k:1<k<dandqg(-)#0}.

Then, forall w € $" !t and t > 0,
0(tw) = ,7<1 + Y qk(w)tk). 33)

kel

We will present our argument for the more general case of |A| > 1, while omitting the discussion of the case
when |A| = 1. However, it can be treated in a similar but simpler manner.
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Let A = 2d%. For each j € A and a.e. w € $"1, let
Gj(w) = {t € (0,00) : |gj(w)|¥ > Alqr(w)|t* for all k € A\{j}}.

6o = ( (1 (0. (ALY Y) o ([ (A o)),

" _
keAj keAj

Thus,

where we used
A]T:{keA:k>j}, Aj‘:{keA:k<j}

and the convention that

ﬂs:(o,oo).

Sed
For eachj € Aand a.e. w € $™1, let

6" () = Gj(w) n (0,477 lgi()I 7).
6 (w) = Gjw) n (477 () 7,47 Igj(w)| 7],
6P () = Gj(w) n (471 (W) 7, 00).

Fort e G](.3)(w), we have

Q(tw) =~ gj(w)¢ (3.4)
and
i(<2(tw)) ~ i( (w)?)) (3.5)
dt AL : '
It follows from the arguments in the proof of [5, Theorem 1.1] and (3.4)-(3.5) that
J Q(w)( Y PO i) %) do(w)| < 1R e(sr-1)- (3.6)
g1 jEAG]G)((U)
Trivially,
J Q(w) z ei(P(tw)+m) %) do(w)| < Rl (sn-1y. 3.7
sn-1 jEAG;Z)((u)

Therefore, in order to prove (3.1), it suffices to prove that

J 9(‘*’)<Z J’ ei(P(tw)+Q(}m)$)dG(w)
jeAG(l)
7 ()

< ”Q"Loo(Snfl) (38)

gn-1

and
’ I o w)< y J ei(P(tw)w&m))%)dG(w) < Q1o (sn1). 3.9)

st JEA 0,000\ Ujes ()

Since (3.9) follows from Lemma 2.1 (iv) easily, we will focus our attention on the proof of (3.8). By applying
Lemma 2.3 with [a, b] = [0, 1], u = (u1, . .., ug),
U= {ueIRd'il<max|u-| < 9} Wz{ue]Rd'maxlu-lzl}
"5 1gj<d Y 1gj<d / ’
and
d -1
O(t, u) = (1 +y uktk) , (3.10)
k=1
there exist two positive constants p = p(d) and Cy4 such that

Jei[R(t)+Aq>(t,u)]¢(t) dt
J
holds for all subintervals J of [0, }1], Y e Cl(D, AeRueWandR(-) € Pyq.

< CalAIP (1Y llzeogy + 19" 1)) (311
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LetN=[p]+1,6= min{lnlﬁ, 1}.For eachj € A and a.e. w € $™1, let
Vi, 8) = 61" () n (1g;(w)| 7 87, 00),
(1) 1 1.1 1.1
Hj(0,8) = 6 @) n [ Slq(@I T 67 1g@) 787 ],
) 1 —1g1
Z(0,8) = 6" @)n (0, claj@)l 87 ).

We also let v, € A such that
1 1
Iqv, ()P0 = max{|qk(w)|* : k € A}.

For eachj € A and a.e. w € S™1, if Yj(w,6) #+ 0and t € Yj(w, 6), then

%IH

1 1 1 1 ;o1 _
81 < 1qi(w)7t < 1qu, (@)% t = (Iqu, (@))% < (g;(@)|)7% < 4% <
It is thus clear that, in this case, § = |n| ¥ <1 and the set
1qv,, ()17 Yi(, 8) = {Iqy, (@)[7 t : t € Yi(w, 8)}

is a subinterval of (87, 1). Let
= _1
Py(t) = P(Iqy, ()| % tw),

u=(uy,...,uUq), where

_ alaw @i itken,
0 ifk¢A

and let ®(-, -) be given as in (3.10). By (3.11),

PPt i) At dt ‘ I J oiPu(O+0710(t) ﬂ‘
t t
Yj(@.8) muw%mw&
[ dt p7;
< i + j ) =2Cdn <1,
which implies that
I J Q(w)( Z j ol PO+ 5z) AL dt )do(w) < 1l peo(sn1y- (3.12)
Sn—l jEAYj(w,S)
Trivially we have
J g(m( Y Pl i) At )do(w) < Q0o (1) (3.13)
sn—l jEAHj(w,é)
Next we shall prove that
J Q(O))( Z l(P(tu))+ O(tw)) >d0'((x)) < "Q”Loo(sn—l), (3.14)
i1 JEA Z,(,6)
which, together with (3.12)-(3.13), would give us (3.8).
Foreachj € Aandae. w e "L if t € Zj(w, §), then
8 1
y qk(w)tk‘ <(1+(d-DADIg@IF <671+ [@-DADS< T < .

kel
Let

N-1 s
Pug0) = PO+ Y (= Y ) -

s=0 kel
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Then Py, ,(x) is a polynomial whose degree does not exceed Nd and, for each j € A and a.e. w € $"%,

Y q(w)t*

keA

J |ei(P(tw>+®) — etPua(te) % = glm_l t

Zj(w,(S) Zj(w,(S)

|N

4 ; (3.15)
< 3@l max{(g; ()Y : t € Zj(w, 6)}

< ngmrlaN <1
Recall that Stein established in [9] that, for K(-) given asin (1.1) withan Q € L°($™ 1) and Ya:lal <M} cCRR,

el S vex) k(x) dx

e1<|x|<er

<Apm,

where Ay is independent of €1, €, and y, (see [9, pp. 334-335)). It follows that, for all h > 0,

pv. J e P g(x) dx

[x|<h

< Ball Q|| poo(sn-1y (3.16)

holds with a By independent of h and the coefficients of Py ,. Observe that each Zj(w, &) is the intersection of
no more than (d + 1) intervals in the form of either (0, (|q(w)/q(w)|") or ((|q(w)/q(w)]", co0), where q(-), g(-)
are homogeneous polynomials of degrees not exceeding d, and |y| < 1. Thus, one may use (3.16) and Lemma 2.4
to get

< 1] peo(sn-1y- (3.17)

J Q(w)(Z J e"PN’"(“*’)%>do(w)

g1 JEAZ,(,8)

By combining (3.17) and (3.15), we obtain (3.14). Then (3.8) follows, as does (3.1).

We will end our proof of Theorem 1.3 by providing a brief explanation of how one can derive (1.5) from (3.1).

Let B : $"~! — C be an arbitrary regular H! atom on $"°1, i.e. B(-) is supported in $"~ n B(p, h) for some
p € $"' and h > 0, has mean-value zero over $" !, and satisfies || 8]l < h*™

Suppose that h < }L. Let M be an orthogonal matrix which has p as its first row vector. Define the linear
transformation L on R" by

L(x1, X2, ...,Xn) = (X1, hxy, ..., hxp)M,
and let
det(L)|xI" B(z2)

s
for x € R™\{0}. Then Q is homogeneous of degree 0, has mean-value zero over $"~' and satisfies | Q| o, < 1. By
the uniform nature of (3.1) which allows it to be applied with P(x) and Q(x) replaced by P(Lx) and Q(Lx), we get

i B(i) ; Q(x -
pv. j e“”"“ﬁ)% dx‘ = [pw. J e’(P(LX)"ﬁ)% dx| < BndllQllzeo(sn1) < 1 (3.18)

R R"

forall h € (0, %). The above inequality also holds when h > % asitfollows directly from (3.1) and [| 8]0 < A1 ™" < 1.
Finally, by the atomic decomposition of H 1(s"1) (see [2, 3]) and (3.18), one obtains (1.5). The proof of Theorem 1.3
is now complete.
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