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Abstract:We prove the uniform boundedness of oscillatory singular integrals with singular kernels |x|−nΩ( x|x| )
and rational phases of the form P(x) + 1

Q(x) for arbitrary real-valued polynomials P and Q. Our main result
shows that the condition Q(0) = 0 imposed in [M. Folch-Gabayet and J. Wright, An estimation for a family of
oscillatory integrals, Studia Math. 154 (2003), no. 1, 89–97] is superfluous, which answers a question left open in
that paper. As a secondary improvement of existing results, we also extend the space for Ω( ⋅ ) from L log L(𝕊n−1)
to the strictly larger space H1(𝕊n−1).
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1 Introduction

The investigation of oscillatory singular integrals has a rich and enduring history ([1, 4, 6–8, 10, 11]). For oscil-
latory singular integrals in dimensions higher than 1, boundedness does not hold for general rational phases.
In [5], the authors obtained some very interesting estimates for oscillatory singular integrals with phase func-
tions of the form P(x) + 1

Q(x) , where P(x) and Q(x) are real-valued polynomials in n variables. To describe their
results, we let n ≥ 2, K(x) be a Calderón–Zygmund kernel given by

K(x) =
Ω( x|x| )
|x|n , (1.1)

where Ω : 𝕊n−1 → ℂ is integrable over the unit sphere 𝕊n−1 with respect to the induced Lebesgue measure σ
and satisfies

∫
𝕊n−1

Ω(x) dσ(x) = 0. (1.2)

Let d ∈ ℕ ∪ {0}, and let Pn,d denote the space of polynomials in n variables whose coefficients are real and
whose degrees do not exceed d. The following is a result from [5].

Theorem 1.1 (Folch-Gabayet and Wright [5]). Let K(x) be a Calderón–Zygmund kernel given by (1.1)–(1.2). Let
P(x), Q(x) ∈ Pn,d such that Q(0) = 0 and Ω ∈ L log L(𝕊n−1). Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p.v. ∫
ℝn

ei(P(x)+
1

Q(x) )K(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ B, (1.3)

where B may depend on ‖Ω‖L log L(𝕊n−1), n and d but not otherwise on the coefficients of P and Q.
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This naturally led to the following question:

Question. Would the conclusion of Theorem 1.1 hold if the condition Q(0) = 0 is removed?

For the case deg(Q) = 1, the authors of [5] answered the above question in the affirmative:

Theorem 1.2 ([5]). Let K(x) be a Calderón–Zygmund kernel given by (1.1)–(1.2). Let P(x) ∈Pn,d and Q(x) = a + v ⋅ x,
where a ∈ ℝ and v ∈ ℝn . Suppose that Ω ∈ L log L(𝕊n−1). Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p.v. ∫
ℝn

ei(P(x)+
1

Q(x) )K(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ B, (1.4)

where B may depend on ‖Ω‖L log L(𝕊n−1), n and d but not otherwise on a, v and the coefficients of P.

The main purpose of this paper is to give a complete answer to the question stated above by showing that the
condition Q(0) = 0 in Theorem 1.1 can be dropped irrespective of the degree of Q(x).

In addition to the improvement of Theorem 1.1 by lifting the vanishing condition on Q(0), we shall also
expand the class of K(x) in Theorem 1.1 by allowing Ω( ⋅ ) to be inH1(𝕊n−1), the Hardy space over the unit sphere.
It is well known that the space L log L(𝕊n−1) is a proper subspace of H1(𝕊n−1). We state our result as follows.

Theorem 1.3. Let K(x) be a Calderón–Zygmund kernel given by (1.1)–(1.2). Let P(x),Q(x) ∈ Pn,d and Ω ∈ H1(𝕊n−1).
Then 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p.v. ∫
ℝn

ei(P(x)+
1

Q(x) )K(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ B‖Ω‖H1(𝕊n−1) , (1.5)

where B may depend on n and d but not otherwise on the coefficients of P and Q.

The proof of Theorem 1.3 will appear in Section 3.
Boundedness results such as (1.5) can be used togetherwith Plancherel’s Theorem to obtain the L2 bounded-

ness of corresponding singular integral operators defined by polynomial mappings. We refer the readers to [5]
for more details.

In the rest of the paper we shall use A ≲ B (A ≳ B) to mean that A ≤ cB (A ≥ cB) for a certain constant c
whose actual value is not essential for the relevant arguments to work. We shall also use A ≈ B to means “A ≲ B
and B ≲ A”.

2 A few lemmas

In order to prove Theorem 1.3, one of the tools we shall need is the following lemma:

Lemma 2.1. Let A > 1, d ∈ ℕ and

q(t) =
d
∑
j=1
qj tj ,

where q1 , . . . , qd ∈ ℝ and qd ̸= 0. Then there are m (m ≤ d) disjoint subintervals G1 = (L1 , R1), . . . , Gm = (Lm , Rm)
of (0,∞) such that
(i) 0 = L1 < R1 < L2 < R2 < ⋅ ⋅ ⋅ < Lm < Rm = ∞,
(ii) for each l ∈ {1, . . . ,m}, there exists a kl ∈ {1, . . . , d} such that

|qkl tkl | > A ⋅max{|qk tk| : k ∈ {1, . . . , d}\{kl}}

for all t ∈ Gl ,
(iii) for every ξ ∈ {L2 , . . . , Lm , R1 , . . . , Rm−1}, there exists a pair of j, k ∈ {1, . . . , d} such that j ̸= k and ξ ≈ | qkqj |

1
j−k ,

(iv) for 1 ≤ l ≤ m − 1,
Ll+1
Rl
≤ A

d(d−1)
2 .

The above lemma can be viewed as a“strengthening” of [5, Lemma 2.1]. For the proof, instead of employing the
method of induction as done in [5], we shall use a more direct approach.
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Proof. Let Λ = {j : 1 ≤ j ≤ d and qj ̸= 0}. Since (i)–(iv) hold trivially when |Λ| = 1, we may assume that |Λ| ≥ 2.
For every j ∈ Λ, let

Sj = {t ∈ (0,∞) : |qj tj| > A ⋅max{|qk tk| : k ∈ Λ\{j}}.

Then either Sj = 0 or Sj = (aj , bj) where

aj = max({(A
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
qk
qj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

1
j−k

: k ∈ Λ and k < j} ∪ {0}),

bj = min({(A
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
qk
qj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

1
j−k

: k ∈ Λ and k > j} ∪ {∞}),

and aj < bj . By A > 1,
Sj ∩ Sj󸀠 = 0

for any j, j󸀠 ∈ Λ satisfying j ̸= j󸀠. Let G1 , . . . , Gm denote all the nonempty Sj ’s, arranged from left to right and let
Gl = (Ll , Rl) for 1 ≤ l ≤ m. Clearly, (i)–(iii) are satisfied.

Let l ∈ {1, . . . ,m − 1}. Then there exist an integer s satisfying 1 ≤ s ≤ d(d−1)
2 and a partition

Rl = ζ0 < ζ1 < ⋅ ⋅ ⋅ < ζs = Ll+1 ,

such that
|qj tj| ̸= |qk tk|

for all distinct j, k in Λ and t ∈ [Rl , Ll+1]\{ζ0 , ζ1 , . . . , ζs}. For each ν ∈ {1, . . . , s}, there are jν , kν ∈ Λ such that
jν ̸= kν and

max{|qk tk| : k ∈ Λ\{jν}} = |qkν tkν | < |qjν tjν | (2.1)

for all t ∈ (ζν−1 , ζν). Since
(ζν−1 , ζν) ⊆ (Rl , Ll+1) ⊆ (0,∞)\⋃

j∈Λ
Sj ,

we have
|qjν tjν | ≤ A ⋅max{|qk tk| : k ∈ Λ\{jν}} = A|qkν tkν | (2.2)

for all t ∈ (ζν−1 , ζν). It follows from (2.1) and (2.2) that, for ν = 1, . . . , s,

ζν
ζν−1
≤ A

1
|jν−kν | ≤ A,

which implies (iv).

Next we recall the classical van der Corput’s lemma.

Lemma 2.2. (i) Let ϕ be a real-valued Ck function on [a, b] satisfying |ϕ(k)(x)| ≥ 1 for every x ∈ [a, b]. Suppose
that k ≥ 2, or that k = 1 and ϕ󸀠 is monotone on [a, b]. Then there exists a positive constant ck such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

eiλϕ(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ck|λ|−

1
k

for all λ ∈ ℝ. The constant ck is independent of λ, a, b and ϕ.
(ii) Let ϕ and ck be the same as in (i). If ψ ∈ C1([a, b]), then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

eiλϕ(x)ψ(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ck|λ|−

1
k (‖ψ‖L∞([a,b]) + ‖ψ󸀠‖L1([a,b]))

holds for all λ ∈ ℝ.

Below is an easy consequence of van der Corput’s lemma which will be needed in our proof of Theorem 1.3.
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Lemma 2.3. Let Φ(t, u) be a real-valued C∞ function on [a, b] × U, where U is an open set in ℝm . Suppose that
d ∈ ℕ ∪ {0} and for every (t, u) ∈ [a, b] × U, there exists an integer k = k(t, u) > d such that

∂kΦ(t, u)
∂tk

̸= 0.

Then, for every compact subset W of U, there exist two positive constants ρ = ρ(d,m, a, b, Φ,W) and C =
C(d,m, a, b, Φ,W) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
J

ei[R(t)+λΦ(t,u)]ψ(t) dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C|λ|−ρ(‖ψ‖L∞(J) + ‖ψ󸀠‖L1(J))

holds for all subintervals J of [a, b], ψ ∈ C1(J), λ ∈ ℝ, u ∈ W and R( ⋅ ) ∈ P1,d .

To prove the above lemma, one first uses Lemma 2.2 (or a direct integration by parts when d = 0 and k = 1)
locally and then finish with a compactness argument. Details are omitted.

Another result we shall need is the following lemma from Stein [9, p. 331].

Lemma 2.4. Let q(x) be a homogeneous polynomial of degree d on ℝn . Write

mq = ∫
𝕊n−1

|q(ω)| dσ(ω).

Then
∫
𝕊n−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
q(ω)
mq

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dσ(ω) ≤ Bd ,

where Bd is independent of q( ⋅ ).

3 Proof of Theorem 1.3

We are now ready to present the proof of Theorem 1.3. Initially we will assume that P, Q ∈ Pn,d , Ω ∈ L∞(𝕊n−1)
and satisfies the vanishing mean value condition (1.2). We will prove that there exists an Bn,d > 0 independent
of Ω and the coefficients of the polynomials P and Q such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p.v. ∫
ℝn

ei(P(x)+
1

Q(x) ) Ω(x)
|x|n dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Bn,d‖Ω‖L∞(𝕊n−1) . (3.1)

Since the case Q(0) = 0 is already covered by the result of Folch-Gabayet and Wright (see Theorem 1.1), we
shall assume that

Q(x) = η(1 + ∑
1≤|α|≤d

aαxα), (3.2)

where η = Q(0) ̸= 0. For 1 ≤ k ≤ d, let
qk(x) = ∑

|α|=k
aαxα .

Then, for each k ∈ {1, . . . , d}, either qk( ⋅ ) ≡ 0 or qk(ω) ̸= 0 for a.e. ω ∈ 𝕊n−1.
Let

Λ = ΛQ = {k : 1 ≤ k ≤ d and qk( ⋅ ) ̸≡ 0}.

Then, for all ω ∈ 𝕊n−1 and t > 0,
Q(tω) = η(1 + ∑

k∈Λ
qk(ω)tk). (3.3)

Wewill present our argument for themore general case of |Λ| > 1, while omitting the discussion of the case
when |Λ| = 1. However, it can be treated in a similar but simpler manner.
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Let A = 2d2. For each j ∈ Λ and a.e. ω ∈ 𝕊n−1, let

Gj(ω) = {t ∈ (0,∞) : |qj(ω)|tj > A|qk(ω)|tk for all k ∈ Λ\{j}}.

Thus,

Gj(ω) = ( ⋂
k∈Λ+

j

(0, (A|qk(ω)|
|qj(ω)|

)
1
j−k
)) ∩ ( ⋂

k∈Λ−
j

((
A|qk(ω)|
|qj(ω)|

)
1
j−k
,∞)),

where we used
Λ+j = {k ∈ Λ : k > j}, Λ−j = {k ∈ Λ : k < j}

and the convention that
⋂
S∈0

S = (0,∞).

For each j ∈ Λ and a.e. ω ∈ 𝕊n−1, let

G(1)j (ω) = Gj(ω) ∩ (0, 4
− dj |qj(ω)|−

1
j ),

G(2)j (ω) = Gj(ω) ∩ [4
− dj |qj(ω)|−

1
j , 4

d
j |qj(ω)|−

1
j ],

G(3)j (ω) = Gj(ω) ∩ (4
d
j |qj(ω)|−

1
j ,∞).

For t ∈ G(3)j (ω), we have
Q(tω) ≈ qj(ω)tj (3.4)

and
d
dt (

Q(tω)) ≈ d
dt (

qj(ω)tj)). (3.5)

It follows from the arguments in the proof of [5, Theorem 1.1] and (3.4)–(3.5) that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

G(3)
j (ω)

ei(P(tω)+
1

Q(tω) ) dt
t ) dσ(ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) . (3.6)

Trivially,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

G(2)
j (ω)

ei(P(tω)+
1

Q(tω) ) dt
t )

dσ(ω)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) . (3.7)

Therefore, in order to prove (3.1), it suffices to prove that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

G(1)
j (ω)

ei(P(tω)+
1

Q(tω) ) dt
t )

dσ(ω)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) (3.8)

and 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ

∫
(0,∞)\⋃j∈Λ Gj(ω)

ei(P(tω)+
1

Q(tω) ) dt
t ) dσ(ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) . (3.9)

Since (3.9) follows from Lemma 2.1 (iv) easily, we will focus our attention on the proof of (3.8). By applying
Lemma 2.3 with [a, b] = [0, 14 ], u = (u1 , . . . , ud),

U = {u ∈ ℝd : 45 < max1≤j≤d
|uj| <

6
5}, W = {u ∈ ℝd : max

1≤j≤d
|uj| = 1},

and

Φ(t, u) = (1 +
d
∑
k=1

uk tk)
−1

, (3.10)

there exist two positive constants ρ = ρ(d) and Cd such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
J

ei[R(t)+λΦ(t,u)]ψ(t) dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cd|λ|−ρ(‖ψ‖L∞(J) + ‖ψ󸀠‖L1(J)) (3.11)

holds for all subintervals J of [0, 14 ], ψ ∈ C
1(J), λ ∈ ℝ, u ∈ W and R( ⋅ ) ∈ P1,d .
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Let N = [ρ−1] + 1, δ = min{|η| 1N , 1}. For each j ∈ Λ and a.e. ω ∈ 𝕊n−1, let

Yj(ω, δ) = G(1)j (ω) ∩ (|qj(ω)|
− 1j δ

1
j ,∞),

Hj(ω, δ) = G(1)j (ω) ∩ [
1
6 |qj(ω)|

− 1j δ
1
j , |qj(ω)|−

1
j δ

1
j ],

Zj(ω, δ) = G(1)j (ω) ∩ (0,
1
6 |qj(ω)|

− 1j δ
1
j ).

We also let νω ∈ Λ such that
|qνω (ω)|

1
νω = max{|qk(ω)|

1
k : k ∈ Λ}.

For each j ∈ Λ and a.e. ω ∈ 𝕊n−1, if Yj(ω, δ) ̸= 0 and t ∈ Yj(ω, δ), then

δ
1
j < |qj(ω)|

1
j t ≤ |qνω (ω)|

1
νω t = (|qνω (ω)|tνω )

1
νω ≤ (|qj(ω)|tj)

1
νω < 4−

d
νω ≤

1
4 .

It is thus clear that, in this case, δ = |η| 1N < 1 and the set

|qνω (ω)|
1
νω Yj(ω, δ) = {|qνω (ω)|

1
νω t : t ∈ Yj(ω, δ)}

is a subinterval of (δ
1
j , 14 ). Let

P̃ω(t) = P(|qνω (ω)|
− 1
νω tω),

u = (u1 , . . . , ud), where

uk =
{
{
{

qk(ω)|qνω (ω)|
− k
νω if k ∈ Λ,

0 if k ̸∈ Λ

and let Φ( ⋅ , ⋅ ) be given as in (3.10). By (3.11),
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Yj(ω,δ)

ei(P(tω)+
1

Q(tω) ) dt
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

|qνω (ω)|
1
νω Yj(ω,δ)

ei(P̃ω(t)+η−1Φ(t,u)) dtt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Cd|η|ρ(
1

δ
1
j
+
∞

∫

δ
1
j

dt
t2
) = 2Cd|η|ρ−

1
Nj ≲ 1,

which implies that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

Yj(ω,δ)

ei(P(tω)+
1

Q(tω) ) dt
t )

dσ(ω)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) . (3.12)

Trivially we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

Hj(ω,δ)

ei(P(tω)+
1

Q(tω) ) dt
t ) dσ(ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) . (3.13)

Next we shall prove that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

Zj(ω,δ)

ei(P(tω)+
1

Q(tω) ) dt
t ) dσ(ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) , (3.14)

which, together with (3.12)–(3.13), would give us (3.8).
For each j ∈ Λ and a.e. ω ∈ 𝕊n−1, if t ∈ Zj(ω, δ), then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
k∈Λ

qk(ω)tk
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (1 + (d − 1)A−1)|qj(ω)|tj ≤ 6−j(1 + (d − 1)A−1)δ <

δ
4 ≤

1
4 .

Let

PN,η(x) = P(x) + η−1
N−1
∑
s=0
(− ∑

k∈Λ
qk(x))

s
.
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Then PN,η(x) is a polynomial whose degree does not exceed Nd and, for each j ∈ Λ and a.e. ω ∈ 𝕊n−1,

∫
Zj(ω,δ)

󵄨󵄨󵄨󵄨󵄨󵄨e
i(P(tω)+ 1

Q(tω) ) − eiPN,η(tω)
󵄨󵄨󵄨󵄨󵄨󵄨
dt
t
≤
4
3 |η|
−1 ∫

Zj(ω,δ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
k∈Λ

qk(ω)tk
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N dt
t

≤
4
3d

N |η|−1max{(|qj(ω)|tj)N : t ∈ Zj(ω, δ)}

≤
4
3d

N |η|−1δN ≲ 1.

(3.15)

Recall that Stein established in [9] that, for K( ⋅ ) given as in (1.1) with an Ω ∈ L∞(𝕊n−1) and {γα : |α| ≤M} ⊂ ℝ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ε1≤|x|≤ε2

ei(∑|α|≤M γαxα)K(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ AM ,

where AM is independent of ε1, ε2 and γα (see [9, pp. 334–335]). It follows that, for all h > 0,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p.v. ∫
|x|≤h

eiPN,η(x)K(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Bd‖Ω‖L∞(𝕊n−1) (3.16)

holds with a Bd independent of h and the coefficients of PN,η . Observe that each Zj(ω, δ) is the intersection of
no more than (d + 1) intervals in the form of either (0, (|q(ω)/q̃(ω)|γ) or ((|q(ω)/q̃(ω)|γ ,∞), where q( ⋅ ), q̃( ⋅ )
are homogeneous polynomials of degrees not exceeding d, and |γ| ≤ 1. Thus, one may use (3.16) and Lemma 2.4
to get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊n−1

Ω(ω)( ∑
j∈Λ
∫

Zj(ω,δ)

eiPN,η(tω) dtt )
dσ(ω)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ‖Ω‖L∞(𝕊n−1) . (3.17)

By combining (3.17) and (3.15), we obtain (3.14). Then (3.8) follows, as does (3.1).
Wewill end our proof of Theorem 1.3 by providing a brief explanation of how one can derive (1.5) from (3.1).
Let β : 𝕊n−1 → ℂ be an arbitrary regular H1 atom on 𝕊n−1, i.e. β( ⋅ ) is supported in 𝕊n−1 ∩ B(p, h) for some

p ∈ 𝕊n−1 and h > 0, has mean-value zero over 𝕊n−1, and satisfies ‖β‖∞ ≤ h1−n .
Suppose that h < 1

4 . Let M be an orthogonal matrix which has p as its first row vector. Define the linear
transformation L on ℝn by

L(x1 , x2 , . . . , xn) = (x1 , hx2 , . . . , hxn)M,

and let

Ω̃(x) =
det(L)|x|nβ( Lx|Lx| )
|Lx|n

for x ∈ ℝn\{0}. Then Ω̃ is homogeneous of degree 0, has mean-value zero over 𝕊n−1 and satisfies ‖Ω̃‖∞ ≲ 1. By
the uniform nature of (3.1) which allows it to be applied with P(x) and Q(x) replaced by P(Lx) and Q(Lx), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p.v. ∫
ℝn

ei(P(x)+
1

Q(x) )
β( x|x| )
|x|n dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p.v. ∫
ℝn

ei(P(Lx)+
1

Q(Lx) ) Ω̃(x)
|x|n dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Bn,d‖Ω̃‖L∞(𝕊n−1) ≲ 1 (3.18)

for all h ∈ (0, 14 ). The above inequality also holdswhen h ≥
1
4 as it follows directly from (3.1) and ‖β‖∞ ≤ h1−n ≲ 1.

Finally, by the atomic decomposition ofH1(𝕊n−1) (see [2, 3]) and (3.18), one obtains (1.5). The proof of Theorem 1.3
is now complete.
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